
A Crash Course in Linux Networking  

David Guyton 

 

April 2018 (edited August 2019) 



 

Table of Contents  

Preamble ....................................................................................................................................................... 2 

My Ubuntu Obsession ............................................................................................................................... 2 

Routing and Filtering Network Traffic ........................................................................................................... 3 

A Brief History of Linux Networking .............................................................................................................. 5 

ipchains ..................................................................................................................................................... 5 

The RPDB Revolution ................................................................................................................................ 6 

netfilter ..................................................................................................................................................... 6 

iptables ...................................................................................................................................................... 6 

Network Routes ............................................................................................................................................ 9 

How Linux Routes Network Packets ........................................................................................................... 11 

Incoming Packets .................................................................................................................................... 11 

Forwarded Packets .................................................................................................................................. 11 

Outgoing Packets .................................................................................................................................... 11 

The Whole Enchilada in One Picture....................................................................................................... 11 

Policy Based Routing ................................................................................................................................... 14 

The RPDB Triad: Rules, Routes, and Tables ............................................................................................ 15 

Routes ..................................................................................................................................................... 16 

Route Priority Processing ........................................................................................................................ 23 

IP Route Command Examples ................................................................................................................. 23 

Source NAT in ip route ............................................................................................................................ 25 

Deleting Routes ....................................................................................................................................... 26 

Creating New Routing Tables .................................................................................................................. 26 

Special Routing Use-Case Scenarios ....................................................................................................... 28 

The Route Command: An Oldie But a Goodie......................................................................................... 31 

Netstat .................................................................................................................................................... 33 

Flags: Hosts, Gateways, and Routes ....................................................................................................... 35 

Split Gateways ......................................................................................................................................... 35 

Follow the Rules .......................................................................................................................................... 40 

IP Rule Syntax .......................................................................................................................................... 40 

IP Rule Examples ..................................................................................................................................... 42 



 

Rule Priority ............................................................................................................................................ 43 

Routing Marked Packets with fwmark .................................................................................................... 45 

iptables Explained ....................................................................................................................................... 46 

Terminology Confusion ........................................................................................................................... 46 

Chains and Tables ................................................................................................................................... 46 

Chains ...................................................................................................................................................... 47 

Tables ...................................................................................................................................................... 50 

Viewing Existing iptables Rules ............................................................................................................... 53 

How to Delete Chains.............................................................................................................................. 55 

iptables Process Flow: Chains, Tables, and Rules ....................................................................................... 57 

CONNTRACK ............................................................................................................................................ 58 

Custom Chains ........................................................................................................................................ 58 

Chain Policies .......................................................................................................................................... 59 

iptables Command Line Syntax ................................................................................................................... 60 

Applying iptables Commands to Chains.................................................................................................. 61 

Parameters .............................................................................................................................................. 61 

iptables Extensions ................................................................................................................................. 62 

Actions and Targets ................................................................................................................................. 63 

Match Extensions .................................................................................................................................... 64 

Target Extensions .................................................................................................................................... 68 

Extensions and Chains: Where and When to Apply iptables Rules ........................................................ 73 

Inverse Operand...................................................................................................................................... 74 

Noteworthy Variable Syntax ................................................................................................................... 74 

Connection Tracking ............................................................................................................................... 74 

Protocols ..................................................................................................................................................... 75 

Testing Your Rules ....................................................................................................................................... 76 

Listing Rules by Number ......................................................................................................................... 76 

Create Your Shell Scripts ......................................................................................................................... 76 

Helpful Tips ................................................................................................................................................. 79 

Don't Forget to Flush! ............................................................................................................................. 79 

Do NOT Flush ip rules .............................................................................................................................. 79 

mark vs. fwmark: What's the Difference? .............................................................................................. 79 



 

Persisting Routes, Rules, and Tables Across Reboots ................................................................................. 79 

SystemD and the Start-up Process .......................................................................................................... 79 

References .................................................................................................................................................. 81 

Endnotes ..................................................................................................................................................... 85 

 

Table of Figures 

Figure 1: NetFilter Topology ______________________________________________________________________ 4 

Figure 2: Historical Timeline of iptables _____________________________________________________________ 5 

Figure 3: Top Level NetFilter Hooks: NFTables, UFW ___________________________________________________ 7 

Figure 4: Linux Networking Concepts and Associated Tools _____________________________________________ 9 

Figure 5: Packet Routing Tree ____________________________________________________________________ 10 

Figure 6:  iptables Input and Forward Chains Process Flow Diagram _____________________________________ 12 

Figure 7: iptables Output chain process flow ________________________________________________________ 13 

Figure 8: AND Bit Logic Illustration ________________________________________________________________ 37 

  



1  | A Crash Course in Linux Networking 

 

A Crash Course in Linux Networking 

The primary purpose of this guide is to familiarize you with some of the most important concepts in Linux 

networking. I'm not endeavoring to teach you everything, nor provide you all the details of the tools described 

herein. My goal is to provide enough information to get you knee deep into some subjects, and dip your toe in 

the water with others. Most people don't require a true deep-dive. This guide is more broad than deep. It covers 

common topics and provides the reader with more in depth detail than most other authors reveal. 

I hope you find it beneficial, and appreciate any constructive feedback. You may reach me via my blog, 

https://datahacker.blog 

- David Guyton 

  



2 Preamble | A Crash Course in Linux Networking 

 

Preamble 
There are plenty of guides online if you want to learn about networking in Linux. I wrote this particular 

manuscript while working on a “How-To” instructional guide on Linux media server construction and 

configuration. Borne out of my research of client-side VPN configurations, I hope it spares you the many hours I 

spent developing a basic understanding of Linux networking, including iptables, iproute, and netfilter just to 

name a few components.  

This isn't meant to be an all encompassing guide to Linux networking or any component of it. Rather, it is a mini-

guide designed to help you gain a basic technical understanding of the topics contained herein. Even if you're 

not building or maintaining a firewall, other features such as VPN configuration require a rudimentary 

understanding of the underlying concepts of both VPNs and networking. 

In this document I'll cover: 

1. Routing network traffic 

2. Packet manipulation 

3. How Linux structures network management 

4. Network management tools 

5. Traffic filtering vs. routing 

And before diving in, let's be clear on what I am not covering! First, I am not reviewing ALL features, functions, 

options, and parameters of Linux networking. That is an incredibly huge topic. You can't even fit it all in a single 

book. A series of tomes would be more like it, so if you need deep levels of detail, please find the appropriate 

Wiki or other documentation. This document is meant to be a primer on how networking is managed by Linux, 

and a reference for the most common associated tools and commands. 

My Ubuntu Obsession 

In the Linux world, I'm most familiar with Ubuntu, which is why you'll find all the code examples contained 

herein based on that platform. While Ubuntu has its own personality and quirks, it is largely true to the Linux 

core, and it is still a Debian flavor. With a stable and well funded corporate sponsor and strong community, 

IMHO, it provides a great platform for tutorials such as this one.  

As of this writing, Ubuntu 16.04.x LTS is my go-to version. I prefer to hang a back a bit from cutting-edge 

versions of any operating system. I value stability and the fact a modicum of bug-cleaning has already occurred 

over the “latest and greatest” version of almost anything. I submit to you that reliability does (or should) trump 

feature sets for almost all applications. Most operating systems need a minimum of a year in production before 

the most egregious bugs have been identified and squashed. 

  



3 Routing and Filtering Network Traffic | A Crash Course in Linux Networking 

 

Routing and Filtering Network Traffic 
Network packet routing in Linux is - unfortunately - an area I believe generates considerable confusion when 

discussing routing and routing policies. At a high level, Linux network routing is divided into two core sections. 

The first is the actual routing policy process and the other is a packet mangling process. Together they provide a 

very powerful combination of tools that far exceeds the capabilities of traditional table-based network routing 

systems. When the Linux kernel has an outgoing data packet destined for a network device, how does it 

determine where to send the packet? When the Linux kernel receives a data packet from another device, how 

does it determine what to do with it? 

To create a “smart” network routing system, you will need to grasp a few basic concepts of how Linux 

disseminates and processes network traffic. It's difficult to know where to begin. Linux networking is very 

complex, which is why there are so many discussions of the subject. I'll layout a top-down approach and basic 

framework for you. Hopefully, this will clarify things and make the process easier to understand. To manipulate 

your network traffic at will – such as choosing which traffic passes through a VPN and which does not – you need 

to understand how the Linux kernel routes network traffic, and the tools available to manipulate network 

routes.  

First, by default, all network traffic is permitted. One can imagine how that is not an ideal approach under many 

circumstances. Developing a comprehensive plan for managing your network traffic - even for a stand-alone 

server - is not straightforward in Linux. You have two primary paths available to you: filtering and routing. You 

may choose to use one or the other, or both. Let's be clear on what 'filtering' and 'routing' mean when it comes 

to networking. "Filtering" is the manipulation or modifying of network packets coming into or leaving your 

server. A firewall is the best example I can think of to represent a filter. That's all a firewall does is filtering. 

"Routing" refers to the pathways packets may take when leaving your server. Network traffic is sent out on 

"routes." A route is a conduit to one or more other network devices. 

The core of Ubuntu's filtering mechanism is netfilter - Linux' firewall. Ubuntu uses two common Linux application 

layers on top of netfilter called iptables and ip route. Netfilter itself has two components: an API (Application 

Programming Interface) with hooks to the kernel, and underlying network architecture code.  

A completely independent tool in Ubuntu called ufw ("Uncomplicated FireWall") may also be used to 

manipulate netfilter. Ufw is a front-end for iptables. Some people find ufw easier to work with than iptables, but 

I'll be teaching you how to use the latter. Why? Yes, it's more complicated, but the upside is you'll get a better 

idea of what you are doing when manipulating packet data. 



4 Routing and Filtering Network Traffic | A Crash Course in Linux Networking 

 

 
Figure 1: NetFilter Topology 

So, what’s the net benefit for you? 

There are two portions to packet networking in Linux: routing and filtering. The routing process is a map of your 

network. Routes determine possible paths where a packet may be sent. It is the where in networking. You may 

think of it as a postal system, where a device’s address on the network is similar to the address of a building in 

the postal service delivery system. Routing has to do with where things are going and where they came from. 

Filtering governs what and how data is sent via a route. In the postal system analogy, filtering is concerned with 

what is being transported; the packet. Netfilter handles most of the packet mangling. Its scope is limited to 

packet manipulation. It doesn't cause a packet to move in or out of the server, and doesn't understand network 

topography like the routing process. On-the-other-hand, the routing process can only choose which path a 

packet takes based on a limited amount of information. 

  



5 A Brief History of Linux Networking | A Crash Course in Linux Networking 

 

A Brief History of Linux Networking 
Have you ever wondered why Linux network management is so confusing? You need only make a cursory review 

of the history of Linux networking tools to understand how it got this way.  

Ironically, it seems to me that Linux network evolution is largely responsible for the confusion people often 

encounter when searching online for information on how Linux processes network routing filters and 

commands. This isn't surprising if you look at the history of significant routing behavior changes that occurred in 

the Linux kernel relatively close together from the mid-1990's to 2001. The code remained more or less 

untouched until 2014, and even then the milestone was an overhauled interface to the kernel. The core 

remained virtually unchanged. Even now – in 2018 – we are still using nearly 20-year old networking code in our 

Linux servers. Amazing when one takes into consideration the evolution in anecdotal technologies since then, 

such as network security, identity, and block chains to name a few. 

Here is a synopsis of the historical timeline of Linux user-based networking tools: 

Tool Released Kernel Deprecated Evolution

ipfwadm 1995 1.2.1 X First packet filtering tool for Linux

ipfwadm (v2) 1996 1.3.66 X Chains concept introduced (IN, OUT, FORWARD)

iproute 1997 2.0 X Original ip utility (RPDB introduced)

ipchains May 1999 2.2 X User-created ipchains, fwmark added

iproute (v2) Sep 1999 Revised ip utilities

iptables Mar 2000 2.3 iptables released (replaces ipchains, fwmark)

2001 2.4 iptables packet filtering and header mangling

nftables Jan 2014 3.13 Replacement to iptables  
Figure 2: Historical Timeline of iptables 

Linux kernel 1.2.1 - released in 1996 - unveiled a firewall administration tool for the first time called ipfwadm, 

which was an abbreviation for IP FireWall ADMinistration. It was the first packet-level screening interface for 

Linux where a sysadmin could tweak how the kernel handled network packets. It was replaced a few years later 

with ipchains, which was itself subsequently replaced by iptables the following year. 

Nftables is a replacement for iptables, along with other little-known networking tools such as arptables and 

ebtables. It combines the functionality of those tools into a single interface, which then hooks into netfilter. The 

main benefit to nft is the consolidation of the aforementioned tools plus extensions of these tools (e.g. 

CONNTRACK) into a single application. 

ipchains 

The chains concept in Linux networking is very primitive. It dates back to Linux kernel 1.3.66 in 1996 when the 

chains consisted of just three: IN, OUT, and FORWARD. The concept entails each of the three main processes in 

routing network packets through a server. Those packets will either be incoming to a local destination, outgoing 

to another device and originating from a local service, or outgoing to another device and not originating from a 

local service. 

You may think of the chains as highways inside your server. They are able to direct traffic flow along a particular 

direction, but cannot modify the packets. Although primitive compared to more recent routing processes, 

ipchains remains engrained in the Linux' networking DNA. 



6 A Brief History of Linux Networking | A Crash Course in Linux Networking 

 

The RPDB Revolution 

Released in 1997, Linux kernel 2.0 was a watershed event for the Linux community. It included a complete 

rewrite of the networking backend. A new network management tool debuted. Called iproute, the Routing 

Policy DataBase (RPDB) was born. 

The RPDB created the concept of a table of routing tables; a "master" routing table, if you will. Prior to the 2.0 

kernel, Linux used the traditional model of a single routing table. Shortly afterward the advent of ipchains 

arrived with the 2.2 kernel, and in September 1999, version 2 of iproute was released. A set of tools originally 

written by Alexey Kuznetsov that expanded the capability of the RPDB, iproute2 added an additional layer of 

rules which today we think of as filtering rules. This controversial change allowed some functions of ipchains to 

be duplicated by the RPDB. This in turn led to a split in philosophies of where and how network packet mangling 

and Network Address Translation (NAT) should be handled, and which tools ought to be interacting with netfilter 

(Linux' network management kernel layer). Still relevant today, when using ip route and ip rule, you're using 

functions of iproute2. It superseded several original iproute tools including route, ifconfig, and netstat.  

Approximately six months later, another initiative called iptables went live with the 2.3 kernel. It replaced 

ipchains with a foundation for a more robust solution and more or less wrestled the reins of various functions 

away from iproute again. When the Linux 2.4 and 2.6 kernels were released a short time later, a number of 

functions of iproute2 were deprecated, solidifying iptables lead in packet mangling and NAT functions. While 

ipchains' legacy of chains remained, iptables expanded the chains concept to five (5) built-in chains and created 

the ability of users to add new, custom chains to the network management process.  

netfilter 

Another point-of-confusion is netfilter. Perhaps because though it is spoken of regularly, yet there is no netfilter 

command. Netfilter is a process responsible for network packet management and NAT (Network Address 

Translation). It is effectively the network traffic cop inside your server. 

netfilter is comprised of two parts: 1) a set of kernel hooks; and 2) a tool that translates commands to kernel 

actions. The various xx-tables tools interact with the translation portion of netfilter.  

iptables 

The next significant evolution in network packet management within Linux was iptables. An evolution of ipchains 

and still widely used today, iptables cannot direct traffic flow, but can modify network packets. 

Tables are called by chains and provide a finer level of detailed packet filtering. The benefit of this approach is all 

filtering rules are located in one place. Packet directional flow control is handled by the chains and they in turn 

call the tables as needed. A table contains a set of packet filtering instructions, but cannot alter the direction the 

packet is flowing.  

It is important to note although the command ipchains is deprecated in Linux, chains themselves still exist and 

are a critical component of iptables.  

NFTables 

Nftables is a replacement to iptables, ip6tables,
1
 arptables,

2
 and ebtables.

3
 



7 A Brief History of Linux Networking | A Crash Course in Linux Networking 

 

Nftables functions differently from iptables and its extensions. It completely bypassing netfilter's translation tool 

and passing data directly to netfilter's kernel interface. To put this in context, if you were to remove netfilter, 

nftables would continue to function properly but iptables and its xx-tables associated commands would break. 

nftables bypasses the traditional iptables hooks into netfilter. 

 
Figure 3: Top Level NetFilter Hooks: NFTables, UFW 

While for now, iptables remains the de-facto standard, nftables may eventually replace it. Regardless of whether 

or not that ever happens, either may be used. The advantages of nftables over iptables are: 

1. More concise command structure; consolidates filtering to fewer command lines 

2. Chains are fully configurable; unlike iptables, base chains do not exist 

3. Concatenations are supported 

4. New protocols are supported without kernel updates 

5. Expressions replace and combine the concepts of matches and targets 

6. Dual stack IPv4/v6 implementation 

Moving from iptables to nftables is a paradigm shift both intellectually and practically. Prior to nftables, Linux' 

approach to networking has been to embed all controls into the operating system kernel. Nftables creates a 

virtual machine that manages all mangling acts independently upon the networking packets, before presenting 

the final packet version to the kernel.  

There are only two possible paths whereby a future Linux iteration could abandon iptables code: a hard fork 

(remove all iptables code), or a "soft" fork where the new system maintains hooks to the old system for 

compatibility. To date, we currently have the latter. Without a concerted effort to push developers off of 

iptables and onto nftables, I hesitate to even call it a 'soft' push. More like an alternative option. Rather, iptables 

and its variants continue to represent the gold standard in Linux networking tools, simply by virtue of 



8 A Brief History of Linux Networking | A Crash Course in Linux Networking 

 

momentum and familiarity (and in spite of their often clunky interfaces or command structures). Netfilter's 

translation code is deeply buried in the Linux kernel. So much so that it will require a major effort to untangle it 

if the ultimate goal of nftables is to be realized (deprecating iptables). As I write this content – over five years 

after the release of nftables - the current Linux kernel is 4.19 and there are no signs of the elimination of 

iptables on the horizon.  

The iptables code is well documented and - in spite of its inefficiencies - it works. Unless someone forces a 

change, it's easier to continue using 20-year old code than address the task of a monumental re-write, and likely 

break lots of things until the fact they are broken is discovered and corrected. As the world has become more 

dependent on networking-based applications such as "cloud computing," the effort required to make an 

eloquent conversion is greater than ever. To wit, my preceding comment in the introduction: reliability trumps 

innovation. The Linux networking roadmap is prima facie evidence of this design philosophy. 

UFW 

As if the underpinnings of network packet management in Linux were not confusing enough, Ubuntu introduced 

another layer of complexity and confusion with the introduction of the ufw tool (Uncomplicated FireWall). 

Originally released with Ubuntu 8.04 LTS in April 2008, ufw purported to be, "The default firewall configuration 

tool for Ubuntu." (UFW, 2017). Claimed to be the "default," yet by default it is disabled. The reality is UFW 

simply adds another layer; a front-end to iptables.  

IPv4 and IPv6 

Any discussion of networking would be remiss without a brief discussion of IPv6. Netfilter handles both IPv4 and 

IPv6 address translation and routing. Meanwhile, it’s split in iptables. IPv6 is handled by ip6tables, while iptables 

handles IPv4 only. The default routing configuration in Ubuntu has a small amount of IPv6 routing built-in (just a 

few very broad capabilities that ensure your IPv6 packets don't get blocked by the IPv4 routing process). 

However, due to the substantial difference in address complexity of IPv6 vs. IPv4, I'm omitting an in-depth 

discussion of IPv6 routing from this guide, though the basic concepts are the same. 

  



9 Network Routes | A Crash Course in Linux Networking 

 

Network Routes 
Two systems built-in to Ubuntu manage network routing: route (a legacy system) and ip route. Both use the 

same underlying code, yet report networking context a bit differently. Ip route has a larger command set. 

Although route has been deprecated for some time, I still find it useful under some circumstances as it provides 

a different perspective of the routing table not available with ip route. 

Route and ip route view and manipulate network routes. A route informs your server where to find other 

network devices it wants to talk to, based on the destination network address. You can visualize route and ip 

route as a system of roadways and iptables as a system of traffic lights that regulates the flow of traffic on the 

roadways. Of course, you could just use route and ip route, and you'd be able to route network traffic just fine. 

What you would lose is the ability to fine-tune the traffic's behavior. Route and ip route control where things go, 

while iptables controls what goes where. Route is a system of conduits, while iptables filters the data inside 

those pipes.  

