

Universal MIDI Packet (UMP) Format
and MIDI 2.0 Protocol

Version 1.0

February 20, 2020

Published By:

Association of Musical Electronics Industry AMEI
and

MIDI Manufacturers Association MMA

M2-104-UM

http://www.midi.org

\
M2-104-UM v1.0 Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

© 2018–2020 Association of Musical Electronics Industry (AMEI) (Japan)

© 2018–2020 MIDI Manufacturers Association, Incorporated (MMA) (Worldwide except Japan)

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL,
INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN
WRITING FROM THE ASSOCIATION OF MUSICAL ELECTRONICS INDUSTRY OR THE MIDI
MANUFACTURERS ASSOCIATION INCORPORATED.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 1 Feb. 20, 2020

Table of Contents

1. Introduction ... 7
1.1 Reliance Upon Other Specifications ... 7
1.2 References ... 8
1.3 Terminology .. 9
1.4 Reserved Words and Specification Conformance ... 11

2. Universal MIDI Packet (UMP) Format .. 12
2.1 UMP Basic Packet and Message Format... 12

2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams .. 12
2.1.2 UMP Format Universal Fields ... 13
2.1.3 Reserved Items ... 14
2.1.4 Message Type (MT) Allocation ... 14

3. MIDI Protocols in UMP Format .. 16
3.1 Overview ... 16

3.1.1 Groups, Ports, and Virtual MIDI Cables .. 16
3.1.2 Selecting a MIDI Protocol for a Group .. 16

3.2 MIDI 1.0 Protocol in UMP Format ... 17
3.2.1 Message Types for MIDI 1.0 Protocol ... 17
3.2.2 MIDI 1.0 Protocol and Future Expansion .. 17
3.2.3 Protocol Negotiation to the MIDI 1.0 Protocol .. 18

3.3 MIDI 2.0 Protocol in UMP Format ... 19
3.3.1 Message Types for MIDI 2.0 Protocol ... 19
3.3.2 MIDI 2.0 Protocol and Future Expansion .. 19
3.3.3 Protocol Negotiation to the MIDI 2.0 Protocol .. 20

4. MIDI Messages in UMP Format .. 21
4.1 MIDI 1.0 Channel Voice Messages .. 22

4.1.1 MIDI 1.0 Note Off Message .. 23
4.1.2 MIDI 1.0 Note On Message ... 23
4.1.3 MIDI 1.0 Poly Pressure Message ... 23
4.1.4 MIDI 1.0 Control Change Message ... 23
4.1.5 MIDI 1.0 Program Change Message .. 23
4.1.6 MIDI 1.0 Channel Pressure Message ... 23
4.1.7 MIDI 1.0 Pitch Bend Message ... 23

4.2 MIDI 2.0 Channel Voice Messages .. 24
4.2.1 MIDI 2.0 Note Off Message .. 24
4.2.2 MIDI 2.0 Note On Message ... 24
4.2.3 MIDI 2.0 Poly Pressure Message ... 25
4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages 25
4.2.5 MIDI 2.0 Per-Note Management Message .. 26
4.2.6 MIDI 2.0 Control Change Message ... 27
4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages 28
4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and

Assignable Controller (NRPN) Messages .. 28
4.2.9 MIDI 2.0 Program Change Message .. 29
4.2.10 MIDI 2.0 Channel Pressure Message ... 29
4.2.11 MIDI 2.0 Pitch Bend Message ... 29
4.2.12 MIDI 2.0 Per-Note Pitch Bend Message .. 29
4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data .. 30
4.2.14 MIDI 2.0 Notes and Pitch .. 31

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 2 Feb. 20, 2020

4.3 System Common and System Real Time Messages .. 33
4.4 System Exclusive (7-Bit) Messages .. 34

4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPs 35
4.5 System Exclusive 8 (8-Bit) Messages ... 36

4.5.1 Unexpected End of Data .. 37
4.6 Mixed Data Set Message ... 38

4.6.1 End of Mixed Data Set ... 40
4.7 16-Bit Manufacturer IDs ... 41
4.8 Utility Messages .. 43

4.8.1 NOOP ... 43
4.8.2 Basic Timestamp Format ... 43
4.8.3 Jitter Reduction (JR) Timestamps (and JR Clock) ... 44
4.8.4 MIDI-CI Protocol Negotiation and JR Timestamps .. 44
4.8.5 JR Clock Message Format ... 45
4.8.6 JR Timestamp Message Format ... 45
4.8.7 JR Clock Mechanism ... 46
4.8.8 JR Timestamp Mechanism ... 46
4.8.9 JR Timestamps and JR Clock Recommended Practice .. 46
4.8.10 Translation to/from the MIDI 1.0 Protocol .. 47

Appendix A MIDI 2.0 Registered Per-Note Controllers .. 48
Appendix B Special Control Change Messages .. 49

B.1 Channel Mode Messages: Applicable Channels ... 49
B.2 Reset All Controllers ... 49

Appendix C Using MIDI 2.0 Per-Note Messages .. 50
C.1 Shared Per-Note Controllers ... 50
C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to
 Reallocate Per-Note Expression .. 51
C.3 Using Note Number Rotation, Per-Note Pitch, and Per-Note Management Message
 for Independent Per-Note Expression ... 53

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 3 Feb. 20, 2020

Appendix D Translation: MIDI 1.0 and MIDI 2.0 Messages ... 56
D.1 Data Value Translations .. 57

D.1.1 Overview .. 57
D.1.2 Core Rules .. 57
D.1.3 Upscaling Translation Methods: .. 58
D.1.4 Downscaling Translation Methods .. 59
D.1.5 Special Considerations ... 59

D.2 MIDI 2.0 to MIDI 1.0 Default Translation.. 60
D.2.1 Note On/Off, Poly Pressure, Control Change .. 60
D.2.2 Channel Pressure .. 60
D.2.3 Assignable Controllers (NRPN) and Registered Controllers (RPN).. 61
D.2.4 Program Change and Bank Select .. 62
D.2.5 Pitch Bend .. 63
D.2.6 System Messages ... 63
D.2.7 System Exclusive ... 64
D.2.8 Messages That Cannot Be Translated to MIDI 1.0 .. 64
D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems 64

D.3 MIDI 1.0 to MIDI 2.0 Default Translation.. 65
D.3.1 Note On/Off ... 65
D.3.2 Poly Pressure .. 65
D.3.3 Control Change, RPN, and NRPN ... 66
D.3.4 Program Change and Bank Select .. 67
D.3.5 Channel Pressure .. 68
D.3.6 Pitch Bend .. 68
D.3.7 System Messages ... 69

D.4 Alternate Translation Modes ... 70
D.4.1 Selecting an Alternate Translation Mode Using a Profile.. 70
D.4.2 Selecting Alternate Translation Modes Without a Profile ... 70

Appendix E System Exclusive (7-Bit) and System Exclusive 8 (8-Bit) Message Examples 71
E.1 Table of System Exclusive Message UMPs .. 71
E.2 Complete System Exclusive Message Examples .. 72
E.3 Table of System Exclusive 8 (8-Bit) Message UMPs ... 73

Appendix F All Defined UMP Formats ... 74
F.1 4-Byte UMP Formats .. 74

F.1.1 Message Type 0x0: Utility ... 74
F.1.2 Message Type 0x1: System Common & System Real Time ... 74
F.1.3 Message Type 0x2: MIDI 1.0 Channel Voice Messages ... 75

F.2 8-Byte UMP Formats .. 76
F.2.1 Message Type 0x3: 8-Byte Data Messages.. 76
F.2.2 Message Type 0x4: MIDI 2.0 Channel Voice Messages ... 76

F.3 16-Byte UMP Formats .. 77
F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data) 77

Appendix G All Defined Messages .. 78
Appendix H Overview of Extensions to MIDI ... 80

H.1 Extensions Enabled by the Universal MIDI Packet Format .. 80
H.2 Further Extensions in the MIDI 2.0 Protocol .. 80