To make things a bit more complicated, there is another filtering tool called ip rules that is part of the routing 

system called a Routing Policy DataBase (RPDB). Ip rules allows the use of multiple independent routing tables 

plus filtering algorithms capable of controlling when traffic is filtered and to which routing table. It may be 

possible to use ip rules, not use iptables, and accomplish your goals. However, as you'll see later on, iptables is 

more powerful. 

Here's a quick-reference diagram demonstrating the relationship between commands and processes. 

 
Figure 4: Linux Networking Concepts and Associated Tools 

 

 

  



10 Network Routes | A Crash Course in Linux Networking 

 

And a high-level overview of the process flow.  

 

Figure 5: Packet Routing Tree 



11 How Linux Routes Network Packets | A Crash Course in Linux Networking 

 

How Linux Routes Network Packets 
netfilter, iptables, and ip rule have to be some of the most confusing concepts in Linux. Before you begin writing 

your own packet filtering rules, let's examine the order of operations of network traffic. Breaking down network 

traffic, which chains and filters touch each scenario? Below, I've highlighted chains in red, filters in blue, and 

command processes in green.  

Incoming Packets 

All incoming packets first traverse PREROUTING... 

PREROUTING [RAW table -> CONNECTION TRACKING -> MANGLE table -> NAT table (DNAT) -> Route Decision] 

If the packet is addressed to the server, it follows the INPUT chain... 

INPUT [ MANGLE table -> FILTER table -> SECURITY table -> Local Process ] 

If the packet is following the INPUT chain path, it's sent to the local host for processing.  

Forwarded Packets 

Forwarded packets follow the 'incoming' process above, and divert after the PREROUTING step. 

PREROUTING [RAW table -> CONNECTION TRACKING -> MANGLE table -> NAT table (DNAT) -> Route Decision)] 

It then follows the FORWARD chain path... 

FORWARD [ MANGLE table -> FILTER table -> SECURITY table ] 

It then gets handed to POSTROUTING... 

POSTROUTING [ MANGLE table -> NAT table (SNAT) -> Out for Delivery ] 

Forwarded packets are unique in that both pre and post routing rules are applied to them. 

Outgoing Packets 

Outgoing packets have a much simpler process. All outgoing packets (that ORIGINATE from your server; i.e. not 

forwarded through the server) first go through the OUTPUT process... 

OUTPUT [ RAW table -> CONNECTION TRACKING -> MANGLE table -> NAT table (DNAT) -> FILTER -> SECURITY ] 

The packet is then handed to POSTROUTING... (same process as forwarded packets) 

POSTROUTING [ MANGLE table -> NAT table (SNAT) -> Out for Delivery ] 

From there it goes onto the network, routed to the destination host. 

The Whole Enchilada in One Picture 

Unfortunately, it's quite challenging to find a good diagram of the whole process that does not either leave out 

important details (such as the Security table hooks) or provides too many details, including other processes not 

related to iptables. 



12 How Linux Routes Network Packets | A Crash Course in Linux Networking 

 

 

Figure 6:  iptables Input and Forward Chains Process Flow Diagram 



13 / | A Crash Course in Linux Networking 

 

 
Figure 7: iptables Output chain process flow 



14 Policy Based Routing | A Crash Course in Linux Networking 

 

Policy Based Routing 
Ubuntu stores the server's network route information in routing tables. A routing table is a map of a network. 

Ubuntu uses Linux' policy based routing system, aptly called a Routing Policy DataBase or RPDB. The RPDB is a 

collection of routing addresses, rules, and routes. The "policies" per se are defined by rules. Here's how it works. 

A traditional routing table is two-dimensional. It is a single table that includes algorithms (rules) and pointers 

(routes) to every network connection the server is aware of. Routing a connection is a affair. Apply any 

applicable rules and off you go. The advantage of a RPDB is two-fold: the separation of rules from routes, and 

the use of a master routing table index and a collection of tables with the real routing information. This 

combination allows more granular control over network traffic, such as pointing to a single route from multiple 

rules, or the opposite (multiple rules pointing to a single table). In short, it allows for improved granular control 

and segmentation of your network routes. 

Another plus of a RPDB is real-time changes can be made to routing tables without interfering with the server's 

operation. With a traditional single-dimension routing table, you may need to interrupt the server's traffic or 

have to take it offline in order to modify the table. And if you inadvertently make a mistake while editing a 

router table, in a single-dimension routing table environment it's much easier to accidentally cripple your 

server's access. While in a RPDB configuration, isolating changes and creating failsafe traps is easier. In short, it's 

more foolproof. 

The RPDB rule cache is loaded during the server boot-up process. When a routing decision is required, only the 

cache copy is referenced. What are the characteristics of the RPDB? 

 Addresses (source and destination) 

 Rules (what goes where?) 

 Routes (where's it going?) 

In Linux, the RPDB is composed of two databases: a table of rules and a table of routes. Taken together they 

determine the route assigned to a packet. At a high level, the rules work in conjunction with routing tables like 

this: 

in -> Rule filter -> Rule Match [Highest Priority] -> Routing Table Lookup [Longest] -> out 

How is a route selected for any given packet?  

Rules are examined sequentially, in order of priority. Rules contain a selector and an action predicate. If the 

current network packet matches the current rule selector, the action is executed. If the corresponding action is a 

reference to a routing table (a "look up"), it will point to the index number or name in the RPDB's routing table.  

The combined process flow looks like this: 

IP Rule Analysis 

1. Network packets are processed one at a time 

2. The same rules process both incoming and outgoing packets 

3. Packets are evaluated against a list of rules, in order of priority, beginning with rule 0 

4. First rule matching the packet is executed 

5. If the action is a table lookup and the lookup fails, evaluate the next rule 



15 Policy Based Routing | A Crash Course in Linux Networking 

 

6. If no rule matches the packet, fail with an undeliverable packet error 

 

IP Route Analysis flow 

1. The route with the longest matching prefix is chosen 

2. If more than one match is the same length, the route with the best preference values is chosen 

3. If more than one match exists, if ToS is specified, routes that don't match the ToS are dropped 

4. If more than one route still exists, then the first ordered matching route in the list is chosen 

5. If no matching route is found, the kernel returns to the Rule table and moves onto the next rule 

To be clear, in this context "prefix" means the destination IP address, including the netmask (if present). 

Let's move on to a discussion of how the main routing process functions and the philosophy behind it. 

Afterwards, I'll go over the packet mangling process (netfilter), and wrap it all together for you with a 

comprehensive explanation of how these pieces fit together to complete the puzzle. 

The RPDB Triad: Rules, Routes, and Tables 

These are the building blocks of the Routing Policy DataBase (RPDB) system. Every server has an internal firewall 

and routing configuration that tells it where to send network packets. iptables manipulates packet filters, ip 

route controls routing paths, and ip rules controls routing policies on your server.  

Before you begin modifying your RPDB, you should be clear on how ip rules, ip route, and iptables are inter-

related and work together to manage network packet flow. You may recall in the diagram in the Network Routes 

section that while all three modules are called at one point or another, which module is called first (iptables or 

ip rule) depends on whether the packet is originating from server (new, outgoing packet), an incoming packet, a 

forwarded packet, or an outgoing packet that's part of an established communication link.  

Here’s a brief clarification of each portion of the Linux RPDB system.  

Addresses 

This is pretty straightforward. An address describes the location of a service on a network. Packets must have 

both source (origin) and destination addresses. A packet's addresses are the most important factor in how it is 

routed. 

Rules 

IP rules are pointers that define the location of routes. While their ability to scrutinize a network packet is 

limited, in combination with routing tables they create a powerful filtering combination. 

Routing rules are managed with the ip rules command. They are the crux of the Routing Policy DataBase (RPDB) 

system. Routing rules control how and where traffic flows along routes to a destination address (if it moves 

forward). Routing rules are effectively filtering algorithms. Each rule contains a selector (match filter) and an 

action. They provide instructions to the kernel regarding what to do with the packet.  

Selectors may examine one or more of the following parts of the current network packet: 

1. Source address 

2. Destination address 

3. ToS (Type of Service) 

4. Incoming interface (that which the packet arrived from) 



16 Policy Based Routing | A Crash Course in Linux Networking 

 

5. fwmark (firewall mark) 

IP rule does not allow filtering based on protocols or transport ports, though that type of filtering is possible via 

iptables, which is discussed later in this guide. For our purposes (basic routing), we are not concerned with the 

ToS value.  

The output of each rule is of the following action types: 

 Jump to specified routing table  

 Drop or reject packet  

 Return an error 

 Modify packet source address 

Each rule contains a selector and an action. The selector is an algorithm or criteria. When the selector of the 

current rule matches the packet, that rule's action is executed. Each rule is preceded by an integer from 0-

32767. The rule number is its priority. For every packet, the rule database is scanned from highest priority (rule 

0) to lowest priority (rule 32767). Each packet is compared sequentially to every rule beginning with rule 0.  

IP Rules are explained in more detail in Follow the Rules. 

ToS 

Type of Service (ToS) relates to the priority of a network packet relative to other network traffic. It is sometimes 

used in advanced networks to incorporate traffic priority into the datagram of the traffic itself (versus traffic 

prioritization by other means, such as port, protocol, source/destination address). Traffic shaping and priority 

manipulation by ToS is beyond the scope of this document.  

Routes and Routing Tables 

A “route” is a pathway to a destination. It defines the location of a service. A route instructs the kernel where on 

the network to send a network packet so that a packet so that it is one step closer to its destination address. The 

route may be the destination, or it may be a bridge, router, gateway, or the localhost. If the route leads to 

another device that is not the final destination, the route is called a hop. 

A “route table” is a collection of routes. You can liken a routing table to a map, as they typically contain multiple 

routes, and it’s possible more than one route could lead to the packet’s destination. Likewise, a single route - a 

single basic instruction - is like a sign post. It advises the kernel of the next step in a packet’s path to its 

destination. Similar to rules, there may be times when more than one route is applicable to a particular packet. 

When this happens, the longest matching route wins. Practically speaking, the longest route should be the most 

specific route and it is generally safe to presume that will be the case. 

Routes 

We will begin the detailed discussion of each component of the RPDB triad with routes. 

Routes are managed by the ip route and route tools. The difference is ip route is current (iproute2) and route is 

the deprecated version (iproute). It is however, mentioned several times in this document because it is useful for 

some things, and the legacy code is still present. 



17 Policy Based Routing | A Crash Course in Linux Networking 

 

The Master Routing Table 

Linux routing table entries are manipulated via the route and ip route commands. A surprising weakness of both 

tools is they're only capable of displaying a single route table at a time. I say 'surprising' because up to 256 

independent routing tables are possible through the use of an indexed master routing table, yet command line 

tools only display the contents of one route at a time.  

Rather than using a single fixed routing table as in a traditional router table configuration, the Linux RPDB 

system uses the master routing table as an index to refer to route tables indirectly. The beauty of the system is 

in this ability to segment routing into individual compartments, plus a large database capable of storing up to 

32,768 rules that interact with the route tables. The end result is a complex web of routing, though the real 

workhorse is the rules portion. 

The master routing table is a file. It contains an ordered list of up to 256 integer and name associations. Each line 

in the file is a combination numeric and named value pair indexed to a specific router table. This is part of Linux' 

Routing Policy DataBase (RPDB) system. Rules are utilized to direct the kernel to an indexed router table for 

processing.  

The master routing table is always the same filename, and is always found in the same location: 

/etc/iproute2/rt_tables 

The file is a simple affair. Take a look at yours. 

cat /etc/iproute2/rt_tables 

You'll see a list of the routing table numbers and names that looks something like this: 

# 
# reserved values 
# 
255     local 
254     main 
253     default 
0       unspec 
# 
# local 
# 
#1      inr.ruhep 

The master routing table contains the list of all the routing tables on your server. The following tables are 

included in the table list by default on an unmodified system: 

 local  Local and broadcast addresses; do not modify or remove 

 main  Operated on by route and ip route processes; default when no policy specified 

 default  Reserved for post-processing rules 

 unspec  Failsafe; do not modify or remove 

 inr.ruhep Legacy reference; theoretically unnecessary 



18 Policy Based Routing | A Crash Course in Linux Networking 

 

Note the etnry, "#1 table inr.ruhep" is commented out. This is legacy code and may be ignored or deleted.  

The master routing table allows you to utilize the RPDB to its full capacity by associating rules with independent 

routing tables. However, many people don't realize it exists, because Linux' network routing system runs out-of-

the-box with no modifications. How? By default, all network traffic is passed through. If you don't have a need to 

control, filter, or redirect any network traffic passing through it then you really don't have any reason to modify 

your server's routing table(s) at all. 

Default (Built-in) Routing Tables 

There are four built-in route tables in Ubuntu: default, local, main, and unspec. These routes are all special, 

though how they are named is a bit confusing.  

The default table is empty. Contrary to the logic of its name, the default table is not used. You may choose to 

remove it, though leaving it does no harm. 

The local table handles TCP/IP traffic internal to the server (e.g. between internal ports), and includes the 

loopback adapter and broadcast traffic.  

The main table is the primary routing table or what I would call the true 'default' table. Any route or ip route 

command where the table is not specified will action the main table by default. 

The unspec table name is shorthand for "unspecified." It is a set of instructions for the kernel to follow when all 

other routing paths fail.  

Now, try this command for each of the three standard router tables (main, local, and unspec): 

ip route show table {table name} 

Such as 

ip route show table local 

Contrary to what one might expect, the number of each table is irrelevant. Their order in the rt_tables file 

doesn't matter. What is significant are the table names. Each table must have a unique name/ number reference 

within the table file. This file is simply an index. This is one of the few components of packet filtering that does 

not require restarting the server for changes to take effect. The routing table index can be modified at any time 

and the changes will take effect immediately. There is no cached version of this file. It is read every time a table 

is called by a rule. 

If the order doesn't matter, why have an ordered list? First, legacy: this format was created a long time ago, and 

it's essentially just been stuck in Linux since the kernel 2.1/2.2 era when the RPDB concept was created. Second, 

it creates a lower boundary of table numbers, ensuring a user who adds a custom table chooses a numeric value 

in between 1 and 252 (the default table). Since the entire RPDB is cached in memory, if you maxed out the 

master routing table, the kernel would need to allocate enough memory to store 256 routing tables. Remember, 

each routing table may contain an unlimited number of routes. 



19 Policy Based Routing | A Crash Course in Linux Networking 

 

Examining Existing Routes 

The next step is to figure out how your RPDB is currently branching network traffic. Remember, this process is a 

combination of routing tables indexed in the master routing table and rules in the routing rules database. Once 

you understand how to discover your existing network routes, you'll be able to use these techniques to verify 

route changes in the future. 

You may use several different tools in Ubuntu server to identify routes and hosts on your network (LAN), their 

outbound interface, and the order in which your server prioritizes its network routes. Examine your current 

routing structure with the ip command set. Run this command and examine the output: 

ip route list 

On a fresh server, your output should look similar to this: 

default via 192.168.10.10 dev eth0 

192.168.10.0/24 dev eth0  proto kernel  scope link  src 192.168.10.11 

Or you could use this command and view the same result: 

ip route show table main 

Why is the output the same? The default table in ip route is the 'main' table. The first command presumes the 

default routing table, because a table is not specified. "Default" in the context of the command refers to the 

routing table called main. 

What does this output mean?  

The default route is used when a more specific route cannot be found (thus the term 'default'). This is a little 

different from the question of which routing table is being displayed. You may now begin to see why Linux 

routing can be so confusing! When viewing the table output, as in the two lines above, the word, "default" 

means, "If no other route matches the destination IP address more specifically, select this route."  

When you're talking about a default routing table, in Linux that normally means the main table. When you're 

talking about a default selector in a routing rule, to iproute2 that means the route to be used when a more 

specific route is not identified. Linux prioritizes network traffic route selection based on a longest match model. 

If a longer route cannot be identified, the kernel will use the route identified as the default route. 

Notice in the example above the physical interface is also specified (eth0). A fresh RPDB in Ubuntu is configured 

such that the default state is to allow all traffic through the server's primary interface to your WAN. In this case 

the default path is pointing to the upstream router or gateway at 192.168.10.10 on the eth0 interface. This only 

pertains to outgoing traffic. Remember, default means "use this route if no other route better matches the 

destination address." 

The second line shows a route to a network 192.168.10.0/24 via the eth0 interface. The "scope link" indicates 

this route is directly linked to the server. In other words, it's a LAN. The "src" is the IPv4 source address assigned 

to packets leaving this server and proceeding along this route (source NAT). Put another way, this line tells your 



20 Policy Based Routing | A Crash Course in Linux Networking 

 

server there is a local network with a route of 192.168.10.0/24, and when directing outgoing traffic to that 

network the current server will identify itself with IP address 192.168.10.11. 

Though it doesn't provide a wealth of information, this output example identifies the server's connections to the 

network at a high level. Taken together, those two lines indicate the following facts: 

1. There is a network route 192.168.10.0-192.168.10.255 that must be a LAN because this server's 

source IP address on that route is set to 192.168.10.11; 

2. Network packets not destined for the LAN will be routed to 192.168.10.10 on the same interface 

(eth0) and will not have their source IP address modified by the routing rules; 

3. There must be an upstream gateway or router at 192.168.10.10. 

IP Route Syntax 

This is a good opportunity to explain what some of the words mean that you'll see in the ip route list command 

output. 

The following are the relevant Route Types: 

 broadcast - Packets are sent as link broadcast messages 

 blackhole - Packets are discarded and dropped silently 

 local - Packets are delivered to the loopback device (local to the server) 

 prohibit - Packets are rejected; error returned, "Communication is administratively prohibited" 

 throw - Table lookup terminated; packet is dropped; error message returned, "net unreachable" 

 unicast - Path to a destination address (this is what most routes are) 

 unreachable - Packet is discarded and ICMP error message returned, "host unreachable" 

These are the most relevant Control Values: 

 dev [name]  Name of network device to route the packet through (e.g. eth0) 

 scope [value]  Scope of area where valid { host|link|global } 

 proto   Which process created the route (i.e., is it temporary or permanent) 

Scope Values.  "Scope" describes where the address is valid. 

 global   Valid everywhere (globally); default scope if none specified 

 link   Local; valid only on this device 

 host   Only valid inside the current host (server) 

Proto Values. Also known as "RTPROTO" or "route protocol." It identifies the process that created the associated 

route. 

 boot   Added after boot; temporary 

 static   Override added by sysadmin 

 kernel   Added by kernel (this is normally what you want to see) 

As you can see, one can group several of these into a category of "drop the packet" (namely blackhole, prohibit, 

throw, and unreachable). Dropping and rejecting packets may also be accomplished via iptables. The unicast 



21 Policy Based Routing | A Crash Course in Linux Networking 

 

(forward packet to address such-and-such), local (send to localhost), and broadcast actions instruct the kernel 

where to send the current packet. 

Adding New Routes 

So, you've decided you want to add a new route. Perhaps you want to setup a VPN tunnel or add a new network 

interface to your server and you need to tell it how to use the new interface. Adding a new route boils down to 

instructing your server how to direct traffic from or to a specific IP address or range of addresses. You either 

want to create a route the server doesn't understand or see right now, or add a new one that changes how your 

server currently directs traffic. 

Regardless of why you want to add a new route, the process is the same. Just remember routes affect both 

inbound and outbound network traffic.  

There are three options when adding a new route:  

1. Add a route to the default routing table (main) 

2. Add a route to another existing table 

3. Create a new route table and add at least one new rules that points to it 

To add a new route, the ip route command argument structure is: 

ip route add [type] [prefix] via [next hop] dev [interface name] table [table name/ID] src [source IP] 

"Prefix" means the destination IP address, including netmask (if present). If "type" is omitted, unicast is 

presumed. Nearly all routes are unicast. For other types, refer to Routes and Routing Tables for information. 

"Next hop" is the gateway or upstream router the packet will be sent to. 

If prefix is set to "default" it is the same as assigning an IPv4 address of 0/0 or 0.0.0.0/0 or 0.0.0.0/0.0.0.0.  

The formatting boils down to the identification of the destination IP address or range, whether the route is 

direct or via a gateway, network device, and it may contain other values depending on whether or not the route 

points to a gateway, host, or a group of IP addresses (e.g. a LAN branch). The preceding sections (especially 

Examining Existing Routes) have more detailed explanations on the syntax.  

Here's an example of how to add a new route to a route table called "custom." The new route directs all traffic 

not routed by a more specific route to a gateway router at 192.168.1.100 via the eth1 network interface.  

ip route add default via 192.168.1.100 dev eth1 table custom 

If you translated this to English, it would read something like this, "Add a new route to the table named custom 

that by default routes all traffic to a router at ipv4 address 192.168.1.100 over device eth1." 