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 4 Feb. 20, 2020

Figures

Figure 1 Example UMP Format Diagrams ... 12
Figure 2 Status Field Size Varies with Message Type Value ... 13
Figure 3 UMP Formats for Example Message Types .. 14
Figure 4 MIDI-CI MIDI 1.0 Protocol Extensions Bitmap Field .. 18
Figure 5 MIDI-CI MIDI 2.0 Protocol Extensions Bitmap Field .. 20
Figure 6 MIDI 1.0 3-Byte Channel Voice Message General Format ... 22
Figure 7 MIDI 1.0 2-Byte Channel Voice Message General Format ... 22
Figure 8 MIDI 1.0 Note Off Message .. 23
Figure 9 MIDI 1.0 Note On Message ... 23
Figure 10 MIDI 1.0 Poly Pressure Message ... 23
Figure 11 MIDI 1.0 Control Change Message ... 23
Figure 12 MIDI 1.0 Program Change Message .. 23
Figure 13 MIDI 1.0 Channel Pressure Message ... 23
Figure 14 MIDI 1.0 Pitch Bend Message ... 23
Figure 15 MIDI 2.0 Channel Voice Message General Format ... 24
Figure 16 MIDI 2.0 Note Off Message .. 24
Figure 17 MIDI 2.0 Note On Message ... 24
Figure 18 MIDI 2.0 Poly Pressure Message ... 25
Figure 19 MIDI 2.0 Registered Per-Note Controller Message ... 25
Figure 20 MIDI 2.0 Assignable Per-Note Controller Message .. 25
Figure 21 MIDI 2.0 Per-Note Management Message .. 26
Figure 22 MIDI 2.0 Control Change Message ... 27
Figure 23 MIDI 2.0 Registered Controller Message .. 28
Figure 24 MIDI 2.0 Assignable Controller Message .. 28
Figure 25 MIDI 2.0 Relative Registered Controller Message .. 28
Figure 26 MIDI 2.0 Relative Assignable Controller Message ... 28
Figure 27 MIDI 2.0 Program Change Message .. 29
Figure 28 MIDI 2.0 Channel Pressure Message ... 29
Figure 29 MIDI 2.0 Pitch Bend Message ... 29
Figure 30 MIDI 2.0 Per-Note Pitch Bend Message .. 29
Figure 31 System Message General Format ... 33
Figure 32 System Exclusive (7-Bit) Message Format .. 34
Figure 33 System Exclusive 8 (8-Bit) Message Format ... 36
Figure 34 Mixed Data Set Chunk Format... 38
Figure 35 Manufacturer ID Translations .. 41
Figure 36 Utility Message General Format .. 43
Figure 37 NOOP Message Format ... 43
Figure 38 Timestamp Format Examples .. 43

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 5 Feb. 20, 2020

Figure 39 JR Clock Message Format ... 45
Figure 40 JR Timestamp Message Format ... 45
Figure 41 Two Notes of Same Note Number Share Per-Note Controllers ... 50
Figure 42 Only the Note After the Per-Note Management Message has Per-Note Control 51
Figure 43 D and S Fields in MIDI 2.0 Per-Note Management Message .. 51
Figure 44 Per-Note Management Example with Per-Note Pan .. 52
Figure 45 MIDI 2.0 Registered Per-Note Controller Message with Controller #3 (Pitch 7.25) 54
Figure 46 MIDI 2.0 Note On Message with Attribute #3 (Pitch 7.9) ... 55
Figure 47 Value Upscaling Diagram .. 59
Figure 48 Translate MIDI 2.0 Note Off, Note On, Poly Pressure, and Control Change to MIDI 1.0 60
Figure 49 Translate MIDI 2.0 Channel Pressure to MIDI 1.0 .. 60
Figure 50 Translate MIDI 2.0 Assignable (NRPN) and Registered (RPN) Controller to MIDI 1.0 61
Figure 51 Translate MIDI 2.0 Program Change to MIDI 1.0 ... 62
Figure 52 Translate MIDI 2.0 Pitch Bend to MIDI 1.0 .. 63
Figure 53 Translate MIDI 2.0 System Message to MIDI 1.0 ... 63
Figure 54 Translate MIDI 2.0 System Exclusive to MIDI 1.0 ... 64
Figure 55 Translate MIDI 1.0 Note On and Note Off to MIDI 2.0 .. 65
Figure 56 Translate MIDI 1.0 Poly Pressure to MIDI 2.0 .. 65
Figure 57 Translate MIDI 1.0 Control Change to MIDI 2.0 .. 66
Figure 58 Translate MIDI 1.0 Data Entry LSB Control Change to MIDI 2.0 .. 66
Figure 59 Translate MIDI 1.0 Program Change to MIDI 2.0 (No Bank) ... 67
Figure 60 Translate MIDI 1.0 Bank and Program Change to MIDI 2.0 ... 67
Figure 61 Translate MIDI 1.0 Channel Pressure to MIDI 2.0 .. 68
Figure 62 Translate MIDI 1.0 Pitch Bend to MIDI 2.0 .. 68
Figure 63 Translate MIDI 1.0 System Message to MIDI 2.0 ... 69
Figure 64 Translate MIDI 1.0 System Exclusive to MIDI 2.0 (Example) ... 69
Figure 65 MIDI 2.0 System Exclusive Message Example 1 .. 72
Figure 66 MIDI 2.0 System Exclusive Message Example 2 .. 72
Figure 67 MIDI 2.0 System Exclusive Message Example 3 .. 72

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 6 Feb. 20, 2020

Tables

Table 1 Words Relating to Specification Conformance ... 11
Table 2 Words Not Relating to Specification Conformance .. 11
Table 3 Message Type (MT) Allocation .. 14
Table 4 MIDI-CI Protocol Negotiation Protocol Bytes .. 16
Table 5 Defined Attribute Types for MIDI 2.0 Note On & Note Off .. 30
Table 6 Messages that use System Message General Format .. 33
Table 7 Status Field Values for System Exclusive (7-Bit) Messages ... 34
Table 8 Status Field Values for System Exclusive 8 (8-Bit) Messages .. 36
Table 9 16-Bit Values for 7-Bit Special IDs .. 41
Table 10 MIDI 2.0 MfrID Conversions of Example Existing Manufacturer IDs .. 42
Table 11 MIDI 2.0 Registered Per-Note Controllers .. 48
Table 12 Center Value Examples ... 57
Table 13 UMPs for System Exclusive (7-Bit) Messages ... 71
Table 14 UMPs for System Exclusive 8 (8-Bit) Messages .. 73
Table 15 4-Byte UMP Formats for Message Type 0x0: Utility ... 74
Table 16 4-Byte UMP Formats for Message Type 0x1: System Common & System Real Time 74
Table 17 4-Byte UMP Formats for Message Type 0x2: MIDI 1.0 Channel Voice Messages 75
Table 18 8-Byte UMP Formats for Message Type 0x3: 8-Byte Data Messages .. 76
Table 19 8-Byte UMP Formats for Message Type 0x4: MIDI 2.0 Channel Voice Messages 76
Table 20 16-Byte UMP Formats for Message Type 0x5: System Exclusive 8 and Mixed Data...................... 77

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 7 Feb. 20, 2020

1. Introduction
This Specification defines two major extensions to the MIDI 1.0 Protocol:

• Universal MIDI Packet (UMP) Format

UMP can contain all MIDI 1.0 Protocol messages and all MIDI 2.0 Protocol messages in a single,
common container definition with a payload format which is intended to be usable in (or easily
adaptable for) any standardized or proprietary data transport.

The UMP Format adds 16 Groups to MIDI addressing. Each Group contains an independent set of
System Messages, and 16 Channels that are equivalent to the MIDI 1.0 Protocol’s 16 MIDI
Channels.

The UMP Format also adds a per-packet Jitter Reduction (JR) Timestamp mechanism: a JR
Timestamp can be prepended to UMPs to improve timing accuracy.

• MIDI 2.0 Protocol

The MIDI 2.0 Protocol is an extension of the MIDI 1.0 Protocol. Architectural concepts and
semantics remain the same as MIDI 1.0. Compatibility for translation to/from the MIDI 1.0 Protocol
is given high priority in the design of the MIDI 2.0 Protocol.

Compared to the MIDI 1.0 Protocol, MIDI 2.0 Protocol messages have extended data resolution for
all Channel Voice Messages. New properties have been added to some Channel Voice Messages,
and new Channel Voice Messages have been added with greatly improved Per-Note control and
much more musical expression.

In addition, some functions that require the use of multiple MIDI Messages in the MIDI 1.0 Protocol
(for example: Bank and Program Change, RPN, and NRPN) are easier to use in the MIDI 2.0
Protocol, as they are now implemented as a single, unified message.

A set of new Data Messages has been added, including System Exclusive 8 Messages (very similar
to MIDI 1.0 Protocol System Exclusive message, but allowing use of all 8 data bits per byte) and
Mixed Data Set Messages (for transfer of large data sets, including non-MIDI data).

Both the UMP Format and the MIDI 2.0 Protocol include a large reserved space for future extensibility.