You can verify the results of your handiwork with this command: 

ip route show table custom 



22 Policy Based Routing | A Crash Course in Linux Networking 

 

Warning: All RPDB rules are loaded into the kernel’s memory when the server starts up. If you make changes to 

ip rules or ip routes and wish to utilize them prior to the next system reboot, you must flush the cache. This 

forces the kernel to reload the rule and routing databases.  

Even though your new routes are now created, they will not be honored by the server until after you reboot or 

forcibly flush the ip rule and route caches. To do this, run 

ip route flush cache 

Best Practices for Routing Tables 

Here are some brief concepts for you to keep in mind when adding new routing tables to your master routing 

table file. 

1. Ensure table name and number are both unique!  

2. Do not modify default values in the file 

3. New table references should be numbered between 100 and 200 

Adding New Routes to Default Routing Table (main) 

To simply create a new route in the default routing table, you just need to insert a new route in the main table. 

This is accomplished via ip route. 

First, take a look at the current state of your main routing table. Remember, your table labeled main is the 

actual default routing table. 

ip route show 

or 

ip route show table main 

or 

route -n 

If you ever see a route with a non-zero metric value, it is a priority value. Metric is an arbitrary 32 bit number 

that delineates route preferences.  Smaller values indicate higher priority. Zero is the highest priority metric. 

65535 is the lowest. 

Now, follow the instructions below to create new routes in the main table. To add a new route to the default 

main table, simply omit the table <table ID> portion of each command line. 

Adding New Routes to Existing Routing Tables 

Adding a new route to an existing table that is not the main table is a simple process. Routing tables have a very 

basic command structure. The possible routing types are described above in Routes and Routing Tables.  



23 Policy Based Routing | A Crash Course in Linux Networking 

 

For the purpose of this discussion I'm going to focus only on the unicast route type. This narrows down the route 

configurations to the most common scenarios when the server is not a router. Thus, the command format to 

add a new route becomes: 

ip route add {[destination ip/mask] [default]} {via [ip/mask]} {dev} [device] {table} [table ID] src [source ip] 

Route Priority Processing 

How does netfilter determine which route to choose from a routing table? What happens if a packet matches 

more than one route in the table?  

Complex routing tables in large networks can contain hundreds of route entries. When the Routing Policy 

DataBase (RPDB) is ready to scan a route table and attempt to match a packet to one of the routes in that table, 

how does it decide which route to apply?  

Recall that at this juncture, the RPDB has been directed to the current table by a rule. Routes are compared with 

the current packet based on the route's prefix and ToS value (if any). The prefix is a pair of values equal to the 

destination IP address and its netmask. The RPDB compares the current packet to each route in the table. The 

most specific match will be chosen, in this order: 

1. Destination IP address of the packet matches the prefix, up to the length of the prefix 

2. ToS bits of packet and route match 

3. The route's ToS=0 (regardless of packet ToS value) 

If more than one route matches the packet, the list is pruned in the following order until only a single route 

remains: 

1. Longest matching (most specific) destination IP address including netmask 

2. If a single route ToS and the packet ToS bits match, use that route 

3. Routes where ToS=0 

4. If no ToS=0 routes exist, fail on error (unreachable) 

5. If multiple ToS=0 routes still exist, select route with best preference value 

6. As a last resort, select the first route in chronological order 

IP Route Command Examples 

Here are some examples demonstrating how to structure the command line of common scenarios. 

Point Destination to Gateway Router 

Destination IP address may be single address or sub-net; CIDR (netmask) optional. These instructions direct the 

packet with indicated destination IP address to the indicated gateway router. 

ip route add [destination address/mask] via [gateway IP] 

ip route add n.n.n.n/n.n.n.n via n.n.n.n/n.n.n.n 

ip route add n.n.n.n/nn via n.n.n.n/nn 

Set Default Route to Gateway Router 

These instructions assign the default route to the indicated gateway router or next hop. 

ip route add default via [gateway IP] 

ip route add default via [next hop router IP] 



24 Policy Based Routing | A Crash Course in Linux Networking 

 

ip route add default via n.n.n.n/n.n.n.n 

ip route add default via n.n.n.n/nn 

Point Destination to Next Hop 

Destination IP address may be single address or sub-net; CIDR (netmask) optional. These instructions direct the 

packet with indicated destination IP address to the indicated router that is the next hop. 

ip route add [destination address/mask] via [next hop IP] 

ip route add n.n.n.n/n.n.n.n via n.n.n.n/n.n.n.n 

ip route add n.n.n.n/nn via n.n.n.n/nn 

Add Route via Interface  

Add a new route tied to a specific interface. 

ip route add [destination address/mask] dev [interface name] 

ip route add default dev [interface name] 

ip route add n.n.n.n dev [interface name] 

ip route add n.n.n.n/nn dev [interface name] 

ip route add n.n.n.n/n.n.n.n dev [interface name] 

Set Default Route to Specific Interface 

ip route add default dev [interface name] 

Policy Routing (Routing Tables) 

When applied to the RPDB policy routing model, the syntax is the same with the exception of the table 

specification. Simply append "table [table ID]" to the end of the command line. "Table ID" may be either the 

name or number of the table in the rt_tables file. Here are a few examples: 

ip route add default via [next hop] table [table ID] 

ip route add default dev [interface name] table [table ID] 

Such as: 

Set default route in table "vpn" as the tun0 interface: 

ip route add default dev tun0 table vpn 

Set default route in table test to gateway at 192.168.1.1: 

ip route add default via 192.168.1.1 table test 

Automatic Fallback / Down Detection and Redirection 

This scenario involves two gateways and how to establish one of them as a priority path while using the other as 

a fallback. An example would be if your endpoint was attached to two independent internet service providers on 

the same network interface. How does new outgoing traffic get routed over one versus the other? There are 

multiple ways to decide. One method involves the use of UP and DOWN route commands in your server's 

network configuration.  



25 Policy Based Routing | A Crash Course in Linux Networking 

 

Here is an example of setting up your router table using that method and branches network traffic to one of two 

new router tables if the destination port matches. 

1. Create a new table in /etc/ip route2/rt_tables. You can name anything you like. 

echo 1 vpn1 >> /etc/ip route2/rt_tables 
echo 2 vpn2 >> /etc/ip route2/rt_tables 

2. Create new routes that point to the new tables. 

For the table vpn1: 

ip route add default dev tun0 table vpn1 

For the table vpn2: 

ip route add default dev tun1 table vpn2 

3. Create filter rules. Use iptables mangle table and the set-mark action to map specific port destinations to a 

particular routing table. The example below branches traffic for destination ports 22 or 80. Notice a different 

mark value is used depending on which table the traffic should be redirected to. 

iptables -A PREROUTING -t mangle -i eth0 -p tcp --dport 22 -j MARK --set-mark 1 

iptables -A PREROUTING -t mangle -i eth0 -p tcp --dport 80 -j MARK --set-mark 2 

4. Add new ip rules to funnel marked traffic to the new route tables. 

ip rule add from all fwmark 1 table vpn1 
ip rule add from all fwmark 2 table vpn2 

Source NAT in ip route 

Though there is no true NAT capability in iproute2 (ip route commands), it can change the source address of a 

packet before it has left the local server (localhost). It is a subtle distinction. True NAT was removed from 

iproute2 and relegated to iptables in Linux kernel 2.6. The RPDB can only change the source IP address when the 

packet is new and originating from the server (localhost).  

You may wish to review the diagram above under the Network Routes section. After leaving the localhost and 

prior to reaching the OUTPUT iptables chain, the RPDB is capable of altering the outgoing source packet. This is 

technically not NAT, but is a stateless mangling of the packet and only works with new connections. Either way, 

it is generally discouraged. There are very few scenarios where using the RPDB to mangle a new packet's source 

IP make sense. It's almost always more desirable to perform source NAT-ing (SNAT) in the iptables 

POSTROUTING chain. 



26 Policy Based Routing | A Crash Course in Linux Networking 

 

Also note that ip route cannot be used to change the destination address of a packet (destination NAT or DNAT). 

iproute2 originally included a NAT command, but it was deprecated in the 2.6 Linux kernel in order to encourage 

the use of iptables for packet NAT changes (using stateful SNAT and DNAT). This is discussed in greater detail in 

the iptables section of this document. 

While it may appear to be a form of NAT, it is not. The src parameter mentioned previously modifies a packet's 

source address. However, it only works with packets originating from the current host. This is what 

differentiates it from source NAT (SNAT), which is accomplished via iptables.  

There are only two circumstances where I'd encourage you to use ip route to modify the source address of a 

packet. The first is when more than one LAN is connected to a single network device. Under that circumstance, it 

makes sense for ip route to mangle the source address instead of iptables, because ip route knows which 

outbound route the packet will be taking and the packet is originating from the server. This solves a potential 

problem where the packet could get dropped because the next (hop) device tries to return a reply to the server, 

but the packet's source address is not in the correct range. The result is the packet is dropped and the 

originating server never gets a reply. 

The other scenario where the src action makes sense in ip route is when the server has multiple network 

devices. In conjunction with specifying a particular network device to send an outgoing packet, it makes sense to 

use this opportunity to also set the source IP address for that outgoing packet. 

Deleting Routes 

Deleting routes is the reverse of creating them. You must provide sufficiently specific information that the ip 

route command is able to isolate a single matching rule for deletion. The full route instruction may be required, 

particularly if your table contains many routes. 

ip route delete <remainder of route statement> 

Don't forget to flush the cache afterwards. 

ip route flush cache 

Creating New Routing Tables 

New routing tables in the Routing Policy DataBase (RPDB) are created by simply adding a line to the rt_tables 

file. All that is required is an index value and table name. Each table must have a unique index value and unique 

name. Beyond that, the chronological order in the table doesn't matter. See The Master Routing Table for more 

information. 

Adding a new route table is straightforward, but do you need to? If you're just adding a few new routes, it may 

make more sense to simply use the existing main table. Ask yourself: should I be adding a new routing table, or 

simply adding a new route? If you just need to add a new route, the main routing table can be utilized. However, 

if you are considering marking packets (fwmark) or creating a conditional branch such as a split VPN, a separate 

table can be very useful. 

When you create a new routing table, you must also create a minimum of one corresponding rule that points to 

it, and you need to design the routes in the table to handle any possible outcomes. Three steps are involved: 



27 Policy Based Routing | A Crash Course in Linux Networking 

 

1. Add new entry to master routing table 

2. Populate new router table 

3. Create rules that point to new table 

Best Practices to keep in mind when adding new routing tables: 

4. Ensure table name and number are both unique!  

5. Do not modify default values in the file 

6. New table references should be numbered between 100 and 200 

7. Use only lowercase characters for your table name 

Step 1. Amend the master routing table. There are two options to do this. 

1a. Method #1. Open the master routing table file for editing. 

nano /etc/iproute2/rt_tables 

Choose a value between 1 and 252. As an example, let's use 200 for the table number and "stealth" as its name. 

The order of your tables in the master routing table doesn't matter; rules control the flow. These entries in the 

master routing table just tell the kernel where to find the route information. Here's how your new table might 

look: 

# 
# reserved values 
# 
255     local 
254     main 
253     default 
#  
# vpn table 
# 
200 stealth 
# 
0 unspec 

Remember, the order of indexes in the master routing table doesn't matter. Now that you know how to add a 

new table, let's continue the process of learning how to examine existing routes in detail, how to populate a 

new routing table, and how to make use of it. 

1b. Method #2. Use a command line to append a new line to the end of the master routing table. 

echo 100 custom >> /etc/iproute2/rt_tables 

This command will place the new table entry at the end of the file with the name, "custom" and an index or 

table ID of 100. The order of the router table entries in the file is irrelevant. What is important is to avoid 

duplicating index numbers, and to avoid using the pre-existing  default numbers (0, 253, 254, and 255). 



28 Policy Based Routing | A Crash Course in Linux Networking 

 

Step 2. Populate your new table with one or more routes. 

Now, we still have a problem, which is the fact the custom router table you just created is empty. Take a look at 

the syntax of your existing tables. Routing tables have a very basic command structure.  

Here's an outline of how the routes are structured in a table: 

[destination ip] | {via [ipv4]} | dev {device} | {proto [kernel or static]} | {scope [scope type]} | {src [source ipv4]} 

The formatting boils down to the identification of the destination IP address or range, whether the route is 

direct or via a gateway, network device, and it may contain other values depending on whether or not the route 

points to a gateway, host, or a group of IP addresses (e.g. a LAN branch). The preceding sections (especially 

Interpreting Existing Routes) have more detailed explanations on the syntax.  

Here's an example of how to add a new route to your route table. The table will have just one route, which 

directs all traffic to a gateway router at 192.168.1.100 via the eth1 network interface.  

ip route add default via 192.168.1.100 dev eth1 table custom 

If you translated this to English, it would read something like this, "Add a new route to the table named custom 

that routes all traffic to a gateway at ipv4 address 192.168.1.100 over device eth1." 

You can verify the results of your handiwork with this command: 

ip route show table custom 

Step 3. Create at least one rule that points to your new table. 

This is arguably the most important part of this process. You need to be cognizant of how a new rule you create 

will behave in the context of other routing rules in the Routing Policy DataBase (RPDB). Remember, the kernel 

won't pay any attention to your new route table and route unless you have a rule that instructs it to use them. 

The most important factors when creating a new route rule are: 

1. Rules are processed in priority order with 0 as the highest priority; 

2. Longest matching rule wins a tie 

3. If more than one rule is matching and lengths are identical, the higher priority rule wins 

Routing rules are stored in the RPDB and created via the ip rule command. 

Special Routing Use-Case Scenarios 

Force Source Address 

The src parameter forces outgoing traffic along a particular route to appear to be coming from a specified source 

IP address. An example of where this could be useful is directing outgoing traffic as desired onto a shared 

network interface. The format is: 

ip route add n.n.n.n/n.n.n.n dev[device] src n.n.n.n 



29 Policy Based Routing | A Crash Course in Linux Networking 

 

An example: 

ip route add 10.10.14.107 dev tun0 table vpn src 192.168.1.100 

Which roughly translates to, "Add a new route to table vpn that directs traffic addressed to destination address 

10.10.14.107 to change this server's source address as 192.168.1.100 and send the packet over interface device 

tun0." 

The use of src only works on packets originating from the server and is generally discouraged. See  Source NAT 

below for more information. 

Silently drop packets. 

ip route add blackhole [destination addr/mask] 

Reject packets with ICMP / "Host unreachable" response. 

ip route add unreachable [destination addr/mask]    

Reject packets with ICMP / "Administratively prohibited" response. 

ip route add prohibit [destination addr/mask]   

Reject packets with ICMP / "Net unreachable" response. 

ip route add throw [destination addr/mask] 

Single Network Connection, Multiple LANs 

Here's an example. Let's say you have two LANs accessible from your server via a single network device.  

LAN1 has an address range of 192.168.10.0-192.168.10.255 and a gateway at 192.168.10.10 

LAN2 has an address range of 10.10.10.0-10.10.10.255 and no gateway 

Your server wants to send data to another device at address 10.10.10.14. Let's run the route command to see 

what the routing table looks like: 

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
0.0.0.0         192.168.10.10   0.0.0.0         UG    0      0        0 eth0 
192.168.10.0    0.0.0.0         255.255.255.0   U     0      0        0 eth0 
10.10.10.0      0.0.0.0         255.255.255.0   U     0      0        0 eth0 

Examining the route command output, you see there is a gateway at 192.168.10.10 and two local routes 

(192.168.10.0/24 and 10.10.10.0/24). So, what's the big deal?  

The issue is guaranteeing outgoing packets sent from this server to each LAN will have responses returned back 

to your server. We know the longest matching route prefix will be chosen to send the packet to 10.10.10.14. 

However, we don't know if the source address will indicate it's coming from the 192.168.10.0/24 network or the 

10.10.10.0/24 network. We obviously want it on the latter, because we know there is no gateway on the 

10.10.10.0/24 network, which means any address outside the network's range will fail because no other server 

on that network will respond to the packet. 



30 Policy Based Routing | A Crash Course in Linux Networking 

 

The problem is from this display, we don't know if that guarantee exists or not. Did whomever setup this routing 

table include the src parameter? We can't tell. This is where the route command is lacking. We need more 

detail. Instead, try running ip route list. And you get this display: 

default via 192.168.10.10 dev eth0 
192.168.10.0/24 dev eth0  proto kernel  scope link  src 192.168.10.11 
10.10.10.0/24 dev eth0  proto kernel  scope link  src 10.10.10.11 

Wow. Now we can see there is a src parameter for both LANs, which is excellent. That means depending on 

which LAN a packet is addressed to (destination), we know it will come back to this local machine because it will 

leave this server with an address on the same LAN it went out on.  

Multiple Network Connections, Multiple LANs 

A more common scenario is where you have multiple network devices on a server and each is connected to an 

independent network. In this case the src parameter serves a similar function: guaranteeing which ip address is 

specified for an outgoing packet that is part of a new connection initiated from your server. By using src to force 

a particular source IP address for a particular outgoing route, you ensure the return packet will find its way back 

to your server. 

Let's briefly examine how the ip route commands might look if you were setting up a table called test to do this. 

Let's presume you already created the test table and can use that for testing purposes. 

ip route add default via 192.168.10.10 dev eth0 table test src 192.168.10.11 
ip route add 192.168.10.0/24 dev eth0 table test src 192.168.10.11 
ip route add 10.10.10.0/24 dev eth0 table test src 10.10.10.11 

You can see each route specifies the source IP address when a packet traverses it. This ensures the packet will 

be able to return to this host regardless of its destination. 

  



31 Policy Based Routing | A Crash Course in Linux Networking 

 

The Route Command: An Oldie But a Goodie 

What if you'd like more granular information about your network routes? Although it has been deprecated for 

some time, the route command can be useful in getting a different perspective. I find it helpful for illustrative 

purposes and (sometimes) in troubleshooting. Unfortunately, because it was created prior to the invention of 

policy based routing, route only displays the main routing table. Therefore, if you have custom named routes or 

plan to add them, you won't be able to view them with the route command. 

The advantage of route versus ip route lies in its more granular representation of routes. Both commands 

provide the same information, but route makes a few characteristics clearer, such as which routes point to 

gateways. 

To examine the main routing table using route, run this at the command line prompt: 

route -n 

 

It produces output similar to this: 

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
0.0.0.0         192.168.10.10   0.0.0.0         UG    0      0        0 eth0 

192.168.10.0    0.0.0.0         255.255.255.0   U     0      0        0 eth0 

Notice the values expressed here match what you saw from ip route, but now we have more details and they 

are presented in a consistent format. Each route comprises its own line in a table. Some people find this method 

easier to interpret and follow the paths. Even if you don't find it easier on the eyes, the fact is there's more 

information displayed here, such as Flags that clarify what things are. 

Any entry in this table represents a network route, and you can more clearly identify what is a single device 

(host or gateway) versus what is a route. Although you don't see the server's own IPv4 address, you do get a 

clearer picture of what's what based on the Flags column. Let’s begin with the most common flags.  

 G Gateway Destination IPv4 address is a gateway (router) 

 H Host  Route to a specific network address 

 U Route is Up Route is currently active 

Although the Flags column provides more information, it's the combination of four of these columns that allow 

us to definitively identify what is what. Let's break it down. Take a look at the first line. 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
0.0.0.0         192.168.10.10   0.0.0.0         UG    0      0        0 eth0 

This is the upstream router from the server. How do I know that? The 'Destination' and 'Genmask' columns are 

both equal to 0.0.0.0. This is the same thing as the first line in the output from ip route list that showed a 

'default' route. If you were to translate that line to a human-readable format, it would be "Route all traffic 



32 Policy Based Routing | A Crash Course in Linux Networking 

 

addressed between 0.0.0.0 and 255.255.255.255 to the gateway at 192.168.10.10 via the eth0 network 

interface." When both Destination and Genmask are set to 0.0.0.0, it means all traffic will be passed to that 

route unless a more specific route is identified in the table. 

The second line is indicative of the LAN our server is connected to. It instructs the kernel to send any traffic with 

a destination address in the LAN's IP address range (unicast) directly to that address, out via the indicated 

interface. Likewise, if a broadcast message is called for it would be sent out over the indicated interface. 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
192.168.10.0    0.0.0.0         255.255.255.0   U     0      0        0 eth0 

How do we know? The 2nd line's flags only include an Up flag. The absence of any other flags mean this is a 

network route connected directly to the specified interface. In this case, it's our LAN as that's the only thing it 

can be. How do I know? I can deduce this because I already know: 1) This server is on a LAN; 2) The gateway is 

within the same IPv4 address range; and 3) If I review the ip route list output again, I can find this computer's 

IPv4 address on the network after the src parameter.  

If you were to translate the 2nd line to a human-readable format, it would be something like, "Route all traffic 

addressed between 192.168.10.0 and 192.168.10.255 via the eth0 network interface." Basically it means your 

server's routing table believes anything in that range is connected directly to the specified network interface. 

This informs the kernel there are no other hops required to reach an address in that range. However, a route 

doesn't know about hosts (if any) that are on the route. 

Did you notice the similarities between entries from the sample tables produced by ip route vs. route 

commands? They both present the same information in different ways. One advantage to ip route is it identifies 

the current computer's IPv4 address (src=) on the LAN.  

Notice all the table entries point to the same outbound network interface (eth0). Things get tricky when there's 

more than one network interface. For now, here are some rules you may use when figuring out what each entry 

in your router table does: 

1. If you don't specify a particular table, you will only see the contents of the main routing table. 

2. Routes are not prioritized in a top-down pattern as you might expect. They are evaluated on a longest-

match principle. The routing table will isolate routes where the route prefix matches the packet prefix. It 

then chooses the route with the longest matching prefix, regardless of the order in which the routing 

instruction appears in the table. In layman's terms, this translates to selecting the most specific route. I'll 

explain what the routing prefix is in a moment. 

3. A line containing a G flag and Gateway address, but both Destination and Genmask are 0.0.0.0 is the 

default gateway/router for the specified interface. Outbound traffic directed to the main routing table 

not captured by one of the other routes will be sent to this gateway. 

4. You can have only ONE gateway per interface. Split gateway entries are possible (a gateway appears on 

more than one line, but has its full address range split into multiple line entries). It is a complex topic 

that is covered under Split Gateways. 



33 Policy Based Routing | A Crash Course in Linux Networking 

 

5. A Host can also be a Gateway. However, if you see an entry with both a Host and Gateway flag indicates 

there is something special about that entry. It could be a router, gateway, or the local gateway for a VPN 

(Virtual Private Network). 

What is a routing prefix? The prefix is a string consisting of the combined IPv4 address and netmask. The longest 

prefix matching process effectively means the most specific route will be chosen, though the route may be no 

different from others in the table. If more than one route is the same length, the route with the highest 

matching bit will be chosen.  

For example, presume you have a packet with a destination IPv4 address of 192.168.10.1 on the eth0 interface. 

Your routing table rules were entered like this: 

ip route add default via 10.10.0.3  
ip route add 192.168.10.0/24 via 10.10.0.4  
ip route add 192.168.10.0/25 via 10.10.0.5 

ip route add 192.168.10.1/32 via 10.10.0.6 

 

 

The route command may be used to examine your main table, which looks like this: 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
default         10.10.0.3       0.0.0.0         UG    0      0        0 eth0 
10.10.0.0       0.0.0.0         255.255.255.0   U     0      0        0 eth0 
192.168.10.0    10.10.0.4       255.255.255.0   U     0      0        0 eth0 
192.168.10.0    10.10.0.5       255.255.255.128 U     0      0        0 eth0 

192.168.10.1    10.10.0.6       255.255.255.255 U     0      0        0 eth0 

It seems our packet matches all the rules. Which rule will apply to the packet? Where will the packet be routed? 

The genmask 255.255.255.255 rule will apply, because the combination of that route's IP address and genmask 

will have the highest matching bit. It just so happens that is also the most specific route. This is why the longest 

route is normally the most specific route. What happens if there is a tie? The exact rule filtering logic is discussed 

later in this guide. 

NOTE: The terms "Genmask" and "Netmask" are interchangeable. Netmask is an industry-standard 

nomenclature, while Genmask only appears in output from the original route tool. 

Netstat 

Another way to produce the same information shown above is with netstat (deprecated). 

netstat -r 



34 Policy Based Routing | A Crash Course in Linux Networking 

 

You'll see the exact same output you got from route -n. Without the -n switch, you'll get the same table except 

0.0.0.0 addresses will be replaced with the asterisk (*) and any recognized hosts will be replaced with their 

FQDN (Fully Qualified Domain Name). 

Here's an example output: 

Kernel IP routing table 

Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface 

default         pfSense.skynet  0.0.0.0         UG        0 0          0 eth1 

172.16.11.0     *               255.255.255.0   U         0 0          0 eth1 

As you can see, the Gateway connection in this example now has a name instead of an IP address, and the route 

representing the LAN just has an asterisk under the 'Gateway' column. This can facilitate making these tables 

easier to read as it becomes very clear that the default traffic path will take your network packets to the 

gateway with the name provided and that you have a LAN. Which approach is best is personal preference. If you 

have a split route, this display may end up being more confusing than helpful. Split routing is uncommon except 

with VPN configurations. I'll go over what it is and how to implement it in a moment, but first it's important to 

fully understand the route type flags. 

  



35 Policy Based Routing | A Crash Course in Linux Networking 

 

Flags: Hosts, Gateways, and Routes 

Flags in route or netstat provide you information about the function of the route. Is it up (connected)? Is it a 

gateway? Is it another host?  What do those things mean? 

The three most common network connection types are: Host, Gateway, and Route. Many routed connections 

refer to a destination that's either a host or gateway. What is the difference? A Host is a stand-alone device with 

a specific address on the network. A Gateway is an upstream router that connects you to another network and 

performs address filtering. Gateways must also have a specific address that points to a single host IP address 

(/32). A Route is a pathway. Think of it like a highway. It's not a destination, but facilitates a packet reaching a 

destination. Routes are always a range of addresses. 

Linux adds your LAN to the routing table automatically when the server boots up. It creates a default table 

consisting of what it detects during the start-up process. At a bare minimum, this normally consists of your LAN 

and gateway router. While techniques available to override this process, it is strongly recommended you do not 

attempt to do so. 

Split Gateways 

A "split" gateway is a technique that allows the routing table to point the same IP address range to two different 

gateways. A special variation of this technique allows “splitting” the default gateway. 

By definition, there can be only one default route, but using a variation of the split gateway method, it is 

possible to trick the routing code into allowing multiple default paths.  

Typical Gateway Routing Example 

Let's use an example to illustrate. Suppose you have a simple network with two entries in the routing table. One 

is the route for the local network, which tells the kernel which IP addresses are directly reachable. And the 

second is the “default gateway,” which tells the kernel that in order to reach the rest of the Internet, traffic 

should be sent to the gateway. The gateway should be a router or firewall device. 

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
192.168.1.0     0.0.0.0         255.255.255.0   U     0      0        0 eth0 

0.0.0.0         192.168.1.1     0.0.0.0         UG    0      0        0 eth0 

Here you see the top line in the routing table (output above derived via route -n command) is a network path 

with the U (Up) flag set. We can surmise this must be the LAN. The Destination of 0.0.0.0 is equivalent to 

default. If you viewed this routing table using the route command only (no switches),  you would see this 

output: 

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
192.168.1.0     *               255.255.255.0   U     0      0        0 eth0 

default         192.168.1.1     0.0.0.0         UG    0      0        0 eth0 

One or the other can be easier to read, depending on your preferences. In the output above, notice the gateway 

IPv4 address is replaced with an asterisk (*). This simply signifies there is no gateway associated with the route 



36 Policy Based Routing | A Crash Course in Linux Networking 

 

on that line. It's just a different way of representing the same thing. Likewise, you now see "default" as the 

destination for the gateway (G flag).   

Either way, there’s only one line comprising the entire default route path. The 2nd line in both examples tells us: 

1. This route represents the default network path 

2. The default path points to a gateway (router) 

3. Any packet not already captured by a more specific addressable route will be routed to the default route 

There are two crucial pieces of information to note: 

1. If a route represents a gateway, it will have an IPv4 address under the Gateway column AND the G flag 

must be set under the Flags column 

2. Both the Destination and Genmask columns for the gateway are set to 0.0.0.0 

Why? 

Genmasks and Destination Address Filtering 

The Destination and Genmask column of IPv4 values are combined to form an address range. The Genmask is a 

mask applied to the Destination address using a logical AND operation at the bit level. When a particular 

destination address falls within this range, it is routed to the Gateway address (notwithstanding the fact the 

most specific route will be chosen for any particular packet).  

Without getting into the weeds of the bitwise AND binary operator, the easiest way to think of how they work 

together is to remember a Genmask octet of 0 (all bits of the octet byte set to zero) means, "do not change the 

corresponding destination address octet," while 255 (all bits of the byte set to 1) is the opposite and means, 

"restrict the range to only the number presented in the corresponding octet of the destination address." 

Here are some examples to help ensure you understand the logic: 

 Genmask 255.255.255.0 restricts the range to the first 3 octets of the destination address to only the 

octets specified in the destination value, while the 0 in the 4th octet indicates the range of this 

particular routing filter is between the 4th octet of the destination and the number 255. 

 Using the AND operator to combine 0 AND 255 results in 0, while 255 ANDed with any number will 

preserve only the bits in the other number. 

In this case, the default value is 0.0.0.0 under Destination and the Genmask is also 0.0.0.0. Together these create 

a range of 0.0.0.0 to 255.255.255.255, or in other words, "every address."  

A tutorial on the AND logical bit operator is beyond the scope of this guide, but here is an image
4
 that may help 

with visualizing the concept: 



37 Policy Based Routing | A Crash Course in Linux Networking

Figure 8: AND Bit Logic Illustration 

Recall that the most specific route will always be used, so this will only route traffic to the associated gateway 

address if there isn't another more specific route to the destination (such as a LAN address).

How To Split a Gateway Route 

So now that the logic of a typical gateway rout

what is a split gateway anyway? 

A "split gateway" is perhaps better defined as a 

default routes, depending on whether or not 

two different network interfaces and you want all your traffic to pass through one of them as your primary WAN 

or internet connection, and use the other network adapter if the primary conne

Normally, the kernel won't allow you to specify a default route on different interfaces

multiple default routes. Regardless of how many network interfaces you have

routing table. So, the trick is to split your default route into at least two paths. There is actually an example of 

this technique a few pages above, under the introductory section on the 

Let's take another look at the example from the preceding section o

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface

default         10.10.0.3       0

10.10.0.0       0.0.0.0         255.255.255.0   

192.168.10.0    10.10.0.4       255.255.255.0   U     0      0        0 

192.168.10.0    10.10.0.5       255.255.255.

192.168.10.1    10.10.0.6       255.255.255.

If you examine the last routing table example

 

 

A Crash Course in Linux Networking 

route will always be used, so this will only route traffic to the associated gateway 

address if there isn't another more specific route to the destination (such as a LAN address). 

So now that the logic of a typical gateway route has been explained, how does one create a split gateway? And 

A "split gateway" is perhaps better defined as a split routing table. The premise is to route traffic to two or more 

default routes, depending on whether or not a particular route is up (active). An example would be if you have 

two different network interfaces and you want all your traffic to pass through one of them as your primary WAN 

or internet connection, and use the other network adapter if the primary connection fails (down). 

Normally, the kernel won't allow you to specify a default route on different interfaces, and it won't allow 

egardless of how many network interfaces you have, there can be only one in a single 

o, the trick is to split your default route into at least two paths. There is actually an example of 

this technique a few pages above, under the introductory section on the route command.  

Let's take another look at the example from the preceding section on the route command. 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface

0.0.0.0         UG    0      0        0 

255.255.255.0   U     0      0        0 

255.255.255.0   U     0      0        0 

255.255.255.128 U     0      0        0 

255.255.255.255 U     0      0        0 

routing table example, you'll note there's a split route to sub-net 192.168.10.0/24. 

 

 

route will always be used, so this will only route traffic to the associated gateway 

e has been explained, how does one create a split gateway? And 

. The premise is to route traffic to two or more 

An example would be if you have 

two different network interfaces and you want all your traffic to pass through one of them as your primary WAN 

ction fails (down).  

, and it won't allow 

, there can be only one in a single 

o, the trick is to split your default route into at least two paths. There is actually an example of 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 

0      0        0 eth0 

0      0        0 eth0 

255.255.255.0   U     0      0        0 eth0 

U     0      0        0 eth0 

U     0      0        0 eth0 

net 192.168.10.0/24.  



38 Policy Based Routing | A Crash Course in Linux Networking 

 

Here it is again (excerpted): 

192.168.10.0    10.10.0.4       255.255.255.0   U     0      0        0 eth0 
192.168.10.0    10.10.0.5       255.255.255.128 U     0      0        0 eth0 

Notice the destination IP addresses are the same, and they are not specific to a single IPv4 address, but rather 

represent a range (in this case x.x.x.0 or /24 or a 255 address sub-net). However, the Genmasks are different on 

each line. This is the key. While initially it appears as if there are duplicate entries in the routing table (not 

allowed), the fact is they are not duplicates because the Genmask is different. The Genmask becomes the filter; 

in this case splitting the /24 address range into two halves (x.x.y.0 through x.x.y.127 and x.x.y.128 through 

x.x.y.255).  

If the packet destination is between 192.168.10.0 - 192.168.10.127, the packet will be routed to a gateway at 

10.10.0.4. If the packet destination is between 192.168.10.128 - 192.168.10.255, the packet will be routed to a 

gateway at 10.10.0.5. Of course, it's not the same thing as splitting the default route, but you get the idea. This is 

what you want to replicate. 

The examples above are a bit more complicated, because they also include a 3rd gateway in the split that routes 

traffic bound for 192.168.10.1 to a gateway at 10.10.0.6. This is a complex scenario that you're less likely to 

encounter versus a 2-way split. Also notice all these gateways are reached via the same interface (eth0). A 

common scenario for split gateways is when some traffic is routed to another interface, such as a VPN or 

another physical network. For example, a large corporate network where depending on the packet destination 

on the network, the network administrators might choose to route the packet to various different internal 

gateway routers. 

Default Routes 

Every routing table needs a default route. The default route must be a gateway, and it must route all network 

traffic. When the routing code attempts to match a packet by destination address in the routing table, if there is 

no more specific route for the packet it will be sent out via the default route. On a server that is not a router or 

firewall, you'll normally have a default gateway that is represented by a single line in the main routing table, like 

this: 

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
default         10.10.0.3       0.0.0.0         UG    0      0        0 eth0 

Or depending on which command you use it might look like this: 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
0.0.0.0         10.10.10.3      0.0.0.0         UG    0      0        0 eth0 

 

 



39 Policy Based Routing | A Crash Course in Linux Networking 

 

A split gateway simply splits the default route using the genmask, like this: 

128.0.0.0       172.16.1.1      128.0.0.0       UG    0      0        0 eth0 
0.0.0.0         172.16.1.1      128.0.0.0       UG    0      0        0 eth0 

Note the gateway is the same on each line. Ordinarily, this would be impermissible, but it works because the 

combination of Destination and Genmask on both lines creates a split where no possible address may be 

duplicated by the logic in both lines. The first line perfectly covers the 2nd half of all possible addressable IPv4 

addresses in the range between destination and genmask, and the 2nd line covers the first half. 

Multiple Default Gateway Routes 

We've now covered the concept of split gateways, which basically just means splitting an IP address range so 

that a portion of it is routed to one gateway and another portion is routed to one or more other gateways. But 

what if you want to split the default route? Since you can't have more than one default route, will it work? Yes. 

Yes it will. The same logic applies. 

Split Gateway with OpenVPN 

A common split default gateway scenario is when a server branches some traffic to a VPN. For instance, 

OpenVPN - a free, open source VPN client/service platform - will modify your routing table by default to direct 

all outbound traffic over itself. Here's an example of a routing table after an OpenVPN client has been installed 

on a server. Imagine you see the lines below as a portion of the output from running the route command on 

your server: 

Destination Gateway  Genmask   Flags Metric Ref    Use Iface 
0.0.0.0  10.150.1.5    128.0.0.0        UG    0       0       0  tun0 
0.0.0.0     172.18.10.1 0.0.0.0   UG    100     0       0  eth0 

Notice how the default gateway (destination 0.0.0.0) is split between two lines. The first line directs packet 

traffic not captured by a more specific rule to a gateway at IPv4 address 10.150.1.5 over the tun0 network 

interface, but the line's genmask restricts that path only to IPv4 addresses from 0.0.0.0 - 128.0.0.0. The second 

line directs traffic not captured by a more specific rule to a gateway at 172.18.10.1 if the packet's destination 

IPv4 address is between 128.0.0.1 and 255.255.255.255. 

This is not the only way to accomplish split gateways or split routing. It is also possible (and cleaner) to use 

discrete routing tables and ip rules instead. I have described this technique above for reference purposes and in 

case you cannot or do not wish to use multiple routing tables. 

  



40 Follow the Rules | A Crash Course in Linux Networking 

 

Follow the Rules 
Rules are the lifeblood of the Routing Policy DataBase (RPDB). Rules are processed prior to routes. In order to 

get to a route, a packet must be directed there by a rule. Rules direct traffic to a specific action or routing table. 

This is why you'll notice rules use the terminology "lookup" and then reference a routing table. This is because 

the rules effectively do "lookup" or read and execute the contents of the directed routing table name. For 

example, the default Linux rules allow all traffic and direct both incoming and outgoing traffic and 'lookup' the 

default routing tables (e.g. localhost, main).  

WARNING: Routes and rules are not automatically available during the current session. To activate new rules 

and routes created with ip rule and ip route, you must flush the cache; either by rebooting the server or forcibly 

flushing the cache. To activate new iptables rules that are persistent between server reboots, the process is a bit 

more involved and is explained in Making Your Routes and Rules Persistent. 

New rules are created with the ip rule add command. 

IP Rule Syntax 

Like almost everything in this guide, I'm not going to delve into every possible parameter and switch in ip rule, 

but I shall go over the most common variants. The syntax of a rule looks like this: 

ip rule add {prefix} {selector} {predicate} 

Sounds simple enough, eh? But, what is a selector? What is an action? 

The rule type add - as its name implies - adds a new rule to the RPDB. Within the context of the ip rule add 

command there are three components: prefix, selector, and predicate. The prefix determines if the rule applies 

to incoming or outgoing traffic. The selector is the filter or what conditions are being applied. The predicate is 

the object of the selector or an action. 

1. Prefix: from {addr} | to {addr} 

2. Selector:  to {addr} | priority <#> | fwmark <fwmark> | iif <name> | oif <name> | tos <value> 

3. Predicate:  {blackhole | prohibited | unreachable} |lookup <table id> 

It's helpful to break these down a bit further.  

The prefix is a combination of a from and/or to statement, and a single IP address or range of IP addresses, with 

our without a netmask.  

 from  address or range of addresses with the given source IPv4 address or range* 

 to  address or range of addresses with the given destination IPv4 address or range* 

* Note: "all" is an acceptable wildcard, which means "all addresses."  

A prefix of from pertains to an incoming filter where the associated IP address is a source address/range, with or 

without a netmask. A prefix of to pertains to an outgoing filter where the associated IP address or range is a 

destination address/range. These source and/or destination addresses are used to determine whether or not 

the current rule up for evaluation should be applied to the current network packet. 

  



41 Follow the Rules | A Crash Course in Linux Networking 

 

After the prefix comes the next step in the filtering process; the selector. Multiple selectors may be used in the 

same rule. These are filtering screens. The selector is comprised of the following choices.  

 fwmark  a means of marking packets; decimal values are converted to hexadecimal 

 iif  in-bound interface <name> 

 oif  out-bound interface <name> 

 priority  rule # you wish assigned; must be unique; lower # = higher priority 

 tos  ToS=Type of Service; rarely used by home users; for more info see ToS 

The predicate is a bit easier to follow. There are four possible outcomes:  

 lookup   return route found in the referenced routing table 

 blackhole  drop packet silently 

 prohibited  reject packet and error, "Communication is administratively prohibited" 

 unreachable  drop packet and return error, "network unreachable" 

A Brief Word on fwmark 

ip rule cannot create or add a mark to a packet. It can detect the presence of an fwmark and apply branching 

logic (filtering) if an fwmark exists. 

  



42 Follow the Rules | A Crash Course in Linux Networking 

 

IP Rule Examples 

Here are some examples to demonstrate the concepts discussed above. 

An example that points to a new table called "custom."  

ip rule add to 192.168.1.200 lookup custom 

Let's pick apart this example. The "to" prefixing an IP address means it is a destination address. "Lookup custom" 

means the corresponding action is to lookup or read the custom routing table. So, an English reading of the 

corresponding new rule would be something like, "If the current network packet destination address is 

192.168.1.200, then lookup and execute a route in the table named custom." 