1.1 Reliance Upon Other Specifications
Implementers should understand that this Specification is not a stand-alone document, in the following
regards:

• The UMP Format sections describe a transport-independent payload format, not necessarily the low-level
data format that will actually be used “on the wire” or “over the air” for any particular standardized
transport (such as USB, UDP, Bluetooth, Wi-Fi, etc.). MMA/AMEI expect that for every standardized
transport that uses the UMP Format, a separate specification will exist to define how to carry UMP
payload data for that standardized transport. See also Section 2.1.1.1.

• The UMP Format and MIDI 2.0 Protocol descriptions are written as extensions of the MIDI 1.0 Protocol.
Therefore, understanding this document and the technical design of the UMP Format requires
comprehensive knowledge of the MIDI 1.0 Specification [MMA01].

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 8 Feb. 20, 2020

1.2 References
[MMA01] The Complete MIDI 1.0 Detailed Specification, Document Version 96.1, Third Edition,

Association of Musical Electronics Industry, http://www.amei.or.jp/, and MIDI
Manufacturers Association, https://www.midi.org/.

[MMA02] MIDI Capability Inquiry (MIDI-CI), Association of Musical Electronics Industry,
http://www.amei.or.jp/, and MIDI Manufacturers Association, https://www.midi.org/.

[MMA03] Confirmation of Approval for MIDI Standard CA-031, CC #88 High Resolution Velocity
Prefix, Association of Musical Electronics Industry, http://www.amei.or.jp/, and MIDI
Manufacturers Association, https://www.midi.org/.

[MMA04] Defaults for Sound Controllers, Recommended Practice RP-021, MIDI Manufacturers
Association, https://www.midi.org/.

[MMA05] Redefinition of CC91 and CC93, Recommended Practice RP-023, MIDI Manufacturers
Association, https://www.midi.org/.

http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/
http://www.amei.or.jp/
https://www.midi.org/
https://www.midi.org/
https://www.midi.org/

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 9 Feb. 20, 2020

1.3 Terminology
Note: Terminology from MIDI 1.0 is the same as defined in the Complete MIDI 1.0 Detailed Specification [MMA01]
and is not included here.

Alternate Translation Mode: A non-standardized translation of MIDI 1.0 Protocol to MIDI 2.0 Protocol, or
MIDI 2.0 Protocol to MIDI 1.0 Protocol, as described in Appendix D.4 of this specification.

AMEI: Association for Musical Electronics Industry. Authority for MIDI Specifications in Japan.

Attribute Data, Attribute Type: In the MIDI 2.0 Protocol’s Note On and Note Off messages, optional
fields that support additional expression. See Section 4.2.1, Section 4.2.2, and Section 4.2.13.

Data Message: MIDI Message defined in Section 4.4 System Exclusive (7-Bit) Messages, Section 4.5
System Exclusive 8 (8-Bit) Messages, or Section 4.6 Mixed Data Set Message.

Default Translation Mode: A standardized translation of the MIDI 1.0 Protocol to the MIDI 2.0 Protocol, or
from the MIDI 2.0 Protocol to the MIDI 1.0 Protocol, conforming to the rules in Appendix D.1 through
Appendix D.3 of this specification.

JR: Jitter Reduction.

MIDI 1.0 Protocol: Version 1.0 of the MIDI Protocol as originally specified in [MMA01]. The native
format for the MIDI 1.0 Protocol is a byte stream, but it has been adapted for many different transports.
The UMP format for MIDI 1.0 Protocol messages is defined in Section 4 of this specification.

MIDI 1.0 Protocol Device: Hardware or software device that sends and/or receives MIDI Messages in the
MIDI 1.0 Protocol, using any transport. See also Non-UMP MIDI 1.0 System.

MIDI 1.0 Specification: See [MMA01].

MIDI 2.0: The MIDI environment that encompasses all of MIDI 1.0 Protocol, MIDI-CI, Universal MIDI
Packet, MIDI 2.0 Protocol, MIDI 2.0 Messages, and other extensions to MIDI as described in this
specification.

MIDI 2.0 Protocol: Version 2.0 of the MIDI Protocol, as defined in this specification. The native format for
MIDI 2.0 messages is UMP as defined in Section 4 of this specification.

MIDI 2.0 Protocol Device: Hardware or software device that sends and receives MIDI Messages in the
MIDI 2.0 Protocol.

MIDI-CI Protocol Negotiation: A two-way exchange of MIDI-CI messages to determine, through
negotiation, which MIDI protocol the two devices will use to communicate. See [MMA02].

MIDI Message: (1) A complete MIDI 1.0 Protocol message, irrespective of the transport employed (if any),
as specified in The Complete MIDI 1.0 Detailed Specification [MMA01], including any updates,
addenda, or errata); or
(2) A complete MIDI 1.0 Protocol message or a complete MIDI 2.0 Protocol message in UMP Format,
irrespective of the transport employed (if any), as specified in Section 3.2, Section 3.3, and Section 4 of
this specification.
In this definition, ‘complete’ means that all specified fields are incorporated, including any reserved bits,
and conform to the message’s defined format. Note that for some transports a single MIDI Message
might span multiple transport packets, or a single transport packet might contain multiple MIDI
Messages.

MIDI Tuning Standard: The mechanism for controlling musical tuning (intonation) as specified in the
System Exclusive Messages section of the MIDI 1.0 Detailed Specification, Document Version 4.2,
which is published in The Complete MIDI 1.0 Detailed Specification [MMA01].

Mixed Data Set: Mixed Data Set messages can carry any data payload, without the 7-bit restriction of the
MIDI 1.0 Protocol. See Section 4.6.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 10 Feb. 20, 2020

MMA: MIDI Manufacturers Association. Authority for MIDI specifications worldwide except Japan.

MMA/AMEI: MIDI Manufacturers Association and Association for Musical Electronics Industry.

Non-UMP MIDI 1.0 System: Any combination of MIDI 1.0 Protocol Devices, transports, applications, or
other system components that does not implement the UMP Format.

Note: At the time of writing this specification, there is no plan to use the UMP Format on the MIDI 1.0 5-
pin DIN transport. Unless/until that plan changes, 5-pin DIN will only support the MIDI 1.0 byte stream
data format.

Per-Note Controller: Any of the following MIDI Messages: Poly Pressure, Per-Note Registered Controllers,
Per-Note Assignable Controllers, or Per-Note Pitch Bend.

Profile: MMA/AMEI specification with purpose-specific definition of MIDI functionality, as defined in the
MIDI-CI specification [MMA02] or its updates, addenda, or errata.

Receiver: MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device that receives MIDI Messages from a
Sender and parses them.

Sender: MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device that creates MIDI Messages and transmits
them to a Receiver.

Translator: A MIDI 1.0 Protocol Device or MIDI 2.0 Protocol Device which is capable of translating MIDI
1.0 Protocol messages to the MIDI 2.0 Protocol, and/or translating MIDI 2.0 Protocol messages to the
MIDI 1.0 Protocol.

UMP: Universal MIDI Packet.

UMP Format: Data format for fields and messages in the Universal MIDI Packet.

UMP MIDI 1.0 Device: any device that sends or receives MIDI 1.0 Protocol messages using the UMP. Such
devices may use UMP Message Types that extend the functionality beyond Non-UMP MIDI 1.0
Systems.

Universal MIDI Packet (UMP): The Universal MIDI Packet is a data container which defines the data
format for all MIDI 1.0 Protocol messages and all MIDI 2.0 Protocol messages. UMP is intended to be
universally applicable, i.e., technically suitable for use in any transport where MMA/AMEI elects to
officially support UMP. See Section 2 of this specification for detailed definition.

Utility Message: MIDI Message composed of one or more of the UMPs defined in Section 4.8.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 11 Feb. 20, 2020

1.4 Reserved Words and Specification Conformance
In this document, the following words are used solely to distinguish what is required to conform to this
specification, what is recommended but not required for conformance, and what is permitted but not required
for conformance:

Table 1 Words Relating to Specification Conformance
Word Reserved For Relation to Spec Conformance

shall Statements of requirement Mandatory.
A conformant implementation conforms to all ’shall’ statements.

should Statements of recommendation Recommended but not mandatory.
An implementation that does not conform to some or all ‘should’
statements is still conformant, providing all ’shall’ statements are
conformed to.

may Statements of permission Optional.
An implementation that does not conform to some or all ’may’
statements is still conformant, providing all ’shall’ statements are
conformed to.

By contrast, in this document, the following words are never used for specification conformance statements;
they are used solely for descriptive and explanatory purposes:

Table 2 Words Not Relating to Specification Conformance
Word Reserved For Notes

must Statements of unavoidability Describes an action to be taken that, while not required (or at least
not directly required) by this specification, is unavoidable.
Not used for statements of conformance requirement (see ’shall’
above).

will Statements of fact Describes a condition that as a question of fact is necessarily going
to be true, or an action that as a question of fact is necessarily going
to occur, but not as a requirement (or at least not as a direct
requirement) of this specification.
Not used for statements of conformance requirements (see ‘shall’
above).

can Statements of capability Describes a condition or action that a system element is capable of
possessing or taking.
Not used for statements of conformance permission (see ‘may’
above).

might Statements of possibility Describes a condition or action that a system element is capable of
electing to possess or take.
Not used for statements of conformance permission (see ‘may’
above).

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 12 Feb. 20, 2020

2. Universal MIDI Packet (UMP) Format
Using the format defined in Section 2.1, the Universal MIDI Packet (UMP) Format supports:

• All MIDI 1.0 Protocol Channel Voice Messages using the Message formats defined in Section 4.1
• All MIDI 2.0 Protocol Channel Voice Messages using the Message formats defined in Section 4.2
• The System Common, System Real Time, System Exclusive, System Exclusive 8, Mixed Data Set, and

Utility messages using the Message formats defined in Section 4.3 through Section 4.8.

See also see Appendix F All Defined UMP Formats.

2.1 UMP Basic Packet and Message Format
Each UMP shall be one, two, three, or four 32-bit words long.

Each UMP shall contain one entire MIDI Message, or (in the sole case of Data Messages longer than 128
bits) part of one MIDI Message, and no additional data.

A Data Message that is longer than a single UMP allows will span multiple UMPs.

2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams
In this specification, for clarity UMP Format diagrams present one 32-bit word per line. The leftmost bits are
the most significant bits, for each 32-bit word and for each field within each 32-bit word.

Example Diagram 2: 64-Bit Message in a Single 64-Bit UMP

Example Diagram 1: 32-Bit Message in a Single 32-Bit UMP

Example Diagram 3: 96-Bit Message in a Single 96-Bit UMP

Example Diagram 4: 128-Bit Message in a Single 128-Bit UMP

First 32-Bit Word:

Third 32-Bit Word:

Second 32-Bit Word:

Fourth 32-Bit Word:

First 32-Bit Word:

Third 32-Bit Word:

Second 32-Bit Word:

First 32-Bit Word:

Second 32-Bit Word:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1 Example UMP Format Diagrams

2.1.1.1 Scope of Bit, Byte, and Word Order Guidance
Although UMP 32-bit words can be converted to and from byte streams for storage or transmission, the
formats of such byte streams, including the byte order to be used for such transport and storage, are outside
the scope of this specification. Per Section 1.1, it is expected that separate transport specifications will define
formats and byte orders for each particular transport, and separate file format specifications addressing the
UMP Format will define byte orders for each particular file format.

For the internals of any given implementation, a device or system may use any desired format, including
native-endian 32-bit words.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 13 Feb. 20, 2020

2.1.2 UMP Format Universal Fields
Every UMP shall contain the Message Type, Group, and Status fields.

message type

The most significant 4 bits in every UMP shall contain the Message Type field, detailed in
Section 2.1.4. It indicates the message’s general functional area (e.g., Utility, MIDI 1.0 Channel
Voice Messages, MIDI 2.0 Channel Voice Messages), as well as the UMP’s size, and the size of the
Status field.

group

A 4-bit Group field is next, addressing every UMP Format MIDI Message (and every UMP
comprising any given MIDI Message) to one of 16 Groups.

Per Section 3, each Group shall communicate using only one MIDI Protocol (currently either the
MIDI 1.0 Protocol or the MIDI 2.0 Protocol) at a time. MIDI Protocols shall not be mixed for any
given Group.

Each Group’s set of 16 MIDI Channels shall be separate and independent from any other Group’s set
of MIDI Channels, allowing up to 256 MIDI Channels (i.e., 16 Groups x 16 MIDI Channels) per
UMP-based MIDI connection for Channel-based MIDI Messages. UMPs addressed to different
Groups may be freely interleaved (i.e., transmitted in any order).

Within a given Group, MIDI Messages that do not support a MIDI Channel field (i.e., System
Messages, Data Messages, and JR Timestamps) shall apply to, and shall affect, all MIDI Channels
within that Group. In addition, each Group shall be separate and independent from any other Group
in terms of its response to System Messages.

status

A Status field is next. As detailed in the UMP Format for each MIDI Message, the size in bits of the
Status field depends upon the value of the Message Type.

Within each Message Type multiple messages are defined, distinguished from one another by the
Status field. For example, Message Type 0x2 is “MIDI 1.0 Channel Voice Messages” which contains
the MIDI 1.0 Note Off, MIDI 1.0 Note On, MIDI 1.0 Program Change, and other related messages;
the Status field selects one particular message within that Message Type.

statusmt = 0

mt = 1

mt = 4 status indexgroup

data

Example 1: Message Type 4 (MIDI 2.0 Channel Voice Message) has 8-Bit Status Field in 64-Bit UMP

Example 2: Message Type 1 (System Message) has 8-bit Status Field in 32-Bit UMP (32 bits)

 status datagroup

Example 3: Message Type 0 (Utility Message) has 4-bit Status Field in 32-Bit UMP

datagroup
Figure 2 Status Field Size Varies with Message Type Value

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 14 Feb. 20, 2020

2.1.3 Reserved Items
In this specification, the term Reserved means reserved for future definition by MMA/AMEI.

In particular:

• Messages marked as Reserved shall not be used.
• Fields marked as Reserved shall be set to zero and shall not be used for any purpose.
• Bits marked “r” are reserved, shall be set to zero, and shall not be used for any purpose.
• Option flag bits that are undefined are reserved, shall be set to zero, and shall not be used for any

purpose.
• Receivers, Translators, transports, or other MIDI system components shall not depend upon “r” bits or

Reserved fields necessarily containing the value zero, to allow for future definitions with new uses for
the reserved values.

2.1.4 Message Type (MT) Allocation
The most significant 4 bits of every message contain the Message Type (MT). The Message Type is used as
a classification of message functions. All messages within a Message Type have the same UMP size.

Table 3 Message Type (MT) Allocation

MT UMP Size Description

0x0 32 bits Utility Messages

0x1 32 bits System Real Time and System Common Messages (except System Exclusive)

0x2 32 bits MIDI 1.0 Channel Voice Messages

0x3 64 bits Data Messages (including System Exclusive)

0x4 64 bits MIDI 2.0 Channel Voice Messages

0x5 128 bits Data Messages

0x6 32 bits Reserved for future definition by MMA/AMEI

0x7 32 bits

0x8 64 bits

0x9 64 bits

0xA 64 bits

0xB 96 bits

0xC 96 bits

0xD 128 bits

0xE 128 bits

0xF 128 bits

Figure 3 UMP Formats for Example Message Types

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 15 Feb. 20, 2020

Reserved Message Types

Per Section 2.1.3, Reserved Message Types marked Reserved in the table above are reserved for future
definition by MMA/AMEI and shall not be used.

These Reserved Message Types provide extensibility for future standardization. They have predefined sizes
so that system components such as APIs, Transports, and Interfaces can be designed in advance to give basic
support for those Message Types, even though the data within the messages are not yet defined.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 16 Feb. 20, 2020

3. MIDI Protocols in UMP Format
3.1 Overview
The UMP Format is capable of encoding multiple MIDI protocols. This version of the UMP Format
specification defines support for the MIDI 1.0 Protocol and the MIDI 2.0 Protocol.

On a per-Group basis, the Sender and Receiver shall cooperatively select exactly one MIDI Protocol at a
time using either the MIDI-CI mechanism [MMA02] or additional means, as described in Section 3.1.2. As a
result, no Group shall use more than one MIDI Protocol at a time.

If the devices support independent selection of MIDI Protocol on a per-Group basis, then the UMP stream
for that 16-Group MIDI connection might contain a mixture of different MIDI Protocols.

Note: In other words: A device is free to implement the MIDI 1.0 Protocol on one or more Groups while
implementing the MIDI 2.0 Protocol on one or more other Groups, but no device shall send both MIDI 1.0
Protocol messages and MIDI 2.0 Protocol messages on the same Group.

3.1.1 Groups, Ports, and Virtual MIDI Cables
When connecting to Non-UMP MIDI 1.0 Systems, or MIDI 2.0 systems that integrate MIDI 1.0 Protocol
Devices, each of the 16 Groups may be treated like one virtual MIDI cable interleaved in a shared stream of
16 virtual MIDI cables. Each Group can be represented as a virtual MIDI port that connects to a virtual MIDI
cable.