Here are more examples of rules you could create: 

# match a source network and direct its traffic to a particular table 
ip rule add from 192.168.1.0/24 lookup mytable 
 
# prohibit traffic from a source network 
ip rule add from 192.168.1.0/24 prohibit 
 
# blackhole any traffic headed for a particular sub-net 
ip rule add to 10.10.10.0/24 blackhole 
 
# direct traffic addressed from a specific address to a specific sub-net 
ip rule add from 192.168.1.33/32 to 192.168.2.0/24 lookup default 
 
# direct packet from specific IP to specific sub-net to table named test123 
ip rule add from 192.168.1.33 to 192.168.1.0/255.255.255.0 lookup test123 
 
# silently drop any traffic attempting to reach between two sub-nets 
ip rule add blackhole from 192.168.1.0/24 to 172.16.11.0/24 
  
# direct marked packets to table test123 
ip rule add from 192.168.1.0/24 fwmark 1 lookup test123 
 
# set priority and filter specific addr to specific addr 

ip rule add priority 22 from 192.168.1.33 to 192.168.1.200 lookup default 

  



43 Follow the Rules | A Crash Course in Linux Networking 

 

Rule Priority 

Rule priorities are processed in order from lowest to highest number. Take a look at your current rules. 

ip rule show 

An unaltered, new ip rule table will look similar to this: 

0:  from all lookup local 
32766: from all lookup main 

32767:  from all lookup default 

Rules are evaluated in order against packets based on the longest match principle. It means the rule matches the 

current packet and is also the longest character length rule in the RPDB that meets the matching criteria. In the 

case of a tie, when more than one rule both matches the logical criteria and is the longest matching length rule 

and is of equal length as another matching rule, only then does priority come into play. At that point the highest 

priority match wins the battle. Functionally, because it applies to IP addresses, this model normally equates to a 

model of most specific, because logically that is going to be the longest matching bit pattern. However, that is 

not always the case as the length of the rule (in bytes within the rule table) influences the outcome. Therefore, if 

you have more than one potential matching rule for a particular scenario, it's a good idea to place your 

preferred outcomes at lower rule numbers (higher priorities), just in case. 

Another important concept is if you add a new rule via the command line without specifying the rule number, 

the next sequential rule number preceding the last used rule number will be selected. For example, if the 

previous rule you created has a priority of 100, and you then add another new rule but don't specify a priority 

number, the number 99 will be assigned to the new rule. 

To re-cap, the process works like this: 

Rule filter -> Rule Match [Longest + Highest Priority] -> Routing Table -> Most Specific Route 

Rules filter the packet first, which identifies the appropriate routing table. Rules are evaluated in order. They are 

numbered from 0-32767. The routing table is then scanned for a matching route based on the source or 

destination IP of the packet.  

Let's break down how these components interact with one another to derive at a route for each packet. Linux 

evaluates routing requests in this order: 

1. Process the rules in order starting with rule #0 

2. Check each rule in the database to see if it matches the packet 

3. If there is more than one match, choose the longest matching rule (presumed to be the most specific) 

4. If no matching rule is found, return a non-reachable error 

Take a look at the incumbent rule set after installing Ubuntu. You can see it's very simple and contains just three 

rules. 



44 Follow the Rules | A Crash Course in Linux Networking 

 

0:      from all lookup local 
32766:  from all lookup main 

32767:  from all lookup default 

If you were to create a new rule and not specify a priority for it, such as this rule: 

ip rule add from all iif eth0 lookup main 

Your RPDB table would then look like this: 

0:  from all lookup local 
32765: from all iif eth0 lookup main 
32766: from all lookup main 

32767:  from all lookup default 

Incidentally, the new rule above would instruct the kernel to route all traffic coming from the incoming interface 

eth0 to the main router table. 

Don't forget to pay attention to the order of your rules and the order of when/how each table is called. 

If your server doesn't have custom tables yet you may view your current RPDB rule collection using this 

command: 

ip rule show 

All RPDB rules are loaded into the kernel’s memory when the server starts up. If you make changes to ip rules or 

ip routes and wish to utilize them prior to the next system reboot, you must flush the cache. This forces the 

kernel to reload the rule and routing databases. To do this, run: 

ip route flush cache 

How Default RPDB Rules Function 

While reading the Rule Priority section above, you might have wondered how the default ip rules can possibly be 

useful. After all, they are simply three "from" rules. Let's review them. 

ip rule show 

Displays: 

0:      from all lookup local 
32766:  from all lookup main 

32767:  from all lookup default 



45 Follow the Rules | A Crash Course in Linux Networking 

 

How is it possible that all packets are moved through the RPDB if there are no corresponding "to" rules? How is 

it that outgoing packets originating from the server don't get stuck? The answer is that every local packet - 

whether outgoing or addressed to localhost - still has a "from" or source IP address, regardless of its "to" or 

destination address. This fact allows all traffic to move through the rules because all traffic is coming "from" 

some address. The rules are checked in order from 0-32767. The kernel looks through the entire list to figure out 

which route is the most specific for the packet. The default rules simply pass all traffic through each table - local, 

main, default - in succession until a match is found or the packet fails to be matched to anything in any of these 

tables. 

Routing Marked Packets with fwmark 

The FireWall MARK (fwmark) can only be set by iptables, while both iptables and ip rule can read fwmarks (the ip 

rule system can only read its value and act on it as a selector). 

Note fwmark converts decimal values to hexadecimal, though a query regarding its value may use either decimal 

or hexadecimal numbers. If referencing it in hexadecimal form, precede the value notation with an "x." For 

example, these two statements are identical: 

ip rule add fwmark 32 lookup mytable 
ip rule add fwmark x20 lookup mytable 

Either statement will forward packets with an fwmark value of 32 to the routing table named "mytable." 

  



46 iptables Explained | A Crash Course in Linux Networking 

 

iptables Explained 
Recall the network diagram in Network Routes shows the process flow of a packet and when the packet may be 

acted upon by iproute, iprule, or iptables.  

iptables is Ubuntu's built-in firewall. It uses its own set of rules to influence network traffic passing to, from, and 

through the server. Ubuntu 16.04.x uses iptables version 1.6. To verify your iptables version, execute the 

iptables command like so: 

iptables --version 

iptables may perform stateful packet inspection and mangle (manipulate) the packet to some extent, and has 

some control over the packet's path through the server. It differs from ip route and ip rule in that it cannot 

deliver a packet to a destination. Rather, iptables is only concerned with how the packet is handled inside of a 

server container, based upon the type of traffic. 

Terminology Confusion 

Some internet sources comingle the concepts of iptables and ipchains, inadvertently providing inaccurate 

explanations of how they function. Quite frankly, I can't blame other authors for misconstruing some of the 

concepts at work here. The architects of netfilter and the ip tools suite could have saved the public countless 

hours of confusion if they'd had the foresight to resist the temptation of recycling similar terms in the evolution 

of Linux networking. The relationship between ipchains and iptables is particularly confusing to many.  

My intention is not to bad-mouth any other specific sources, but rather to draw attention to this fact. The 

distinction between iptables and ipchains is confusing, and this fact has been caused in no small part by the use 

of similar nomenclature to describe different processes and functions within netfilter and the Linux kernel. 

Generally speaking, Linux has a sordid history of old code never completely going away. Integrating new 

processes with legacy code always has been and continues to be the norm. 

Chains and Tables 

Iptables processes packets based on what are called chains - a carry-over from ipchains - that preceded iptables. 

Chains refer to netfilter's hooks into the networking stack. Tables are rule-set containers inside netfilter.  

Every packet is placed onto a chain based on the type of destination of the packet. From iptables' perspective, 

chains serve as conduits of process flow. Within that flow you will find hooks into various tables. Those tables 

are effectively repositories of rules. The net effect is chains appear to act as rule-sets, however that's not quite 

correct. In reality they are pointers to the rules stored in tables. When a packet traverses a chain, specific tables 

are referenced based on the particular chain. Within each referenced table, only rules that correlate to the 

active chain will be applied to the current packet.  

This is the fundamental architecture behind chains and tables, and you should bear that in mind as you read 

through this section. These core concepts are not fully understood and incorrectly proselytized by many online 

references. If you can wrap your head around it, you will have no issues following the logic flow of rules as they 

are applied to packets and connections. The problem I find is many authors do not fully understand this concept 

and get confused about chains in particular. Chains don't control rules. They control the process, which tables 

are applied, and when. 



47 iptables Explained | A Crash Course in Linux Networking 

 

Chains 

Chains are all about process flow. A good way to think of chains is as collections of rules or pointers to rules. 

Chains determine the order in which sets of rules will be implemented. You cannot manipulate the processing 

order of the default chains, remove them, or change whether or not each chain is activated. What you can do is 

manipulate the rules in each chain (discussed in Tables). 

Chains encapsulate the top-level process flow of packet filtering. ipchains preceded iptables and created the 

chains concept. It had just three chains, or processes: INPUT, OUTPUT, and FORWARD. They were named for the 

type of network traffic. At its most basic level of navigation, a network packet can only be travelling through a 

server along one of these three paths, and that is still true today. The INPUT chain relates to an incoming packet 

addressed to the current server. The OUTPUT chain is the opposite. It relates only to packets originating with the 

local host that are leaving the current sever. And FORWARD is reserved for packets that are neither and are 

simply traversing through the current server, where both source and destination are other servers. 

Older iterations of iptables and netfilter used only the three aforementioned chains. The current version of 

netfilter has five built-in chains: Input, Output, Forward, Pre-Routing, and Post-Routing. These reflect the 

possible high level filtering routes of any packet traversing the server. Iptables also allows the creation of 

custom chains. 

INPUT, OUTPUT, and FORWARD are primary chains, and reflect the three possible functional routes in which a 

packet may traverse the server: leaving (output), arriving (input), or traversing through the server (forward). 

Every packet goes through just ONE of those processes. The FORWARD chain is normally applicable only to 

firewalls and gateways (routers). You may generally ignore it if your server is not a router or firewall.  

PREROUTING and POSTROUTING are routing chains, which work a little differently. All packets go through either 

PREROUTING (incoming) or POSTROUTING (outgoing), based solely on the direction of travel of the packet. The 

Pre and Post-Routing chains bookend the other chains, meaning they occur before or after the other chain. With 

the exception of the Forward chain, only one or the other will be called before or after the primary chains. 

Here's a summary view of the five permanent chains: 

 INPUT  Local host is destination 

 OUTPUT Local host is source 

 FORWARD Host is neither source nor destination; applies to both INPUT and OUTPUT 

 PREROUTING Executed before INPUT or FORWARD chains are processed 

 POSTROUTING Executed after FORWARD or OUTPUT chains are processed 

Default Chains 

You may view the current status of iptables by executing this command: 

iptables -L 

By default this command will display the contents of the FILTER table in each chain. If you have not established 

any rules yet, your display will look like this: 

Chain INPUT (policy ACCEPT) 



48 iptables Explained | A Crash Course in Linux Networking 

 

target     prot opt source               destination 

 

Chain FORWARD (policy ACCEPT) 

target     prot opt source               destination 

 

Chain OUTPUT (policy ACCEPT) 

target     prot opt source               destination 

Roughly translated, each chain has a blanket ACCEPT policy, and all of the tables in each chain are empty. All 

traffic is allowed by default in each chain. That means all packets will be accepted or allowed to move through 

each chain.  

Notice the PREROUTING and POSTROUTING chains do not appear when you list the current iptables rules. I 

haven’t found a concrete explanation for why this is the case, but I suspect it is due to a combination of two 

factors: 1) A legacy characteristic of the migration to iptables from ipchains, because ipchains only used the 

three primary chains; and 2) by default the contents of the Filter table are displayed, which is only present in the 

three primary chains. 

One of the major improvements from ipchains to iptables was limiting a packet to just a single primary chain, 

whereas the older ipchains method processed every packet through every primary chain, even if a chain did not 

apply to the packet. This architectural change alone resulted in significant speed improvements when iptables 

was introduced. Regardless, viewing the output shown above for the three primary chains is rarely useful since 

not all chains are displayed. 

How To Create a Custom Chain 

When is a chain not a chain? When you create one! Custom chains are possible, but they don't function in quite 

the same manner as the built-in chains. A custom chain acts like a programming sub-routine. When you call a 

custom chain, all of its rules will be acted upon, in priority order. When you create a new chain, you are creating 

a new rule container; a sub-set of rules. After you've created a custom chain, you populate it with rules. You 

may then reference the rules in that custom chain, and when that chain is called, those rules will be acted upon.  

The logic flow confuses many people because it's different from the normal chains/tables process. Just like the 

default, static chains, when creating a new rule for your custom chain you must specify an associated table. 

However, custom chains may only be associated with the Filter table. Since the Filter table is the default 

condition when no table parameter is specified in a rule, you might as well leave it out of the commands for 

your custom chain. 

Now, if you are astute, by now you should be wondering; How is it possible to access these new, custom chains? 

After all, there is no mechanism within the permanent chains to reference one another (and to do so would be 

contradictory to their function). The answer is by using a JUMP command that diverts the process flow to a non-

terminating TARGET. This directs the current logic flow onto your custom chain. 

Custom chains are very useful in complicated iptables configurations. They make it easier to organize and 

segment rules, grouping sets of oft repeated commands you want to replicate in different tables, different 

chains, or under different circumstances. 



49 iptables Explained | A Crash Course in Linux Networking 

 

Custom Chain Examples 

Take a look at an example of a custom chain. 

Let's say you want to branch to a set of rules in your custom chain called "icmp-chain" when an ICMP packet is 

received on the INPUT chain.  

1. First, create your new chain. 

iptables -N icmp-chain 

2. Append a command to the end of the INPUT chain that says to jump to the "icmp-chain" named chain when 

the packet protocol is ICMP. Note this will automatically be placed into the FILTER table. There's no choice on 

which table is utilized. However, you must indicate which primary or routing chain is associated with the 

redirection. 

iptables -A INPUT -p icmp -JUMP icmp-chain 

or 

iptables -A INPUT -p icmp -j icmp-chain 

3. Create at least one rule in your new chain. This one says to send an ICMP echo response 

iptables -A icmp-chain -p icmp --icmp-type echo-reply -j ACCEPT 

4. Don't forget to place a RETURN jump at the end of your chain, which will jump back to the next command in 

sequence after the command that called the custom chain. This is a good preventive practice. If a RETURN 

command does not exist and no actions are executed prior to reaching the end of the custom chain, netfilter will 

be unable to return back to where it started prior to jumping to the custom chain, the packet will be stuck and 

the connection will hang until it times out with a no-response error. 

iptables -A icmp-chain -j RETURN 

So, what's the point in custom chains?  

The most common purpose of custom chains is to more clearly segment rules in a firewall. The process makes it 

easier to organize and call groups of rules that only pertain to specific circumstances. When those circumstances 

occur, the custom chain is called and its rules are operated upon.  

  



50 iptables Explained | A Crash Course in Linux Networking 

 

Tables 

Tables comprise groups of instructions defined in a particular order. Tables are called by chains. You cannot alter 

the built-in chains and tables or their order-of-execution. 

You may think of chains as highways inside your server. They are able to direct traffic flow, but cannot modify 

the packets. The next layer down are tables: the filtering workhorse of iptables. They cannot direct traffic flow, 

but they may modify the packet. The end result is all filtering rules can be located in one place and called by the 

packet directional control processes (chains) as needed. A table simply contains a set of packet filtering 

instructions (but cannot alter which chain a packet traverses). 

iptables has are five (5) static tables. They are: RAW, MANGLE, NAT, FILTER, and SECURITY. Of these, the Raw 

and Security tables are rarely used except within firewall servers. There is not a 1:1 correlation between iptables 

tables and netfilter chains. 

Recall that chains represent conduits a packet travels through, depending on its source and destination. These 

default tables are called at various stages by each of the aforementioned chains. And just like the fact all packets 

don't traverse every chain, not all tables are called by every chain. This chart identifies which tables are called by 

each chain, and the order the tables are called: 

 PREROUTING Raw, CONNTRACK, Mangle, NAT 

 INPUT  Mangle, Filter, Security, NAT 

 OUTPUT Raw, CONNTRACK, Mangle, NAT, Filter, Security 

 FORWARD Mangle, Filter, Security 

 POSTROUTING Mangle, NAT 

Here’s another viewpoint demonstrating the tables associated with each default iptables chain: 

 Raw  PREROUTING, OUTPUT 

 NAT  PREROUTING, INPUT, OUTPUT, POSTROUTING 

 Mangle  PREROUTING, INPUT, OUTPUT, FORWARD, POSTROUTING 

 Filter  INPUT, OUTPUT, FORWARD 

 Security INPUT, OUTPUT, FORWARD 

I'm sure you noticed there are duplicate entries in these charts. Why is that? This is where the relationship 

between chains and tables begins to get a bit tricky. When constructing commands in iptables, they reside in 

tables. Yet commands are not executed until a chain is processed. Each chain calls the tables associated with the 

chain in sequential order, as expressed in the charts above. As each table is called, netfilter searches the table's 

contents for commands that match the current chain. Those matching commands are executed in order based 

on their priority in the table. 

It's interesting to note some of the nuances of the default tables. For instance, only the MANGLE table is called 

by every chain. NAT is available in every chain except FORWARD, though only Source or Destination NAT are 

available in any given chain, depending on which chain is being processed. The SECURITY table always follows 

the FILTER table, and both are only available in the INPUT, OUTPUT, and FORWARD chains. This is interesting 

considering most rules on a firewall server normally reside in the Filter table. And as mentioned previously, 

firewalls are typically the only instance you're likely to see the SECURITY and RAW tables utilized. 



51 iptables Explained | A Crash Course in Linux Networking 

 

Table Priority 

Tables contain commands that influence the characteristics and/or the destination of a packet. In a firewall, your 

rules go in these tables. For the purpose of routing packets to a VPN, this is where rules are established to make 

that happen.  

Let's examine the roles of each table: 

 Raw  Specialized packet handling of unusual situations 

 NAT  New connections go here after Raw table; modify based on IP address or port 

 Mangle  Specialized packet alteration 

 Filter  Traditional firewall rules; filter based on data type and source/destination 

 Security Specialized use for access control; gets called last if at all 

RAW is rarely used and always called first. The Raw table allows a connection to circumvent other filtering. The 

NAT table can be used to modify IP address and port data in the packet. The Mangle and Filter tables perform 

the vast majority of packet manipulation. If you don't specify a table name in an iptables command, the Filter 

table will be used by default. The Security table is rarely relevant outside of firewall or router applications and it 

will be ignored in this guide as it is irrelevant for our purposes. 

If no table is specified in a relevant iptables command, the Filter table is presumed by default. Not all tables are 

used in every process. When writing rules to influence VPN vs. non-VPN traffic, ensure you understand the order 

your rules will be processed, in order to facilitate the desired result. If a rule is post-ceded by a number, it 

indicates the order of operation (i.e. action #1 is performed before #2, etc.). Remember, if you don't specify a 

table, an instruction will be placed in the filter table by default. 

Table Processing 

Each table is called by one or more chains. Here are the chains associated with each built-in table. 

 Raw  PREROUTING, OUTPUT 

 NAT  PREROUTING, INPUT, OUTPUT, POSTROUTING 

 Mangle  PREROUTING, INPUT, OUTPUT, FORWARD, POSTROUTING 

 Filter  INPUT, OUTPUT, FORWARD 

 Security INPUT, OUTPUT, FORWARD 

Studying the list above, you can see how the Mangle table is the most prevalent because it is called in every 

chain. Likewise, note the OUTPUT chain is the only one that calls every table.  

High-Level Table Tips 

Each of the five tables in iptables have unique qualities and deserve a bit of attention explaining why they exists 

and how they differ from one another. 

Filter 

The FILTER table is the default table loaded into the Linux kernel. If you do not apply any rules to a fresh Linux 

installation, the Filter table will still be present and populated with a very basic set of firewall rules. Its job is to 

filter packets with broad brush strokes.  



52 iptables Explained | A Crash Course in Linux Networking 

 

You may think of the Filter table as a series of traffic lights that only have the red (stop) and green (go) colors. It 

contains only black-and-white rules that when applied, allow a packet to either continue or halt its journey. 

When one thinks generally of firewall rules, this is normally where those rules are stored and managed. A server 

and even a dedicated firewall can happily exist applying only the Filter table. 

Mangle 

In routing terms, "mangling" means the process of altering IP header packets before, during, or after routing. 

The iptables MANGLE table's job is to match packets against chains of rules and mark the packet so it can be 

routed appropriately. A common use of the Mangle table is to make adjustments to the priority of a packet 

based on Quality of Service (QoS)
5
 and Type of Service (ToS)

6
 rules. 