3.1.2 Selecting a MIDI Protocol for a Group
MIDI-CI Protocol Negotiation [MMA02] is the MIDI standard method for discovering or selecting MIDI
Protocols on a per-Group basis. Some devices, interfaces, APIs, or transports might have additional means
for discovering or selecting protocols on a per Group basis to fit the needs of a particular MIDI system.

3.1.2.1 MIDI-CI Protocol Negotiation
MIDI-CI Protocol Negotiation may be used by MIDI Devices to agree to switch between using MIDI 1.0
Protocol messages and using MIDI 2.0 Protocol messages, on a per-Group basis. MIDI-CI is also used for
selecting optional features (Extensions), including JR Timestamps. MIDI-CI Protocol Negotiation requires
that the transport between the two devices be capable of using the UMP Format.

MIDI-CI Protocol Negotiation messages describe the available protocols with a set of 5 Protocol Bytes:
Table 4 MIDI-CI Protocol Negotiation Protocol Bytes

Protocol Byte Field To Describe MIDI
1.0

To Describe
 MIDI 2.0

1 Protocol Type 0x01: MIDI 1.0 0x02: MIDI 2.0

2 Version 0x00: MIDI 1.0 0x00: MIDI 2.0, v1.0

3 Extensions See Section 3.2.3 See Section 3.3.3

4 Reserved Set to 0x00 Set to 0x00

5 Set to 0x00 Set to 0x00

Details of selecting the MIDI 1.0 Protocol vs. the MIDI 2.0 Protocol are shown in Section 3.2.3 and
Section 3.3.3, respectively.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 17 Feb. 20, 2020

3.2 MIDI 1.0 Protocol in UMP Format
MIDI 1.0 Protocol messages are carried in the UMP using several Message Types. UMP MIDI 1.0 Devices
may use any of the Message Types listed in Section 3.2.1.1. UMP MIDI 1.0 Devices may also use messages
from the Message Types listed in Section 3.2.1.2 within the same Group to add new functionality. But UMP
MIDI 1.0 Devices shall not use any messages from Message Type 0x4, MIDI 2.0 Channel Voice Messages.

3.2.1 Message Types for MIDI 1.0 Protocol
There are two categories of UMP Message Types for the MIDI 1.0 Protocol: those that simply support
traditional (i.e., pre-UMP) MIDI 1.0 Protocol functionality, and those that extend it.

3.2.1.1 Message Types for Traditional MIDI 1.0 Functionality
The following Message Types encapsulate all traditional MIDI 1.0 Protocol messages:

• Message Type 0x1 System Real Time and System Common Messages
• Message Type 0x2 Channel Voice Messages
• Message Type 0x3 Data Messages (for System Exclusive)

3.2.1.2 Message Types to Extend MIDI 1.0 Functionality
UMP MIDI 1.0 Devices may also use the following Message Types to add extended functionality:

• Message Type 0x0 Utility Messages
• Message Type 0x5 SysEx 8 and Mixed Data Set Messages

Note: However, UMP MIDI 1.0 Devices shall NOT use any messages from Message Type 0x4, MIDI 2.0 Channel
Voice Messages.

3.2.2 MIDI 1.0 Protocol and Future Expansion
Per Section 2.1.3 and Section 2.1.4, several Message Type values are reserved for future use, to be defined
solely by MMA/AMEI. Whenever MMA/AMEI do define new messages that use these currently Reserved
Message Types, it will be clearly specified whether UMP MIDI 1.0 Devices may (vs. shall not) use each of
those messages.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 18 Feb. 20, 2020

3.2.3 Protocol Negotiation to the MIDI 1.0 Protocol
Note: For convenience, this Section repeats information from the MIDI-CI Specification [MMA02]. In the event of
any disagreement, [MMA02] shall take precedence.

Protocol Byte 1: Protocol Type

For the MIDI 1.0 Protocol, the type number is set to 0x01.
Protocol Byte 2: Version

For the MIDI 1.0 Protocol, the version number is set to 0x00.
Protocol Byte 3: Extensions

If the two devices agreeing to a MIDI-CI Protocol Negotiation are connected by a transport that
supports the UMP Format, then there are defined extensions available for using the MIDI 1.0
Protocol. The Extensions field is a bitmap of flags, each representing one extension or optional
feature.

The current version of MIDI-CI defines two extensions. Further extensions might be defined by
MMA/AMEI in future revisions of the MIDI 1.0 Protocol or the UMP Format specification.

Figure 4 MIDI-CI MIDI 1.0 Protocol Extensions Bitmap Field

• S: Size of UMP extension flag. When MIDI 1.0 Protocol Devices use the UMP Format, they
shall always be capable of handling UMPs of up to 64 bits in size (8 bytes).

• When S = 0, message UMPs exchanged shall not exceed 64 bits in size.
• When S = 1, message UMPs of 96 bits (12 bytes) and 128 bits (16 bytes) in size may also be

exchanged. This larger size is necessary to support SysEx 8 and Mixed Data Set messages.

• J: Jitter Reduction Timestamps extension flag. When J = 1, Jitter Reduction Timestamps are
supported and shall be used (i.e., shall be sent) preceding every MIDI 1.0 Protocol UMP.

Devices that report S = 0 and J = 1 shall be capable of handling UMPs up to 64 bits in size, plus 32
bits for a JR Timestamp UMP, for a total combined size of 96 bits (12 bytes).

Devices that report S = 1 and J = 1 shall be capable of handling UMPs of 128 bits in size, plus 32
bits for a JR Timestamp UMP, for a total combined size of 160 bits (20 bytes).

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 19 Feb. 20, 2020

3.3 MIDI 2.0 Protocol in UMP Format
The MIDI 2.0 Protocol expands on the architectural concepts and semantics of the MIDI 1.0 Protocol. The
MIDI 2.0 Protocol increases the data resolution for all Channel Voice Messages, and makes some messages
easier to use by aggregating some combination of multiple messages into a single, unified message. Some
MIDI 2.0 Channel Voice Messages have additional properties which are not available in the corresponding
MIDI 1.0 Protocol messages. Several new Channel Voice Messages are added to provide increased Per-Note
control and musical expression.

MIDI 2.0 Protocol messages are carried in the UMP Format using several Message Types. MIDI 2.0 Protocol
Devices may use any of these messages, and may also use messages from certain other defined Message
Types within the same Group to add new functionality.

3.3.1 Message Types for MIDI 2.0 Protocol
The following Message Types contain all of the core MIDI 2.0 Protocol messages. MIDI 2.0 functionality
may be implemented within a Group using these Message Types:

• Message Type 0x1 System Real Time and System Common Messages
• Message Type 0x4 MIDI 2.0 Channel Voice Messages
• Message Type 0x3 Data Messages (for System Exclusive)
• Message Type 0x0 Utility Messages
• Message Type 0x5 Data Messages

MIDI 2.0 Protocol Devices shall not use any messages from Message Type 0x2, MIDI 1.0 Channel Voice
Messages.

3.3.2 MIDI 2.0 Protocol and Future Expansion
Per Section 2.1.3 and Section 2.1.4, several Message Type values are reserved for future use, to be defined
solely by MMA/AMEI. Whenever MMA/AMEI do define new messages that use these currently Reserved
Message Types, it will be clearly specified whether MIDI 2.0 Protocol Devices may (vs. shall not) use each
of those messages.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 20 Feb. 20, 2020

3.3.3 Protocol Negotiation to the MIDI 2.0 Protocol
Note: For convenience, this Section repeats information from the MIDI-CI Specification [MMA02]. In the event of
any disagreement, [MMA02] shall take precedence.

Protocol Byte 1: Protocol Type

For the MIDI 2.0 Protocol, the type number is set to 0x02.
Protocol Byte 2: Version

For Version 1.0 of the MIDI 2.0 Protocol, the version number is set to 0x00.
Protocol Byte 3: Extensions

The Extensions field is a bitmap of extension flags or optional features.

In this version of the MIDI 2.0 Protocol, the only extension defined is Jitter Reduction Timestamps.
Further extensions might be defined by MMA/AMEI in future revisions of the MIDI 2.0 Protocol or
the UMP Format specification.

Figure 5 MIDI-CI MIDI 2.0 Protocol Extensions Bitmap Field

• J: Jitter Reduction Timestamps extension flag. When J = 1, Jitter Reduction Timestamps shall
be supported/used (i.e., sent) preceding every MIDI 2.0 Protocol UMP.

Note: Devices that use the MIDI 2.0 Protocol in the UMP Format shall be capable of handling UMPs of up to 128
bits (16 bytes) in size. Devices that report J = 1 shall be capable of handling UMPs of 128 bits in size, plus 32 bits
for a JR Timestamp UMP, for a total combined size of 160 bits (20 bytes).

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 21 Feb. 20, 2020

4. MIDI Messages in UMP Format
This Section defines or reserves all possible MIDI Message formats in the UMP Format:

• Section 4.1 MIDI 1.0 Channel Voice Messages
• Section 4.2 MIDI 2.0 Channel Voice Messages
• Section 4.3 System Common and System Real Time Messages
• Section 4.4 System Exclusive (7-Bit) Messages
• Section 4.5 System Exclusive 8 (8-Bit) Messages
• Section 4.6 Mixed Data Set Message
• Section 4.8 Utility Messages

See also:
• Appendix F All Defined UMP Formats
• Appendix G All Defined Messages

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 22 Feb. 20, 2020

4.1 MIDI 1.0 Channel Voice Messages
In UMP, the MIDI 1.0 Channel Voice Messages are all 32-bit messages containing the following data:

• 4 bits Message Type with value 0x2
• 4 bits Group
• 24 bits of MIDI 1.0 Channel Voice Message data:

• 8 bits Status that includes a 4-bit opcode and a 4-bit Channel number
• 16 bits index, data, and/or reserved space

Per Figure 6, for 3-byte MIDI 1.0 Channel Voice Messages, all three bytes are copied into bytes 2 through 4
of the UMP. This applies to the Note Off, Note On, Poly Pressure, Control Change, and Pitch Bend
messages.

Per Figure 7, for 2-byte MIDI 1.0 Channel Voice Messages, the two bytes are copied into bytes 2 and 3 of
the UMP, and byte 4 is filled with 0 bits. This applies to the Program Change and Channel Pressure
messages.

MIDI 1.0 Channel Voice Message
General Format
in UMP

groupmt=2

status & channel byte_2 byte_3

3-Byte MIDI 1.0 Channel Voice Message (per MIDI 1.0 Specification)

 status & channel byte_4byte_3

Figure 6 MIDI 1.0 3-Byte Channel Voice Message General Format

MIDI 1.0 Channel Voice Message
General Format
in UMP

groupmt=2

status & channel byte_2

2-Byte MIDI 1.0 Channel Voice Message (per MIDI 1.0 Specification)

 status & channel byte_4byte_3

00000000

Figure 7 MIDI 1.0 2-Byte Channel Voice Message General Format

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 23 Feb. 20, 2020

4.1.1 MIDI 1.0 Note Off Message
For fundamental functions of Note Off see the MIDI 1.0 Specification [MMA01].

Figure 8 MIDI 1.0 Note Off Message

4.1.2 MIDI 1.0 Note On Message
For fundamental functions of Note On see the MIDI 1.0 Specification [MMA01].

Figure 9 MIDI 1.0 Note On Message

4.1.3 MIDI 1.0 Poly Pressure Message
For fundamental functions of Poly Pressure (Polyphonic Aftertouch) see the MIDI 1.0 Specification
[MMA01].

Figure 10 MIDI 1.0 Poly Pressure Message

4.1.4 MIDI 1.0 Control Change Message
For fundamental functions of Control Change see the MIDI 1.0 Specification [MMA01].

Figure 11 MIDI 1.0 Control Change Message

4.1.5 MIDI 1.0 Program Change Message
For fundamental functions of Program Change see the MIDI 1.0 Specification [MMA01].

Figure 12 MIDI 1.0 Program Change Message

4.1.6 MIDI 1.0 Channel Pressure Message
For fundamental functions of Channel Pressure (Channel Aftertouch) see the MIDI 1.0 Specification
[MMA01].

Figure 13 MIDI 1.0 Channel Pressure Message

4.1.7 MIDI 1.0 Pitch Bend Message
For fundamental functions of Pitch Bend see the MIDI 1.0 Specification [MMA01].

Figure 14 MIDI 1.0 Pitch Bend Message

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 24 Feb. 20, 2020

4.2 MIDI 2.0 Channel Voice Messages
All MIDI 2.0 Channel Voice Messages are 64-bit messages containing the following fields:

• 4 bits Message Type with value 0x4
• 4 bits Group
• 8 bits Status that includes a 4-bit opcode and a 4-bit Channel number
• 16 bits Index
• 32 bits Data containing parameter/property value(s)

Figure 15 MIDI 2.0 Channel Voice Message General Format

Devices that use any of these MIDI 2.0 Channel Voice Messages from Message Type 0x4 in a Group shall
not use any of the MIDI 1.0 Channel Voice Messages from Message Type 0x2 within that same Group.

4.2.1 MIDI 2.0 Note Off Message
For fundamental functions of Note Off see the MIDI 1.0 Specification [MMA01].

The MIDI 2.0 Protocol expands the Note Off message with higher resolution Velocity, and the Attribute
Type and Attribute Data fields.

groupmt=4

velocity

attribute type1 0 0 0

attribute data

channel note numberr

Figure 16 MIDI 2.0 Note Off Message

For more information, see:
Section 4.2.2 MIDI 2.0 Note On Message
Section 4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data

4.2.2 MIDI 2.0 Note On Message
For fundamental functions of Note On see the MIDI 1.0 Specification [MMA01].

The MIDI 2.0 Protocol expands the Note On message with higher resolution Velocity, and the Attribute
Type and Attribute Data fields.

groupmt=4

velocity

attribute type1 0 0 1

attribute data

channel note numberr

Figure 17 MIDI 2.0 Note On Message

velocity

The allowable Velocity range for a MIDI 2.0 Note On message is 0x0000-0xFFFF. Unlike the MIDI
1.0 Note On message, a velocity value of zero does not function as a Note Off. When translating a
MIDI 2.0 Note On message to the MIDI 1.0 Protocol, if the translated MIDI 1.0 value of the
Velocity is zero, then the Translator shall replace the zero with a value of 1.

attribute (attribute type & attribute data)

For more information, see:
Section 4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data
Section 4.2.14 MIDI 2.0 Notes and Pitch

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 25 Feb. 20, 2020

4.2.3 MIDI 2.0 Poly Pressure Message
For fundamental functions of Poly Pressure (Polyphonic Aftertouch) see the MIDI 1.0 Specification
[MMA01].

The MIDI 2.0 Protocol expands the resolution of the Poly Pressure message from 7 bits to 32 bits.

Figure 18 MIDI 2.0 Poly Pressure Message

4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages
The MIDI 2.0 Protocol introduces these new messages with 256 Registered Per-Note Controllers and 256
Assignable Per-Note Controllers:

• The Registered Per-Note Controllers have specific functions defined by MMA/AMEI specifications.
Currently defined Registered Per-Note Controllers are listed in Appendix A MIDI 2.0 Registered Per-
Note Controllers.

Figure 19 MIDI 2.0 Registered Per-Note Controller Message

Note: Registered Per-Note Controller numbers that have no definition are Reserved and shall not be used
until they are defined by MMA/AMEI.

• The Assignable Per-Note Controllers have no pre-defined function, and are available for any device-
specific or application-specific function.

Figure 20 MIDI 2.0 Assignable Per-Note Controller Message

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 26 Feb. 20, 2020

4.2.5 MIDI 2.0 Per-Note Management Message
The MIDI 2.0 Protocol introduces a Per-Note Management message to enable independent control from Per-
Note Controllers to multiple Notes on the same Note Number.

Figure 21 MIDI 2.0 Per-Note Management Message

option flags

When bits are set high, specific functions of the Per-Note Management message are active:

D: Detach Per-Note Controllers from previously received Note(s)
S: Reset (Set) Per-Note Controllers to default values

When a device receives a Per-Note Management message with D = 1 (Detach), all currently playing
notes and previous notes on the referenced Note Number shall no longer respond to any Per-Note
controllers. Currently playing notes shall maintain the current values for all Per-Note controllers
until the end of the note life cycle.

When a device receives a Per-Note Management message with S = 1, all Per-Note controllers on the
referenced Note Number should be reset to their default values.

When a device receives a Per-Note Management message with D = 1 and S = 1, then the device
should first process the Detach function, and then perform the Reset function. As a result, currently
playing notes on the referenced Note Number maintain the current values for all Per-Note controllers
until the end of the note life cycle. The default value and any further changes to Per-Note Controllers
shall apply to future notes only.

A Per-Note Management Message with D=0 and S=0 has no defined function.

Note: The above defined responses to Per-Note Management messages apply by default to all Per-Note
Controllers. Future AMEI/MMA specifications might define other responses for specific Per-Note
Controllers. For example, a Profile might define different responses for particular Per-Note Controllers
used for specific applications.