The MANGLE table is unique in two regards: 1) All of its rules are analyzed; and 2) It is the only table that 

appears in all five chains. 

All Rules Are Analyzed 

Typically, when a rule inside a table is a match, that rule is executed and the packet then moves forward in the 

routing process. However, the Mangle table behaves differently from all other tables. The Mangle executes 

every matching rule against the current packet. This is one reason why applying packet filters in the Mangle 

table is strongly discouraged. Although it can be used for this purpose, the practice is dangerous and one must 

be extremely careful in rule application if one chooses to do so. 

NAT 

NAT is an acronym for Network Address Translation. The NAT table's job is - as it name implies - to translate 

network addresses. This includes the capability of masking outgoing packets so as to hide their origin within the 

local network. It also keeps track of packets that have been "masked" as such, sent out to an upstream router 

(e.g. somewhere on the Internet), and returned (requiring reverse translation so they can be sent to the 

originating server on the local area network). 

Raw 

The RAW table has a very narrowly defined role. Its sole purpose is to remove a packet from stateful inspection. 

This means the modified packet is not evaluated with regards to any other packet, and is evaluated discretely. 

This function may be applied to incoming or outgoing packets. This can be dangerous and use of the RAW table 

should be considered an advanced topic. Misuse can and will result in disrupted communications because the 

server will treat discrete packets as independent connections. 

Security 

The SECURITY table allows setting SELinux context to packets. It is perhaps the most esoteric of all the tables, 

the least likely to be utilized, and arguably the least understood. In a nutshell, it allows applying Mandatory 

Access Control (MAC) policies to a packet. However, it requires a pre-requisite Linux security module that is not 

present on most Linux distributions, making its use limited. 

Astute observers may have noticed the Security table rarely appears on iptables networking diagrams. Why? For 

starters, it did not even exist until early 2008,
7
 while iproute2 has been around since 2000. Second, by default it 

is not applicable. 

If your Linux distribution does not contain SELinux, iptables will ignore any attempts to affect the Security table. 



53 iptables Explained | A Crash Course in Linux Networking 

 

The Security table's purpose is to set SELinux security context on packets pertaining to SELinux - an acronym for 

Security-Enhanced Linux (a Linux kernel security module). One of the hallmarks of Linux is the fact its kernel is 

built on a modular framework. A primary benefit of Linux is its ability to apply strict enforcement of access 

control policies and functions. SELinux applies a flexible framework of Mandatory Access Control (MAC) levers to 

the server's kernel. This allows capabilities such as controlling access to server resources by network connection 

and packet states. 

SELinux is not embedded in Linux by default. It is enabled by default in some Linux distributions (such as Fedora 

and Red Hat), but not in others (such as Ubuntu). Alternatives also exist. For example, AppArmor, which as of 

this writing is compatible with the following Linux distributions: Arch Linux, CentOS, Debian, Gentoo, openSUSE, 

Pardus, PLD, and Ubuntu. 

 When present, the Security table is processed immediately after the Filter table. 

Viewing Existing iptables Rules 

Here's the syntax if you want to display information about your chains and tables via the command line. 

Remember, the default table (if you don't specify one) is filter and the default chain (if none is specified) is to 

display data from all chains. 

iptables -t <table name> -L <chain> 

For example,  

iptables -t filter -L INPUT 

Is the same as:  

iptables -L INPUT 

And will produce a result similar to this: 

Chain INPUT (policy DROP) 

target     prot opt source               destination 

ACCEPT     all  --  anywhere             anywhere             ctstate ESTABLISHED 

ACCEPT     all  --  anywhere             anywhere 

DROP       all  --  anywhere             anywhere             ctstate INVALID 

UDP        udp  --  anywhere             anywhere             ctstate NEW 

What do those headings mean? 

 target  Specifies what should be done with the packet when a rule matches 

 prot  Protocol (e.g. TCP, UDP, ICMP, ALL) 

 opt  IP options; rarely used 

 source  Source IP address; or "anywhere" is not defined 

 destination Destination IP address; or "anywhere" if not defined 



54 iptables Explained | A Crash Course in Linux Networking 

 

You can also use the -S switch, which prints basically the same data as -L except it the actual rules are shown, 

just as if you'd type them into a file or command line (the iptables command prefix is omitted). For example,  

iptables -S mychain 

  



55 iptables Explained | A Crash Course in Linux Networking 

 

Would yield something like: 

-N MYCHAIN 

-A MYCHAIN -p tcp -m tcp --dport 22 -j ACCEPT 

As you can see, the -S switch (Specification) presents data as you'd type the commands, while the -L switch (List) 

displays a logical map of your ip rules. 

If you viewed your chains after creating the example chain above in Custom Chain Examples, you would see the 

primary chains and your custom chains you've created (but you still wouldn't see the routing chains). 

iptables -L 

Would yield something like this: 

Chain INPUT (policy ACCEPT) 

target     prot opt source               destination 

 

Chain FORWARD (policy ACCEPT) 

target     prot opt source               destination 

 

Chain OUTPUT (policy ACCEPT) 

target     prot opt source               destination 

Chain ICMP-CHAIN (0 reference) 

target     prot opt source               destination 

How to Delete Chains 

Similar to displaying a list of rules, you may delete rules either by Rule Specification or by Chain and Number. 

Deleting Rules by Chain and Number 

Use the --line-numbers parameter to observe the line numbers of the rules in the appropriate chain. 

iptables -L INPUT --line-numbers 

Will yield output similar to this: 

Chain INPUT (policy DROP) 

num target     prot opt source               destination 

1 ACCEPT     all  --  anywhere             anywhere             ctstate ESTABLISHED 

2 ACCEPT     all  --  anywhere             anywhere 

3 DROP       all  --  anywhere             anywhere             ctstate INVALID 

4 UDP        udp  --  anywhere             anywhere             ctstate NEW 

Now, to delete a rule  you would use the -D command. For example, to delete rule 3 from the INPUT table, you 

would type: 



56 iptables Explained | A Crash Course in Linux Networking 

 

iptables -D INPUT 3 

Deleting Rules by Specification 

I personally find it much easier to delete rules by chain and rule number most of the time, but there is another, 

albeit cumbersome way to do it: contextually, by specifying a specific rule using identical rule text: 

iptables -D <chain> [rule syntax] 

Such as: 

iptables -D INPUT -m conntrack --ctstate INVALID -j REJECT 

Flushing Chains (Delete All Rules) 

Sometimes you just want to delete all the rules in a chain and start over. There's an easy method of 

accomplishing this task; the Flush command (-F). Make sure you specify a chain, unless you wish to flush all the 

chains (see below). 

iptables -F <chain> 

Such as: 

iptables -F INPUT 

Flush All Chains 

To flush all chains, type: 

iptables -F 

  



57 iptables Process Flow: Chains, Tables, and Rules | A Crash Course in Linux Networking 

 

iptables Process Flow: Chains, Tables, and Rules 
iptables often gets confusing because the same tables may be called from different chains. This begs the 

question: Do different chains call the same commands from tables with the same name? This is why chain and 

filter names are specified (implicitly or explicitly) in each command. The combination allows netfilter to skip over 

irrelevant code not tagged with the current chain or table name. 

Recall that the network diagram in Network Routes shows the process flow of a packet and when the packet 

may be acted upon by iproute, iprule, or iptables. As previously described in Chains and Tables, by default all 

iptables commands are processed through five chains and five tables. Following the path of a network packet 

gets confusing because these concepts are intertwined with the Routing Policy DataBase (RPDB) process, and 

because it's so difficult to find literature that explains what these things are and how they are intertwined. 

It's very important to follow the orderly logic of when each table's commands will be executed in each chain. 

While most documentation on this subject appears to reference tables in a way that gives the reader the 

impression tables are calling chains, I am convinced after studying iptables for some time that it is the other way 

around. Effectively, the chains dictate the path of a packet through netfilter and its handling by the kernel. The 

chains Input, Output, and Forward are the gatekeepers. No matter which table your rules are contained in, it is 

the chain the packet is associated with that determines which tables will be processed and when. 

Another example supporting my point is the implementation of iptables rules doesn't steadfastly follow the 

concept where the table dictates which chains are called (and partly why I believe the reverse is actually true, as 

I've indicated above). For example, the multiport match extension protocol in iptables may be called during the 

PREROUTING chain. However, while the PREROUTING chain does not call the Filter table, the multiport 

command may also be used in the NAT table during processing of the PREROUTING chain.  

I suspect much of the confusion - particularly of iptables neophytes - lies in the use of hidden or undeclared 

default values, such as the fact the filter table is the default location of new rules. Unless one knows to specify 

or declare certain characteristics of your rules and routes, iptables and even iproute2 will often position things in 

places that aren't always logical to the average human being. 

With regards to iptables in particular, if a packet is following a chain such that it never has a chance to encounter 

a table where some particular rule is located, the rule will obviously never be executed. The problem is this fact 

is easily obscured from casual observation. One must either learn the default locations and values of various 

aspects of iptables and iproute, or be diligent in always making specific declarations when writing commands. 

To wit, let's re-cap the order of chain processing logic. In the "old days" of ipchains, only the primary chains 

existed, and the process was a bit easier to follow. 

Primary Chain  Actual Chain Path 

INPUT   PREROUTING -> INPUT -> Local Process 

OUTPUT  Local Process -> OUTPUT -> POSTROUTING 

FORWARD  PREROUTING -> FORWARD -> POSTROUTING 

If you'd like a more visual description, review the charts in Network Routes and How Linux Routes Network 

Packets. 

Here is the order of table processing within each iptables chain. 



58 iptables Process Flow: Chains, Tables, and Rules | A Crash Course in Linux Networking 

 

 PREROUTING  Raw | CONNTRACK | Mangle | NAT (DNAT) 

 INPUT   Mangle | Filter | Security | NAT (SNAT) 

 OUTPUT  Raw | CONNTRACK | Mangle | NAT (DNAT) | Filter | Security 

 FORWARD  Mangle | Filter | Security 

 POSTROUTING  Mangle | NAT (SNAT) 

You can think of chains as maps to and from a destination, and tables as waypoints along the route. When you 

add a new iptables command, a portion of the command line instructs netfilter which chain the command 

should be added to, and which table it belongs in within that chain. You can also think of it the other way 

around. Regardless, the end result is the same; when any particular command gets called, it is driven by the 

intersection of a chain and a table. No matter how you view their relationship, they are intertwined.  

When you create a new command, you must decide at what point in the packet processing sequence it should 

be executed. "When" is a combination of which chain and which table within that chain. If you are familiar with 

software programming, you may liken this to the chain as a program and each table as a subroutine within the 

program. For example, if you wish to modify the source or destination address of a packet, you'd want to be 

sure you did that prior to a command that tells netfilter you're done processing the packet. If you reversed that 

order, the address modification would never happen. Of course, that sounds simple and logical, but in practice 

rules don't always get executed as you expect, so make sure you pay close attention to the order-of-execution of 

chains and the tables within each chain. 

There's one more process in the mix you should be aware of. It's neither a chain nor a table, though you may 

have noticed it in the aforementioned charts and wondered what it was: it's called CONNTRACK. 

CONNTRACK 

CONNTRACK is an abbreviation for CONNection TRACKing. Recall the discussion of fwmark in IP Rule Syntax and  

Routing Marked Packets with fwmark. FWMark means FireWall Mark and relates to the action of "marking" or 

tagging packets. When a packet is marked, an internal value is assigned by netfilter creating an association with 

that particular packet. If the packet leaves the server and comes back, the mark will remain and netfilter will 

know it's seen the packet previously. 

CONNTRACK tagging and inspection operands present an unusual scenario. They share all the netfilter hooks 

with chains except FORWARD, yet are processed independently of the chains and tables. The order-of-execution 

is always after the RAW table and before the MANGLE table in each chain respectively.  

The iptables CONNTRACK function is discussed in greater detail under Match Extensions, part of the discussion 

on iptables command parameters. 

NOTE: There is a netfilter process called conntrack and an iptables match extension function called conntrack. 

The conntrack module within netfilter and the conntrack match extension within iptables are independent of 

one another. However, their identical names can and do create considerable confusion. The key difference is the 

iptables conntrack reference is a match extension and read-only, while the CONNTRACK module in NetFilter is 

responsible for tracking and maintaining the current state of network connections. 

Custom Chains 

Custom chains must be created first. Then you may add rules to them. In order to utilize them, you must point 

to them from one of the five built-in chains. The chain commands above are used to create and delete custom 



59 iptables Process Flow: Chains, Tables, and Rules | A Crash Course in Linux Networking 

 

chains. Pointing to a custom chain is handled via Parameters. If you want to know more about Custom Chains 

and why you might want to create them, please review the section above, How To Create a Custom Chain. 

Chain Policies 

You may have noticed there is a command related to chains called Policy. What is a chain policy? A policy is 

simply a chain's default  behavior. A chain's policy becomes relevant when the kernel reaches the end of a chain 

and there has been no matching rule that triggered an action or jump, or for whatever reason the packet was 

processed through a chain without making a determination of the packet's ultimate fate. 

Chain policies can only be ACCEPT or REJECT. See Actions & Targets for more information. 

  



60 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

iptables Command Line Syntax 
There are a large number of commands and filters you may apply to your server's network rules using iptables. 

Some of these are found in extensions to iptables. Ubuntu 16.04 LTS includes many extensions installed by 

default. They allow more granular control over network packets under the context of iptables. Below, I've 

provided an explanation of a limited set of the available commands and filters. If you're hunkering for more info, 

I suggest you checkout the iptables-extensions Man Page and the official netfilter website. The Unix and Linux 

Forums website also maintains an excellent man page for iptables that includes a lot of helpful details on the 

command set.  

The iptables command line syntax is: 

iptables {table} [COMMAND] [CHAIN] {parameter} {extension} [ACTION] {target} 

Important syntax notes for iptables commands: 

 May be applied to packets or connections 

 COMMAND, CHAIN, and ACTION are required values 

 Commands 

o Always UPPERcase 

o Only one command instruction per line  

o Define actions to be performed on a packet matching a specified, corresponding rule 

 Table 

o Use -t prefix (for example, "iptables -t INPUT" 

o If no table name is specified, the FILTER table is presumed  

Let’s look at an example and break it down. 

iptables -A INPUT -i eth1 --src-range 8.8.8.0/24 -j ACCEPT 

In the example above, we have a command with these values: 

iptables {COMMAND} {CHAIN} {PARAMETER} {EXTENSION} {ACTION} 

Where are {TABLE} and {TARGET}? The chain must be specified, but the table is optional. When a table is not 

specified, by default the rule is inserted into the FILTER table. No target is specified in the example above 

because there is no target. So, in the case of this example, the rule may be roughly interpreted as, 

"Append to the end of the INPUT chain, accept the packet if all of the following conditions are true:  the Interface 

is eth1 AND the Source IP Address is between 8.8.8.0 and 8.8.8.255" 

Reading each segment in the line: -A is the command; INPUT is the chain being acted upn; -i indicates the next 

value will be the interface (eth1); --src-range narrows the filter to a specific range of IP addresses (8.8.8.0/24 or 

8.8.8.0-8.8.8.255). 

The ACCEPT action tells netfilter to accept the packet and stop processing the packet in the current chain. 

Matching a rule with an ACCEPT target means the processing of this packet is finished for this chain. The packet 

will then proceed through the remainder of the network packet filtering process. If there are other chains after 

this one, they will still need to accept the packet in order for it to continue moving on. 



61 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

Applying iptables Commands to Chains 

Aside from applying iptables commands to IP packets, you may also create rules that control the chains 

themselves. This is particularly useful when you have created custom chains. 

Here's a list of the important commands that affect chains: 

 -A chain rule  Append (append rule to the end of the selected chain) 

 -D chain {rule}  Delete rule in specified chain using rule specification 

 -D chain {rule #}  Delete rule x in specified chain where x is rule number 

 -E old-name new-name Exchange (replace) old chain name with new chain name 

 -F chain   Flush selected chain or table (delete all rules); all chains flushed if none   

   specified 

 -I chain {priority} Insert new rule into a chain; 1 [default] = insert in front of any other   

   existing rules) 

 -L chain   List all rules in specified chain
8
 

 -N chain name  Create a new chain
9
 

 -P chain target  Policy (must be ACCEPT or DROP) 

 -S chain   List rule specifications in specified chain 

 -X chain   Delete custom chain (by name) 

Next, I'll group them for you to make it easier to figure out which command you need for whatever you're trying 

to accomplish. 

Actions Upon Chains 

 -F {chain}  Flush selected chain or table (delete all rules); all chains flushed if none   

   specified 

 -N chain name  Create a new chain 

 -P chain target  Policy (must be ACCEPT or DROP) 

 -X chain name  Delete custom chain 

Actions Upon Rules 

 -A chain rule  Append (append rule to the end of the selected chain) 

 -D chain {rule}  Delete rule in specified chain using rule specification 

 -D chain {rule #}  Delete rule x in specified chain where x is rule number 

 -I {chain} {priority} Insert new rule into a chain; 1 [default] = insert in front of any other   

   existing rules) 

Parameters 

Parameters are optional filters that further narrow the scope of commands. For example, the "-p" or "-protocol" 

parameter defines a protocol that restricts the action of the command line to 1) a specific chain; and 2) a specific 

parameter within the chain. So, in an example with "... INPUT -p tcp..." for instance, the action and target would 

apply only to the INPUT chain and within that chain, only to TCP/IP traffic.  Parameters are always expressed in 

lower case. 

 -d addr /mask  Destination address;  may be network name or IP, hostname, external IP 



62 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

 -i interface name Name of interface In (receiving packet); only INPUT, FORWARD, PREROUTING 

 -m   Match; tries to match conditions in order (all criteria must be met) 

 -o interface name Interface out (sending packets); only FORWARD, OUTPUT, POSTROUTING chains 

 -p   Protocol of a packet (TCP, UDP, ICMP, or ALL)
10

 

 -s addr /mask  Source address; internal or external network name/IP, hostname 

iptables Extensions 

There are dozens of parameter filters you may implement in iptables. Due to the manner in which iptables man 

pages tend to order extension explanations, digesting their syntax can be quite confusing. You may think of 

parameters as coarse filters for iptables, and iptables extensions as fine filters for more granular control over 

packets and connections.  

For example, -protocol (shortcut -p) is a parameter that can be used to restrict an iptables rule to a particular 

network protocol (e.g. -p tcp or -protocol udp). However, it's also possible to extend that capability and create a 

more granular filter, such as restricting a rule to a particular networking protocol (e.g. TCP) and further 

narrowing it down to a defined source or destination port range. While the former concept is a capability built-in 

to iptables, the latter concept requires the use of iptables extensions. 

Extensions are grouped into various modules. The modules are not called in the command line. Rather, they 

contain groups or sets of extensions, and those extensions are the parameters called in iptables rules. It gets 

confusing when attempting to comprehend whether you need to use the extension name itself and/or a 

particular extension name sub-set. From an implementation perspective, it boils down to understanding which 

parameters to use to accomplish your goals. We'll focus primarily on two extension sub-sets: Match and Target 

extensions. These are the most commonly used iptables extensions, regardless of the purpose of the server. 

Match Extensions 

One of the most powerful tools in iptables are match extensions. They are loaded via the -m parameter. 

The syntax format of all iptables extensions is: 

-{parameter} --{extension} {option} {argument} 

So, in the case of match extensions, this portion of the iptables command line looks like this: 

-match --{extension} {option} {argument} 

Or the shorthand version: 

-m --{extension} {option} {argument} 

Following the -m parameter, match uses options and arguments to filter traffic. Multiple match options and 

argument variants are permitted on the same line. For instance, matching a connection state and a protocol at 

the same time. Just a portion of the complete set of match extensions are relevant for a media server.  

Let's take a look at the relevant match extensions and what characteristics they match. As previously 

mentioned, the match extensions are grouped into modules. Within each module is a set of extensions and/or 

options. The relevant match extension modules are: 



63 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

 connmark netfilter marked fields associated with a connection 

 conntrack Connection tracking 

 iprange  Range of IP addresses 

 mac  Source MAC ID 

 mark  netfilter marked fields associated with a packet 

 multiport Set of source or destination ports 

 owner  Outgoing packets based on userid or groupid 

Bear in mind multiple match extensions may be grouped together on the same line. Needs will vary, but these 

are the extensions most likely to be useful, grouped by function. If you can't find a function to suit your needs 

here, for Ubuntu check the official man page here. Or for non-Ubuntu operating systems, check the iptables 

man page for Linux, or for either simply request the man page via your terminal: 

man iptables 

Actions and Targets 

An action is a parameter applied at the end of a line, just before the target. The most common actions are -goto 

and -jump, which are similar but are distinctly different in their behavior. 