See Appendix C Using MIDI 2.0 Per-Note Messages for implementation guidelines.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 27 Feb. 20, 2020

4.2.6 MIDI 2.0 Control Change Message
For fundamental functions of Control Change see the MIDI 1.0 Specification [MMA01].

The MIDI 2.0 Protocol expands the resolution of the Control Change message from 7 bits to 32 bits.

Figure 22 MIDI 2.0 Control Change Message

Note: The MIDI 1.0 Specification defines Control Change indexes 98, 99, 100, and 101 (0x62, 0x63,
0x64, and 0x65) to be used as compound sequences for Non-Registered Parameter Number and
Registered Parameter Number control messages. These set destinations for Control Change index 6/38
(0x06/0x26), Data Entry.The MIDI 2.0 Protocol replaces those compound sequences with unified
messages, see Section 4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller
(NRPN) Messages.

Note: The MIDI 1.0 Specification defines Control Change indexes 0 and 32 (0x00 and 0x20) to be used
as Bank Select associated with following Program Change messages. The MIDI 2.0 Protocol replaces
those compound sequences with unified messages, see Section 4.2.9 MIDI 2.0 Program Change
Message.

Implementation Recommendations

• Devices sending the MIDI 2.0 Protocol should not transmit Control Change messages with indexes of 6,
38, 98, 99, 100, or 101. Instead they should transmit the new Assignable Controller messages and
Registered Controller messages (see Section 4.2.7). These new messages are more friendly to send, to
receive, and to edit in a sequencer.

• Devices sending the MIDI 2.0 Protocol should not transmit Control Change messages with indexes of 0
and 32. Instead they should transmit the new MIDI 2.0 Program Change message (see Section 4.2.9).

• Devices receiving the MIDI 2.0 Protocol should ignore Control Change messages with indexes of 0, 6,
32, 38, 98, 99, 100, and 101.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 28 Feb. 20, 2020

4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages
The MIDI 2.0 protocol introduces 16,384 Registered Controllers and 16,384 Assignable Controllers.

• Registered Controllers have specific functions defined by MMA/AMEI specifications. Registered
Controllers map and translate directly to MIDI 1.0 Registered Parameter Numbers (RPN, see
Appendix D.2.3) and use the same definitions as MMA/AMEI approved RPN messages. Registered
Controllers are organized in 128 Banks (corresponds to RPN MSB), with 128 controllers per Bank
(corresponds to RPN LSB).

bankgroupmt=4

data

index0 0 1 0 r rchannel

(RPN MSB) (RPN LSB)

Figure 23 MIDI 2.0 Registered Controller Message

• Assignable Controllers have no specific function and are available for any device or application-specific
function. Assignable Controllers map and translate directly to MIDI 1.0 Non-Registered Parameter
Numbers (NRPN). Assignable Controllers are also organized in 128 Banks (corresponds to NRPN
MSB), with 128 controllers per Bank (corresponds to NRPN LSB).

bankgroupmt=4

data

index0 0 1 1 r rchannel

(NRPN MSB) (NRPN LSB)

Figure 24 MIDI 2.0 Assignable Controller Message

In the MIDI 1.0 Protocol, creating and editing RPNs and NRPNs requires the use of compound (multiple)
MIDI messages, which can be confusing for both developers and users. In the MIDI 2.0 Protocol, Registered
Controllers and Assignable Controllers replace those compound messages with a single, unified message,
making them much easier to use.

4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and Assignable Controller (NRPN)
Messages
Registered Controller Messages and Assignable Controller Messages (defined above in Section 4.2.7)
directly set the values of the destination properties. With the MIDI 2.0 Protocol’s Relative Registered
Controller and Relative Assignable Controller Messages, it is now also possible to make relative increases or
decreases to the current values of those same properties.

These new messages act upon the same address space as the MIDI 2.0 Protocol’s Registered Controllers and
MIDI 2.0 Assignable Controllers, and use the same controller Banks. However, these Relative controllers
cannot be translated to the MIDI 1.0 Protocol.

Figure 25 MIDI 2.0 Relative Registered Controller Message

Figure 26 MIDI 2.0 Relative Assignable Controller Message

data

The data field in the MIDI 2.0 Relative Registered Controller and Relative Assignable Controller
messages contains a Two’s Complement value, to provide negative and positive relative control of
the destination value.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 29 Feb. 20, 2020

4.2.9 MIDI 2.0 Program Change Message
For fundamental functions of Program Change and Bank Select see the MIDI 1.0 Specification [MMA01].

In the MIDI 2.0 Protocol, this message combines the MIDI 1.0 Protocol’s separate Program Change and
Bank Select messages into a single, unified message; by contrast, the MIDI 1.0 Protocol mechanism for
selecting Banks and Programs requires sending three MIDI separate 1.0 Messages. The MIDI 1.0 Protocol’s
existing 16,384 Banks, each with 128 Programs, are preserved and translate directly to the MIDI 2.0
Protocol.

Figure 27 MIDI 2.0 Program Change Message

The MIDI 2.0 Program Change message always selects a Program. The Bank Select operation is optional,
controlled by the Bank Valid bit (B):

• If the Sender sets the Bank Valid bit to 0, then the Receiver performs only the Program Change, without
selecting a new Bank (i.e., the Receiver keeps its currently selected Bank). In this case, the Sender shall
also fill the Bank MSB and Bank LSB fields with zeroes.

• If the Sender sets the Bank Valid bit to 1, then the Receiver performs first the Bank Select operation and
then the Program Change operation.

• Other option flags not defined in this specification are Reserved, and shall be set to zero.

4.2.10 MIDI 2.0 Channel Pressure Message
For fundamental functions of Channel Pressure (Channel Aftertouch) see the MIDI 1.0 Specification
[MMA01].

The MIDI 2.0 Protocol expands the resolution of the Channel Pressure message from 7 bits to 32 bits.

Figure 28 MIDI 2.0 Channel Pressure Message

4.2.11 MIDI 2.0 Pitch Bend Message
For fundamental functions of Pitch Bend see the MIDI 1.0 Specification [MMA01].

The MIDI 2.0 Protocol expands the resolution of the Pitch Bend message from 14 bits to 32 bits. The data
field is an unsigned bipolar value, centered at 0x80000000.

Figure 29 MIDI 2.0 Pitch Bend Message

4.2.12 MIDI 2.0 Per-Note Pitch Bend Message
The MIDI 2.0 Per-Note Pitch Bend message acts like Pitch Bend in every way, except that it applies to
individual Note Numbers. The data field is an unsigned bipolar value, centered at 0x80000000.

Figure 30 MIDI 2.0 Per-Note Pitch Bend Message

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 30 Feb. 20, 2020

4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data
Attribute Type and Attribute Data fields enable a MIDI 2.0 Protocol Note On or Note Off message to address
more properties than a MIDI 1.0 Protocol Note On or Note Off message. Those properties might be defined
as articulation information, pitch information, or any other performance data such as strike position on a
drum or cymbal.

The currently defined Attribute Types are:
Table 5 Defined Attribute Types for MIDI 2.0 Note On & Note Off

Attribute Type Definition Notes
0x00 No Attribute Data Sender shall set Attribute Value to 0x0000

Receiver shall ignore Attribute Value

0x01 Manufacturer Specific Interpretation of Attribute Data is determined by manufacturer

0x02 Profile Specific Interpretation of Attribute Data is determined by MIDI-CI Profile in use

0x03 Pitch 7.9 See Section 4.2.14.3

0x04 – 0xFF Reserved Do not use

Attribute Type 0x00: No Attribute Data

In a Note On/Off message with no attribute data, the Attribute Type shall be set to 0x00 and the Attribute
Data shall be set to 0x0000.

Attribute Type 0x01: Manufacturer Specific Data (and Unknown Data Type)

If a Sender transmits Attribute data that does not conform to any defined Attribute Types, then it should set
the Attribute Type to 0x01. If a Sender transmits Attribute data but the type of data is unknown, then it
should set the Attribute Type to 0x01.

Attribute Type 0x02: Profile Specific Data

A MIDI-CI Profile [MMA02] might optionally specify its own use for the Attribute Type and Attribute data
fields. When such a Profile is in use, the Sender shall set the Attribute Type field to 0x02, and the Sender and
Receiver shall behave as required by the Profile. This mechanism is intended for Profiles that might be less
commonly used and do not warrant the dedication of a whole MIDI 2.0 Attribute Type.

Note: Alternatively, a Profile might define another Attribute Type that is defined for more specific use by that one
Profile only.