Goto 

The -goto or -g action instructs iptables to 'goto' to a custom chain name specified after the -g. When iptables 

finds a matching rule containing a -goto command, it stops processing the current chain and jumps or goes to 

the specified target custom chain name. 

 -g my_custom_chain_name 

 -goto my_custom_chain_name 

Jump 

The -jump or -j action instructs iptables to 'jump' to the target identified after the -j. When iptables finds a 

matching rule containing a -jump command, it stops processing the current chain and performs the specified 

target action. 

The target is the last item in an iptables command line. The most common are the built-in targets mentioned in 

the previous section: ACCEPT, DROP, and REJECT. Target indicates the target process or what the desired 

behavior is if all conditions of the line are met. 

-j ACCEPT 

-j DROP 

-j REJECT 

ACCEPT ends the processing of the current packet within the current chain. From there it goes on to the next 

chain in the order previously discussed. If the packet is currently in the POSTROUTING chain, when it reaches an 

ACCEPT target, all mangling of the packet ends and it is sent out of the server. 



64 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

The difference between DROP and REJECT is DROP simply drops the connection, while REJECT drops the 

connection and returns a message to the requesting process, advising it the packet was rejected. DROP provides 

no notification. 

Match Extensions 

Match extensions identify packets that match a specified criteria. This document focuses only on the most 

frequently used match extension modules, which are: 

 comment 

 connmark 

 conntrack 

 iprange 

 mac 

 mark 

 multiport 

 owner 

 state [deprecated] 

These modules are explained below. 

connmark 

Part of the ConnTrack module (CONNection MARKing), this has to be the worst-named extension. Why do I say 

that? Because there are two ConnMark extensions. One is a match extension, which is connmark. The other is a 

target extension, which is CONNMARK. Confused yet? 

connmark matches connections marked with the netfilter mark field (see MARK target extension). Use it to 

check for the presence of a specific mark value associated with a connection. 

-m connmark --mark <value> 

iptables {table} {COMMAND} {CHAIN} {parameter} -m connmark --mark 10 {ACTION} {target} 

conntrack 

Conntrack allows access to the connection tracking state for the current packet/connection. It can be used to 

match connections based on state, protocol, source/destination originating IP addresses, TTL (Time To Live), 

reply source/destination IP addresses, and flow direction (originating or reply). Most of those features are not 

explained here as they can be managed with other commands. The most important function of conntrack is its 

ability to act based on connection state. 

You may query the state of the connection using the extension --ctstate. 

-m conntrack --ctstate <statelist> 

--ctstate is unique compared with the other match extensions. It branches based on a connection's state. The 

statelist includes the following valid states. You may use more than one as the argument: 

 NEW   First packet of a connection 



65 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

 ESTABLISHED  Packet is part of a known 2-way connection 

 RELATED  Packet is starting new connection, but associated with an existing connection 

 INVALID  The packet has no known associated connection 

 UNTRACKED  Packet is exempt from tracking per NOTRACK command in RAW table 

 SNAT   Virtual state. Matches if source IP address has been altered 

 DNAT   Virtual state. Matches if destination IP address has been altered 

Example syntax: 

iptables ... -m conntrack --ctstate RELATED {ACTION} {target} 

NOTE: There is a netfilter process called conntrack, which is responsible for tracking and maintaining the current 

state of network connections. The conntrack module within netfilter and the conntrack match extension within 

iptables are independent of one another. However, their identical names can and do create confusion. The key 

difference is the iptables conntrack reference is a match extension and read-only.  

iprange 

IPrange allows you to create a match rule based on a specified IPv4 address or range of addresses. You must 

specify if the address(es) to be matched are source or destination addresses. The format is: 

-m iprange --src-range from{-to} 

-m iprange --dst-range from{-to} 

mac 

A Media Access Control or MAC address is a unique identifier assigned to a network interface controller. MAC 

addresses are tied to a specific device, rather than a specific IP address. 

-m mac --mac-source {XX:XX:XX:XX:XX:XX} 

The MAC address match must be called with -m mac. The MAC source is specified with the --mac-source 

argument, after the MAC module has been invoked with -m mac. If you forget to include the -m mac prefix in 

the command, it won't work. 

mark 

Matches packets with a previously associated mark value. A mark may be assigned via any of three methods: 

1. The current connection was previously marked with the CONNMARK target extension 

2. The current packet was previously marked via the MARK target extension 

3. Via a rule set in ip rule that sets a corresponding fwmark (FireWall mark) 

The syntax of the mark match extension is: 

-m mark --mark {value} 



66 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

multiport 

Muliport allows matching based on source, destination, or both direction of traffic flow (source/destination) and 

a single port, group of ports, or range of ports. The maximum number of ports specified as a command line 

argument is 15. Note that a range (e.g. x-y) counts as two (2) ports out of the maximum of 15. 

-m multiport {--source-ports | --destination-ports | --ports {port,port,port:port} 

Like all match extensions, multiport may be combined on the same line with other match extensions. For 

example, you could match the TCP extension with the multiport extension. Here is an example that matches a 

condition where the protocol is TCP and the port the packet is coming either to or from is either 80 (HTTP) or 

443 (HTTPS): 

iptables ... -p tcp -m multiport --ports 80,443 {ACTION} {target} 

Note there is one exception in syntax that should be noted. Multiport may not be combined with standalone --

source-port or --destination-port matches when the multiport command corresponds with the same action as --

source-port or --destination-port. If you do combine them in the same command, the first related action will be 

executed and subsequent actions affecting the same module will be ignored. 

owner 

The Owner module matches packets with the local owner (of the packet) that corresponds to the match criteria. 

This can be a single UsernameID, single UserGroupID, a range of UserIDs, or a range of GroupIDs. Ranges may 

only be specified if numeric arguments are used (i.e. userid or groupid). 

Owner is only applicable in mangle table of the OUTPUT and POSTROUTING chains. If attempts are made to 

apply it in any other chains or tables it will be ignored. Possible applications are: 

 --uid-owner {username} 

 --uid-owner {userid | userid-userid} 

 --gid-owner {groupname} 

 --gid-owner {groupid | groupid-groupid} 

 

Examples in context with -m switch: 

-m owner --uid-owner username 

-m owner --uid-owner userid1 

-m owner --uid-owner userid1-userid2 

-m owner --gid-owner groupname 

-m owner --gid-owner groupid 

-m owner --gid-owner groupid1-groupid2 

state (Deprecated) 

Although the state match exists, this extension should not be used as it was deprecated in iptables version 

1.4.16 (Edwards & Engelhardt, 2013). It continues to function but is aliased to the conntrack module (-m 



67 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

conntrack), meaning ConnTrack functions are what is called by state, and therefore ConnTrack's functions are 

the ones you should be using. While currently functional for backwards compatibility, the state match extension 

should be avoided and conntrack should be used instead. 

Since you may see this match parameter represented in documentation, you should be aware of its (now 

deprecated) syntax: 

iptables ... -m state --state <statelist> ... 

The statelist utilized by state is the same as ConnTrack's. 

--source-port (--sport) 

--source-port (or --sport) allows matching based on a single, group, or range of source ports. The maximum 

number of ports specified as a command line argument is 15. A range (e.g. x-y) counts as two (2) ports out of the 

maximum of 15. 

-p {protocol} --source-port {port,port,port:port} 

Here is an example that matches source ports 52, 53, 80, and 443: 

iptables ... -p tcp --source-ports 52-53,80,443 {ACTION} {target} 

Note --destination-port and --source-port are protocol specific. The protocol must be specified on the command 

line, and must precede the -port command. The protocol can only be one of TCP, UDP, or ICMP. 

  



68 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

Target Extensions 

Target extensions affect the final disposition or destination of a packet or a connection. This could mean halting 

a particular packet or connection, tagging it, or redirecting its destination. A target extension need not 

necessarily end a packet’s or a connection’s processing tree, though some do. 

Target extensions are invoked via the jump action (-j | -jump). 

There are three (3) target types built-in to the core iptables code: 

 ACCEPT 

 DROP 

 REJECT 

A target module is one that performs an action against the current packet or connection. The following 

additional target modules are added by the target extension module: 

 CONNMARK  Matches packets based on a mark value 

 CONNSECMARK  Assign a security mark to a connection 

 CT   Disables tracking for current packet when used with  --notrack  option 

 DNAT   Alters destination address of incoming packets 

 MARK   Assigns a mark value to a packet 

 MASQUERADE  Conceal internal IP address when sending packets outside the LAN 

 NOTRACK  Do not track the state of the current packet 

 REJECT   Drop packet and return error 

 SECMARK  Assign a security mark to a packet 

 SNAT   Change source IP address to specified value 

 --destination-port Protocol specific matching by destination port number(s) [ TCP | UDP | ICMP ] 

 --source-port  Protocol specific matching by source port number(s) [ TCP | UDP | ICMP ] 

CONNMARK 

Set the netfilter mark associated with a connection. The mark must be an integer (32-bits). 

Syntax: 

 --restore-mark  Copy the connection mark to the packet mark 

 --save-mark  Copy the packet mark to the connection mark 

Example: 

iptables -A POSTROUTING -t mangle -j CONNMARK --restore-mark 

CONNMARK target commands may be used in any chain and in any table. However, it is recommended to use 

them only in the mangle table (Andreasson, 2006; p. 215). Unpredictable results may occur used in other tables. 

Note the important distinction between CONNMARK (connection) and MARK (packet). 



69 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

CONNSECMARK 

Assigns a security mark to a connection.  

SELinux is beyond the scope of this document. However, due to legacy code in iptables, a small number of 

functions in SELinux have comparable functions in iptables that may be accessed even when SELinux is not 

present. This section briefly describes one of those functions, for the sake of completeness. 

This is an oddball. Ideally, it belongs only in the security table of the INPUT, FORWARD, and OUTPUT chains. 

However, in the event you're working with a host not running a SELinux security module, there is a legacy entry 

point of sorts. This extension can be utilized via the mangle table of the PREROUTING chain. 

Syntax: 

 --restore  If no SECMARK exists on the packet, copy the connection security context mark  

   to the packet 

 --save   If a security context mark exists on the packet and no security context mark   

   exists on the connection, copy the packet security mark to the connection 

Example: 

iptables -A POSTROUTING -t mangle -p tcp -dport 80 -j CONNSECMARK --restore 

CT 

"CT" is an acronym for "Connection Target." Exclusive to the RAW table, the CT target extension allows one to 

set parameters for a packet OR its associated connection. I only mention CT in this document as an alternative to 

removing connection tracking in the RAW table. CT basically creates and applies a connection tracking template 

to an incoming packet, which is then overlaid onto the conntrack module in netfilter. This is why it's only 

relevant in the RAW table.  

Syntax: 

 --notrack  Disable connection tracking for the packet 

CT has other capabilities, but they are quite advanced and well beyond the scope of this document.  

DNAT = Destination Network Address Translation 

DNAT is acronym for Destination Network Address Translation. DNAT is the opposite of SNAT. It determines 

where a packet should go on the local server. Applied only during the PREROUTING chain, when the packet has 

just entered the server. This ensures future traffic over the same connection has the DNAT change applied to it. 

DNAT rewrites the destination address of the packet.  

DNAT translates an incoming public IP address into a specific private (LAN side) IP address. A typical use case 

would be when you always want traffic directed to a certain public IP address to be routed to a certain internal 

server.  



70 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

Port Forwarding
11

 uses DNAT in combination with port filtering. DNAT may also be used to force protocol 

filtering, which while very similar to port forwarding, causes incoming network traffic to be redirected based on 

protocol (e.g. UDP). This results in a wider scope of packet redirection. 

Note that port forwards may include a range of port numbers. Furthermore, a neat trick is it may be used to 

change destination port numbers without affecting the IP address. For example, this command funnels all 

incoming TCP/IP traffic on interface eth0 to be sent to port 80, without changing the destination IP address: 

iptables -t nat -A PREROUTING -p tcp -o eth0 -j DNAT --to-destination :80 

Dynamic DNAT 

There is a variation of DNAT sometimes referred to as Dynamic DNAT or Dynamic Mode DNAT. Dynamic DNAT is 

simply a list of range-bound DNAT addresses, any of which may be assigned to the current connection. Iptables 

will select the least frequently used address (a form of load-balancing). For example: 

iptables -t nat -A PREROUTING -j DNAT --to-destination 192.168.0.21-192.168.0.25 

MASQUERADE 

MASQUERADE is an alternative to SNAT. It is applicable to outbound connections and works almost exactly like 

SNAT, except it cannot force a public IP address. Instead, it passes the public IP address of the router, thus 

masquerading or disguising the internal IP address of the originating server. MASQUERADE requires Connection 

Tracking to be in use on the current connection (e.g. it won't work if state has been de-activated via a command 

in the RAW table). 

MASQUERADE may only be used with one of the following protocols:  TCP, UDP, DCCP, or SCTP. 

MASQUERADE may only be applied in the nat table of the POSTROUTING chain. 

The following options may be applied: 

 --to-ports Specifies a range of source ports to use 

 --random Randomizes source port mapping 

MARK 

A numeric field (32-bit integer) used to mark (flag) a packet by associating a value with it. This is the same thing 

as fwmark in ip rules. The MARK command in iptables sets a packet mark, while packet marks may be read and 

acted upon by iptables and/or ip rules (per fwmark). 

The MARK command can only be used in the MANGLE table. It is normally applied in the PREROUTING chain, but 

may be applied in the INPUT or OUTPUT chains as well. To be  used in conjunction with a corresponding fwmark 

rule in ip rules, the mark command must be in the PREROUTING chain (mangle table). 

The syntax is: 

 --set-mark 

Example: 



71 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

... -j mark --set-mark 32 

Note the important distinctions between CONNMARK (connection), MARK (packet), and fwmark (ip rules). 

NOTRACK 

Disables connection tracking for all packets matching the rule. Equivalent to using CT --notrack. As with CT, this 

function can only be used in the RAW table. It may be applied in the PREROUTING or OUTPUT chains. 

REJECT 

This is effectively the same as executing a DROP command (via "jump to," i.e. -j DROP). The difference is the 

REJECT command will return an error packet to the server on the other end of the connection, informing it the 

packet was rejected. 

SECMARK 

Assigns a security mark to the current packet. 

SELinux is beyond the scope of this document. However, due to legacy code in iptables, a small number of 

functions in SELinux have comparable functions in iptables that may be accessed even when SELinux is not 

present. This section briefly describes one of those functions, for the sake of completeness. 

This is an oddball. Ideally, it belongs only in the security table of the INPUT, FORWARD, and OUTPUT chains. 

However, in the event you're working with a host not running a SELinux security module, there is a legacy entry 

point of sorts. This extension can be utilized via the mangle table of the PREROUTING chain. 

Syntax: 

-A {chain} -t {table} {parameters} -j SECMARK {security context} 

Example: 

iptables -A POSTROUTING -t mangle -p tcp -dport 80 -j SECMARK --selctx httpcontext 

SNAT = Source Network Address Translation 

SNAT is acronym for Source Network Address Translation. SNAT is the opposite of DNAT. Applied only during the 

POSTROUTING chain, just before the packet leaves the server. This ensures future traffic over the same 

connection has the SNAT change applied to it. 

SNAT rewrites the source IPv4 address of the packet and is used in conjunction with the -o parameter (e.g. "-o 

eth0") to modify an outgoing packet on the given interface. 

For example, this command funnels all outgoing TCP/IP traffic on interface eth0 to be sent to port 80, without 

changing the source IP address: 

iptables -t nat -A POSTROUTING -p tcp -o eth0 -j SNAT --to-source :80 



72 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

Dynamic SNAT 

There is a variation of SNAT sometimes referred to as Dynamic SNAT or Dynamic Mode SNAT. Dynamic SNAT is 

simply a list of range-bound SNAT addresses, any of which may be assigned to the current connection. Iptables 

will select the least frequently used address (a form of load-balancing). For example: 

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 192.168.0.1-192.168.0.10 

  



73 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

Extensions and Chains: Where and When to Apply iptables Rules 

Most iptables extensions cannot be applied to every chain. For some extensions, it's very difficult to track down 

information on which extensions work in which chains and tables. From what I have ascertained through many 

hours of research, at least half of them are completely void of information on their chain and table limitations. 

That said, there are typical use scenarios. Consider what you are trying to accomplish before creating your 

iptables commands, and whether or not it makes sense to apply them to a particular chain or table. 

Match Extension Chains and Tables 

Here is a list of each match extension defined above and the chains in which they typically belong: 

 connmark   PREROUTING, POSTROUTING 

 conntrack   INPUT, PREROUTING 

 iprange    PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING 

 mac    PREROUTING, INPUT, FORWARD 

 mark    INPUT, PREROUTING, POSTROUTING 

 multiport   INPUT, FORWARD, OUTPUT, PREROUTING 

 owner    OUTPUT, POSTROUTING 

And here is the list of known tables where you may apply each of those match extensions: 

 connmark   mangle, filter 

 conntrack   filter 

 iprange    filter 

 mac    filter 

 mark    mangle 

 multiport   nat, filter 

 owner    filter 

Target Extension Chains and Tables 

Here is a list of each target extension defined above and the chains in which they are typically used. 

 CONNMARK   PREROUTING, INPUT, FORWARD, OUTPUT, POSTROUTING 

 DNAT    PREROUTING, OUTPUT 

 MARK    PREROUTING, INPUT, OUTPUT 

 MASQUERADE   POSTROUTING 

 NOTRACK   PREROUTING, OUTPUT 

 REJECT    INPUT, FORWARD, OUTPUT 

 SNAT    POSTROUTING 

And here are their corresponding tables: 

 CONNMARK   mangle 

 DNAT    nat 

 MARK    mangle 

 MASQUERADE   nat 

 NOTRACK   raw 



74 iptables Command Line Syntax | A Crash Course in Linux Networking 

 

 REJECT    nat, filter 

 SNAT    nat 

Inverse Operand 

It is possible to precede a match parameter with the inverse operand (" ! "). This has the effect of a "NOT" 

operation. The ! symbol precedes the -- in front of the extension option. For example, let's take a look at a 

portion of a command line filtering based on an IPv4 range. 

... -m iprange --src-range 192.168.1.1-192.168.1.255 

Normally, this match extension would limit the iptables rule to the range of IPv4 source addresses between 

192.168.1.1 and 192.168.1.255. If you placed an inverse operand character in front of the --src-range option, 

you would instruct iptables to do the opposite.  

... -m iprange ! --src-range 192.168.1.1-192.168.1.255 

The command above would instruct iptables to apply the rule to any IPv4 source address NOT between 

192.168.1.1 and 192.168.1.255. The opposite effect of the original command option. 

Breaking that down, we have: 

 -m is the iptables extension being called (in this case, "match") 

 iprange is the name of the filter 

 --src-range (source range) is the option being called within the iprange filter 

 192.168.1.1-192.168.1.255 are the affected range of IPv4 addresses 

 Alternatively, the use of ! --src-range (source range) instructs iptables to action all source IPv4 ranges 

except for 192.168.1.1-192.168.1.255. 

Noteworthy Variable Syntax 

You may have a need to know about a few other variables, depending on the commands you choose to 

implement. 

 LO  Loopback ; applicable to INPUT and OUTPUT chains 

 /mask  Genmask; post-cedes IPv4 format /x.x.x.x or /xx (e.g. /255.255.255.0 or /24) 

Connection Tracking 

As explained under CONNTRACK, connection tracking is an extension to iptables (also known as modules) that 

allows monitoring the status of a network connection. All traffic coming into or going out of your server is 

transmitted as network packets, and each of those packets is part of a connection. New connections are those 

where the packet is the very first packet. It could be an outgoing packet that originated from your server or an 

incoming packet arriving from another host. The Connection Tracking or ConnTrack module is unusual in that it 

adds both match and target extensions to iptables. 

  



75 Protocols | A Crash Course in Linux Networking 

 

Protocols 
Protocols operate in a similar manner to Match Extensions. Protocols filter the current packet based on the 

current communications protocol. There are only a few options, and for our purposes we will only focus on the 

two most common: TCP and UDP. Protocol filtering may be combined with match extensions (-m) on the same 

line to create more sophisticated filters on a single command line. 

TCP 

Match extensions that filter based on port numbers must be used in conjunction with a protocol (e.g. -p tcp or -p 

udp). Port filtering may consist of a single port, group of ports, range of ports, or a group of port ranges. The 

maximum number of ports specified as a command line argument is 15. A range (e.g. x-y) counts as two ports 

(out of the maximum of 15).  

Here are some syntax examples of the tcp protocol used with various port number filters. 

-p tcp --source-port {port,port,port:port} 

-p tcp --sport {port,port,port:port} 

-p tcp --destination-port {port,port,port:port} 

-p tcp --dport {port,port,port:port} 

-p tcp --dport 0:9999,12000:15000,34999 

Note there is no module prefix between the -m parameter and the match extension syntax. 

UDP 

The UDP match extension follows the same format as the TCP extension.  

Port filtering may consist of a single port, group of ports, range of ports, or a group of port ranges. The 

maximum number of ports specified as a command line argument is 15. A range (e.g. x-y) counts as two ports 

(out of the maximum of 15).  

Here are some syntax examples of the tcp protocol used with various port number filters. 

-p udp --source-port {port,port,port:port} 

-p udp --sport {port,port,port:port} 

-p udp --sport 23,47:125,57:123,449 

 

-p udp --destination-port {port,port,port:port} 

-p udp --dport {port,port,port:port} 

Note there is no module prefix between the -m parameter and the match extension syntax. 



76 Testing Your Rules | A Crash Course in Linux Networking 

 

Testing Your Rules 
It may not be obvious, but you need to test your rules - both routing rules and iptables rules - before you 

cement them in place. One of the great things about the RPDB and iptables is they are very forgiving of 

catastrophic screw-ups. Simply force a server reboot, your rules are emptied, and you may start over. So, before 

you make them permanent (automatically load on boot-up), it's critical to thoroughly test them, lest you lock 

yourself out of your server. I can't stress this enough with a headless server. 

I've found the best way to do this is to create custom scripting files that populate the rules in your RPDB and 

iptables. You can certainly also populate your route tables with this method as well, and I'll show you how to do 

that as well. 

Listing Rules by Number 

Here's how to list all the rules in all the chains with line numbers so you can identify each rule's number. This can 

be very useful when troubleshooting or to identify a rule number for deletion.  

iptables -L -v -n --line-numbers 

You may specify a particular table if you know which you want to focus on. Simply include the table name after 

the -L command. 

Create Your Shell Scripts 

You should create two scripts. One for iptables and one for your RPDB rules and/or routes. The reason why is 

because the implementation process that will automatically load your rules needs to be segmented.  

iptables Shell Script 

Open your favorite text editor and begin a new file. Populate the file with your iptables entries. This is a very 

basic example. Your needs will vary, and this guide's purpose is simply to provide an overview of Linux 

networking in Ubuntu and various processes. You must figure out what iptables rules you need and modify the 

sample script below to meet your needs. 

nano /etc/iptables-script.sh 

Here's a very basic sample script. Notice at the end of the file it calls the next file, which will update your RPDB 

rules and routes. 

#! /bin/bash 
# iptables sample test script 
 
# flush iptables rules 
iptables -F -t nat 
iptables -F -t mangle 
 
# OUTPUT chain 
iptables -t mangle -A OUTPUT -j CONNMARK --restore-mark 
 
# launch RPDB script 
/etc/routing-script.sh 

 



77 Testing Your Rules | A Crash Course in Linux Networking 

 

exit 0 

Save the file. 

Make the script file executable. 

chmod +x /etc/iptables-script.sh 
chmod 755 /etc/iptables-script.sh 

Routing and RPDB Rules Shell Script 

You'll now create an independent script to manage changes to the RPDB routes and rules. If you plan on using 

custom routing tables, make sure you've already created them in the master routing table. Instructions on how 

to do this are found in The Master Routing Table. 

Begin a new script file. Remember, this will be called by the first file. Ensure the filename reference at the end of 

your first script matches this filename. 

nano /etc/routing-script.sh 

Here's a very basic sample script that will update your RPDB rules and routes. Remember, this is just a sample 

file. Do not use this verbatim! 

#! /bin/bash 
# RPDB sample test script 
 
# presume there is an existing table called custom-table-name 
# you would have created this table previously in the table names file 
 
# sample ip rule 
ip rule add from 192.168.1.1 lookup custom-table-name 
 
# sample ip route 
ip route add default via 192.168.1.1 dev eth0 table custom-table-name 
 
# reload cache to load new rules and routes 
ip route flush cache 
 
exit 0 

Save the file. 

Make the script file executable. 

chmod +x /etc/routing-script.sh 

chmod 755 /etc/routing-script.sh 



78 Testing Your Rules | A Crash Course in Linux Networking 

 

To test your changes, simply execute the first script. 

./etc/iptables-script.sh 

  



79 Helpful Tips | A Crash Course in Linux Networking 

 

Helpful Tips 

Here are a few helpful tips related to rule and route testing. 

Don't Forget to Flush! 

If you make changes to ip rules, ip routes, or iptables and wish to utilize them prior to the next system reboot, 

don't forget to flush the cache before you change iptables and after you change ip routes. Flushing the cache 

forces the kernel to reload the iptables and routing databases. 

Do NOT Flush ip rules 

It's important to flush the cache for routes and tables, but do NOT do that for ip rules. It will break your server's 

connectivity. 

mark vs. fwmark: What's the Difference? 

Are you banging your head into a wall trying to understand  the relationship between "mark," "fwmark," and 

"firewall mark?" Well, the good (and simple) news is they are all the same thing. The difference is fwmark is the 

reference name used by ip rules, and mark is the reference name used by iptables. All three of these terms refer 

to "marks" applied by the CONNMARK and CONNTRACK netfilter modules. 

Persisting Routes, Rules, and Tables Across Reboots 
Routing Policy DataBase (RPDB) rules and iptables commands need to be loaded into the kernel’s memory when 

the server starts up. The master routing table is the only portion of the RPDB that will automatically repopulate 

after a server restart. The remainder of the RPDB and iptables commands must be reinstated after every reboot. 

There are several methods of doing this, but it can be a little tricky as of Ubuntu 16.04 due to significant 

infrastructure changes from 14.04.  

SystemD and the Start-up Process 

Now that you've setup and tested your scripts, it's time to configure your server to automatically execute them 

when it boots. This will cause your rules and routes to be established every time the server restarts, which is 

necessary because otherwise they won't be present. 

To make this happen, you need to create a hook that calls your script file during the server's startup process. 

1. If you just rebooted after testing your scripts, make sure you login as root. 

sudo -i 

2. Create a .service file. Let's name it rules.service. 

nano /etc/systemd/system/rules.service 

3. Add the following lines. Note the filename matching your first test filename. 

[Unit] 



80 Persisting Routes, Rules, and Tables Across Reboots | A Crash Course in Linux Networking 

 

Description=rules service 
 
[Service] 
ExecStart=/etc/iptables-script.sh 
 
[Install] 

WantedBy=multi-user.target 

4. The script files must be executable. Presuming you already did that in the testing phase above, you've already 

completed this step. If you didn't make them executable earlier, do so now via instructions above under Testing 

Your Rules. 

5. Setup the service. This will be OK because the scripts flush the caches. 

systemctl start rules 
systemctl enable rules 

systemctl stop rules 

You're done! Reboot and confirm your new rules and routes are functioning as expected. If not, review steps 

above and try again. If they still don't work, review Testing Your Rules. 

 

  



81 References | A Crash Course in Linux Networking 

 

References 
Andreasson, Oskar. Iptables Tutorial 1.2.1. Chapter 6: Traversing of tables and chains. 

https://www.frozentux.net/iptables-tutorial/chunkyhtml/c962.html. 

Andreasson, Oskar. 2006. Iptables Tutorial 1.2.2. http://homes.di.unimi.it/sisop/qemu/iptables-tutorial.pdf. 

Anicas, Mitchell. 14 August 2015. How To List and Delete Iptables Firewall Rules. Digital Ocean, 

https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules. 

Ayuso, Pablo Neira. 2006. Netfilter’s Connection Tracking System. ;LOGIN: The USENIX Magazine. Vol. 31, No. 3. 

USENIX: The Advanced Computing Systems Association, 

https://www.usenix.org/system/files/login/articles/892-neira.pdf. 

best way to clear all iptables rules. 11 November 2010. Stack Exchange. Server Fault, 

https://serverfault.com/questions/200635/linux-iptables-best-way-to-clear-all-rules-leaving-anything-

open. 

Baturin, Daniil. (n.d.). Overview [sic] ip2route cheatsheet. http://baturin.org/docs. 

Brown, Martin A. 26 April 2003. Guide to IP Layer Network Administration with Linux. Chapter 10: Advanced IP 

Routing. Version 0.4.4. Linux-IP, http://linux-ip.net. 

Control Network Traffic with iptables. 28 February 2017. Linode. Weblog. Linode, 

https://linode.com/docs/security/firewalls/control-network-traffic-with-iptables. 

Create table in iptables. 6 July 2013. Stack Exchange. Ask Ubuntu, 

https://askubuntu.com/questions/316990/create-table-in-iptables. 

Differences Between IPTables and IPChains. 26 June 2007. Red Hat Enterprise Linux Deployment Guide. Red Hat, 

https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-iptables-differences.html. 

Edwards, N., & Engelhardt, J. (2013, January 15). GMANE Mailing List Archive. GMANE, 

http://comments.gmane.org/gmane.comp.security.firewalls.netfilter.general/45564. 

Egan, David. 7 August 2016. Persistent Iptables Rules in Ubuntu 16.04 Xenial Xerus. Weblog. Dev Notes, 

http://dev-notes.eu/2016/08/persistent-iptables-rules-in-ubuntu-16-04-xenial-xerus. 

Ellingwood, Justin. (20 August 2015). A Deep Dive into Iptables and netfilter Architecture. Digital Ocean, 

https://www.digitalocean.com/community/tutorials/a-deep-dive-into-iptables-and-netfilter-

architecture. 

Engelhardt, Jan. 28 February 2014. Packet Flow in Netfilter and General Networking. Wikipedia, 

https://upload.wikimedia.org/wikipedia/commons/3/37/Netfilter-packet-flow.svg. 

Flickenger, Rob. (n.d.). Hack #49. Using Custom Chains in iptables. Weblog. O'Reilly, 

https://www.safaribooksonline.com/library/view/linux-server-hacks/0596004613/ch04s06.html. 

Force Torrent Traffic through VPN Split Tunnel Debian 8 + Ubuntu 16.04. (n.d.). HTPC Guides, 

https://www.htpcguides.com/force-torrent-traffic-vpn-split-tunnel-debian-8-ubuntu-16-04. 



82 References | A Crash Course in Linux Networking 

 

Gheorghe. Lucian. 15 December 2010. "Chapter 4: Packet Mangling with iptables." Designing and Implementing 

Linux Firewalls and QoS using netfilter, iproute2, NAT and l7-filter. pp. 113-117. Cross Linux From 

Scratch, http://clfs.org/~kb0iic/Linux%20Firewalls%20and%20QOS.pdf. 

Hagen, Phil. 30 April 2019 (edited). iptables Processing Flowchart. Weblog. Phil Hagen's Scratch Pad, 

https://stuffphilwrites.com/2014/09/iptables-processing-flowchart. 

Hambourg, Pascal. 2009. NAT using iproute2. Email. NARKIVE Newsgroup Archive. 

https://comp.os.linux.networking.narkive.com/mhXc9nQe/nat-using-iproute2#post6. 

Hubert, Bert; Graf, Thomas; Larroy, Pedro Maxwell, Gregory; Schroeder, Paul B; Spaans, Jasper; van Mook, 

Remco; and van Oosterhout, Martijn. "Chapter 4: Rules - routing policy database." 22 July 2002. Linux 

Advanced Routing & Traffic Control HOWTO. Version 1.1. The Linux Documentation Project, 

http://lartc.org/howto/lartc.rpdb.html. 

iproute2. (16 November 2017). Wikipedia, https://en.wikipedia.org/wiki/Iproute2. 

IPROUTE2 Utility Suite Howto. (n.d.). PolicyRouting.org, http://www.policyrouting.org/iproute2.doc.html. 

Iptables. 2008. Chapter 6: Traversing of tables and chains. http://www.iptables.info. 

iptables - Target to route packet to specific interface? 29 December 2011. Server Fault (Stack Exchange), 

http://serverfault.com/questions/345111/iptables-target-to-route-packet-to-specific-interface. 

iptables vs route. 2 May 2012. Stack Exchange. Superuser, https://superuser.com/questions/419659/iptables-vs-

route. 

IptablesHowTo. 9 October 2017. Edited by Connor Imes. Ubuntu Documentation, 

https://help.ubuntu.com/community/IptablesHowTo. 

Iptables MAC Address Filtering. 27 December 2005. Weblog. NixCraft, https://www.cyberciti.biz/tips/iptables-

mac-address-filtering.html. 

IPTables packet traverse map. 5 September 2011. Admins ehow, 

http://www.adminsehow.com/2011/09/iptables-packet-traverse-map. 

iptables Release of the netfilter/iptables project. (27 May 2019). NetFilter, 

https://www.netfilter.org/projects/iptables/downloads.html 

Iptables Tutorial 1.2.1. (n.d.). https://www.frozentux.net/iptables-tutorial/chunkyhtml/c3965.html. 

Kernel Packet Traveling Diagram. (n.d.). <https://www.docum.org/docum.org/kptd/>. 

Knome (editor). 13 December 2013. IptablesHowTo. <https://help.ubuntu.com/community/IptablesHowTo>. 

Kuznetsov, Alexey. N. (14 April 1999). IP Command Reference. Moscow. Institute for Nuclear Research, 

https://cs.hofstra.edu/~cscccl/csc175/ip-cref.pdf. 

Linux 2.6 - man page for iptables (linux section 8). (n.d.). Unix & Linux Forums, https://www.unix.com/man-

page/linux/8/iptables. 



83 References | A Crash Course in Linux Networking 

 

Load balancing using iptables with CONNMARK. (n.d.). SystemRescueCd. http://www.system-rescue-

cd.org/networking/Load-balancing-using-iptables-with-connmark. 

Marsh, Matthew G. Policy Routing Using Linux. Sams, 2001. PolicyRouting.org, 

http://www.policyrouting.org/PolicyRoutingBook. 

Mitasch, Christoph. 10 June 2015. Saving Iptables Firewall Rules Permanently. Weblog. https://www.thomas-

krenn.com/en/wiki/Saving_Iptables_Firewall_Rules_Permanently. 

Morris, James. security: add iptables "security" table for MAC rules. 29 January 2008. E-mail. LWN.net, 

https://lwn.net/Articles/267140. 

Mortimer, Ian. 21 September 2000. rp_filter not working ?? NetFilter Mailing Lists, 

http://lists.netfilter.org/pipermail/netfilter/2000-September/005400.html. 

netfilter. (20 December 2017). Wikipedia, https://en.wikipedia.org/wiki/netfilter. 

nftables. (10 December 2017). Wikipedia, https://en.wikipedia.org/wiki/Nftables. 

Only allow certain outbound traffic on certain interfaces. 26 April 2011. Stack Exchange. Unix & Linux, 

http://unix.stackexchange.com/questions/12085/only-allow-certain-outbound-traffic-on-certain-

interfaces. 

Packet flow in netfilter and General Networking. Image. Wikipedia, 

https://upload.wikimedia.org/wikipedia/commons/3/37/netfilter-packet-flow.svg. 

Redirect Routing on Non-Default Interface. 12 December 2008. Ubuntu forums, 

http://ubuntuforums.org/showthread.php?t=1008620. 

Russell, Rusty. 29 July 2001. Linux Networking-concepts HOWTO. NetFilter Mailing Lists, 

http://www.netfilter.org/documentation/HOWTO//networking-concepts-HOWTO.html. 

Russell, Rusty; Welte, Harold. 7 February 2002. Linux netfilter Hacking HOWTO. Weblog. 

https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO.html. 

Setup routing and iptables for new VPN connection to redirect **only** ports 80 and 443. 7 November 2011. 

Superuser, http://superuser.com/questions/354855/setup-routing-and-iptables-for-new-vpn-

connection-to-redirect-only-ports-80. 

Simon. 28 August 2011. MAKING ALL NETWORK TRAFFIC FOR A LINUX USER USE A SPECIFIC NETWORK 

INTERFACE. Niftiest Software, http://www.niftiestsoftware.com/2011/08/28/making-all-network-traffic-

for-a-linux-user-use-a-specific-network-interface. 

Split tunnel routing a specific port over OpenVPN on Ubuntu Server 12.04. 11 June 2013. Superuser, 

http://superuser.com/questions/606159/split-tunnel-routing-a-specific-port-over-openvpn-on-ubuntu-

server-12-04. 

Suehring, Steve; Ziegler, Robert. 14 September 2005. Linux Firewalls. 3rd edition. Novell Press. 



84 References | A Crash Course in Linux Networking 

 

Summary of changes from v2.6.8 to v2.6.9. 19 October 2004. Changelog. 

https://mirrors.edge.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.9. 

The netfilter.org "nftables" project. (n.d.). Netfilter, https://netfilter.org/projects/nftables. 

UFW. 31 March 2017. Ubuntu Documentation, https://help.ubuntu.com/community/UFW. 

Gite, Vivek. Understanding Routing Table. 13 March 2008. Nixcraft, https://www.cyberciti.biz/faq/what-is-a-

routing-table. 

Wagner, Tyler J. 13 July 2009. Disabling Reverse-Path Filtering in Complex Networks. 

http://www.tolaris.com/2009/07/13/disabling-reverse-path-filtering-in-complex-networks. 

Westphal, Florian. (2017). improvements to conntrack table overflow handling. Montreal, Canada. Netdev 2.1, 

The Technical Conference on Linux Networking, https://www.netdevconf.org/2.1/papers/conntrack.pdf. 

What is a Subnet Mask? 13 November 2018. iplocation.net. https://www.iplocation.net/subnet-mask. 

What is the difference between -m conntrack --ctstate and -m state --state. 7 January 2014. Stack Exchange. Unix 

& Linux, https://unix.stackexchange.com/questions/108169/what-is-the-difference-between-m-conntrack-

ctstate-and-m-state-state. 

xenial (8) iptables.8.gz. (n.d.). Ubuntu manuals, 

http://manpages.ubuntu.com/manpages/xenial/man8/iptables.8.html. 

xenial (8) iptables-extensions.8.gz. (n.d.). Ubuntu manuals, 

http://manpages.ubuntu.com/manpages/xenial/man8/iptables-extensions.8.html 

zesty(8) nft.8.gz. 10 October 2016. Ubuntu Man Pages, 

http://manpages.ubuntu.com/manpages/xenial/en/man8/nft.8.html. 

 

  



85 Endnotes | A Crash Course in Linux Networking 

 

Endnotes 
                                                           
1
 ip6tables is the IPv6 equivalent of iptables. This document is limited to discussing iptables, which only covers IPv4.  

 
2
 The Address Resolution Protocol (ARP) packet filter rules in the Linux kernel firewall modules. Not discussed in this 

document. 

 
3
 ebtables is a filtering tool that enables transparent filtering of network traffic passing through a Linux bridge. It is beyond 

the scope of this document. 

 
4
 Source: The Swift Programming Language (Swift 4.1). © Apple, Inc. Retrieved March 24, 2018 from 

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AdvancedO

perators.html. 

 
5
 Quality of Service (QoS) refers to the proactive control and management of network resources by setting priorities for 

specific types of data on a network. It is a general term, and not a protocol or IP characteristic. It is essentially a 

methodology. 

 
6
 Type of Service (ToS) is a byte in the IP header of a packet that classifies the precedence and type of traffic of the packet. It 

carries very specific meanings and will cause a router to prioritize the packet ahead of other, non-declared or lower priority 

declaration packets. ToS bytes are an advanced method of forcing data packet prioritization. 

 
7
 James Morris announced the Security table in iptables via a Request For Comment email in January 2008 where he posited 

moving some marking features of the Mangle table to this new Security table. Thankfully, that never happened as most 

Linux distributions do not use SELinux, which is required for the Security table to function (Morris, 2008). 

 
8
 Only relevant when using iptables command line (i.e. not in a script). Applies to specified table (default is Filter table). 

 
9
 User-created chains are temporary and will disappear on reboot. Think of them as extensions of a table (that is where they 

reside). User-defined chains do not behave the same as static (default) chains. They are simply collections of rules. 

 
10

 As of iptables version 1.6.0, only one argument is possible per -p parameter. Branching on more than one protocol 

requires an additional line of code for each additional protocol. 

 
11

 Port Forwarding (also known as port mapping) is an act of Network Address Translation (NAT) that redirects in incoming 

network communication to particular internal IP address and port number on the associated destination device. It allows 

granular routing of network traffic based on either a specific incoming port number, or a combination of destination IP 

address and port number. 