The application of an Attribute Type value might be defined by MMA/AMEI in a MIDI-CI Profile
specification. For example, a drum Profile might define an Attribute Type as “Strike Position” with the
Attribute Data value declaring the position from center of drum/cymbal to outer edge. An orchestral string
Profile might define Attribute values to be used as Articulation choice such as Arco, Pizzicato, Spiccato,
Tremolo, etc. Such cases generally require assigning 1 of the 256 available Attribute Types for use by that
Profile. Some Profiles might be able to share some common Attribute types.

Attribute Type 0x03: Pitch 7.9

When using this Attribute Type, the Note Number should be treated as a Note Index only; it does not imply
any scale or pitch. Pitch is a Q7.9 fixed-point unsigned integer that specifies a pitch in semitones. See
Section 4.2.14.3 for implementation details, including interaction with other messages that influence or
determine pitch.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 31 Feb. 20, 2020

4.2.14 MIDI 2.0 Notes and Pitch
The MIDI 2.0 Protocol preserves all the tuning definitions of the MIDI 1.0 Protocol, including Note Number,
MIDI Tuning Standard, Master Tuning RPN 01 and RPN 02, and Pitch Bend. In addition, the MIDI 2.0
Protocol adds new mechanisms for Per-Note Tuning and Pitch control.

Pitch of a Note is determined by any combination of the following message components, some of which
override (take priority over) others:

• Messages that Set the Default Pitch as done in the MIDI 1.0 Protocol (pitch is only roughly defined):

• Note On with Note Number

• Messages that Set Pitch (override Default) with Persistent State for Subsequent Note Ons:

• MIDI Tuning Standard
• Registered Per-Note Controller #3: Pitch 7.25

• Messages that Set Pitch (override Default) for One Note Only:

• Note On With Attribute #3 Pitch 7.9

• Messages that Modify Pitch Relatively from Any Existing Pitch State:

• Master Tuning RPN 01 and RPN 02
• Per-Note Pitch Bend
• Pitch Bend

Note: There might be other messages, from among the currently reserved messages, or mechanisms defined by
MMA/AMEI in the future that also determine pitch. Such messages or mechanisms might be defined in future
revisions of the MIDI 2.0 Protocol, MIDI-CI Profile specifications, or Articulation Types, or other expansions of
MIDI.

Note: Receivers that select samples for playing a note based on Note Number might choose to instead select
samples based on the first 7 bits of the pitch data in the last valid Registered Per-Note Controller #3: Pitch 7.25 or
in the Note On With Attribute #3 Pitch 7.9.

4.2.14.1 MIDI Tuning Standard
The MIDI 1.0 Protocol and the MIDI 2.0 Protocol both support the existing MIDI Tuning Standard, which is
formatted as a System Exclusive message. For fundamental functions and details of MIDI Tuning Standard,
see the MIDI 1.0 Specification [MMA01].

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 32 Feb. 20, 2020

4.2.14.2 MIDI 2.0 Registered Per-Note Controller #3: Pitch 7.25
Registered Per-Note Controller #3 is defined as Pitch 7.25. The message’s 32-bit data field contains:

• 7 bits: Pitch in semitones, based on default Note Number equal temperament scale
• 25 bits: Fractional Pitch above Note Number (i.e., fraction of one semitone)

Pitch is a Q7.25 fixed-point unsigned integer that specifies a pitch in semitones. The integer part shall be
interpreted as if it were the pitch implied by the MIDI 1.0 Note Number as defined by the MIDI 1.0
Specification [MMA01] in a 12-tone equal tempered scale with A=440 (Note number 69 [0x45]). The
fractional part is a fraction of one semitone.

A Receiver that is capable of receiving Registered Per-Note Controller #3: Pitch 7.25 is free to interpret and
respond to any number of bits of tuning resolution that the Receiver can support. Support for all 25 bits of
fractional pitch resolution is not mandated. However, at least 9 bits should be supported (strongly
recommended).

Pitch Bend and Per-Note Pitch Bend act as offsets from the pitch set by Registered Per-Note Controller #3:
Pitch 7.25.

Important: The Pitch set by this Registered Per-Note Controller #3: Pitch 7.25 overrides the pitch set by
previous MIDI Tuning Standard (MTS) messages. Controllers create persistent state, so all notes that follow
this message use the tuning of the Registered Per-Note Controller #3: Pitch 7.25, unless they have other
tuning information in the Note On message.

Two Typical Uses of Registered Per-Note Controller #3: Pitch 7.25:
• Registered Per-Note Controller #3 (Pitch 7.25) modifies the pitch of an individual Note Number. A set of

these messages for multiple Note Numbers can be used to define a complete tuning table for any and all
128 Note Numbers.

• Registered Per-Note Controller #3 (Pitch 7.25) can also be used to control pitch in real time throughout
the life cycle of a note.

4.2.14.3 MIDI 2.0 Note On With Attribute #3 Pitch 7.9
Attribute Type #3 is defined as Pitch 7.9. The 16-bit Attribute Value field contains:

• 7 bits: Pitch in semitones, based on default Note Number equal temperament scale
• 9 bits: Fractional pitch above Note Number (i.e, fraction of one semitone)

When using this Attribute Type, the Note Number should be treated as a note index only; it does not imply
any scale or pitch. Attribute Pitch is a Q7.9 fixed-point unsigned integer that specifies a pitch in semitones.
The integer part shall be interpreted as if it were the pitch implied by the Note Number as defined by the
MIDI 1.0 Specification [MMA01] in a 12-tone equal tempered scale with A=440 (Note number 69 [0x45]).
The fractional part is a fraction of a semitone. That has a resolution of 1/512 semitones, which provides an
accuracy of approximately 0.2 cents.

Pitch Bend and Per-Note Pitch Bend act as offsets from the Attribute #3: Pitch 7.9.

Important: The Pitch set by this Attribute Pitch #3: 7.9 overrides the pitch previously set or implied by other
mechanisms such as Registered Per-Note Controller #3: Pitch 7.25 and the MIDI Tuning Standard (MTS).
This override is valid only for the one Note containing the Attribute #3: Pitch 7.9; it is not valid for any
subsequent Notes.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 33 Feb. 20, 2020

4.3 System Common and System Real Time Messages
System Common and System Real Time messages contain the same data as the message definitions in the
MIDI 1.0 Specification [MMA01].

System Messages in the MIDI 1.0 Protocol are 1, 2, or 3 bytes long. The same messages in the UMP Format
are formatted to fit in a single 32-bit UMP.

Messages shorter than 3 bytes in the MIDI 1.0 Protocol have unused bytes in the UMP. These unused bytes
are Reserved, shall be set to zero, and shall not be used because they might be defined by MMA/AMEI in
future revisions of the UMP or MIDI protocols.

System Exclusive Messages are a unique type of System Message, and are specified in Section 4.4. Status
values 0xF0 and 0xF7, which in Non-UMP MIDI 1.0 Systems are used with System Exclusive messages, are
not used for UMP System Exclusive; instead, they are reserved.

Figure 31 System Message General Format

Table 6 indicates which System Common and System Real Time Messages use this UMP Format.
Table 6 Messages that use System Message General Format

Message Status MIDI 1.0 Byte 2 and 3 or Reserved

Reserved 0xF0 Reserved Reserved

MIDI Time Code 0xF1 0nnndddd Reserved

Song Position Pointer 0xF2 0lllllll* 0mmmmmmm*

Song Select 0xF3 0sssssss Reserved

Reserved 0xF4 Reserved Reserved

Reserved 0xF5 Reserved Reserved

Tune Request 0xF6 Reserved Reserved

Reserved 0xF7 Reserved Reserved

Timing Clock 0xF8 Reserved Reserved

Reserved 0xF9 Reserved Reserved

Start 0xFA Reserved Reserved

Continue 0xFB Reserved Reserved

Stop 0xFC Reserved Reserved

Reserved 0xFD Reserved Reserved

Active Sensing 0xFE Reserved Reserved

Reset 0xFF Reserved Reserved

* Note: Song Position Pointer data is presented with LSB before MSB, as in the MIDI 1.0 Protocol.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 34 Feb. 20, 2020

4.4 System Exclusive (7-Bit) Messages
UMP System Exclusive messages carry the same data payload as MIDI 1.0 Protocol System Exclusive
messages, and can be translated directly to and from MIDI 1.0 Protocol System Exclusive Messages.

The MIDI 1.0 Protocol bracketing method with 0xF0 Start and 0xF7 End Status bytes is not used in the UMP
Format. Instead, the SysEx payload is carried in one or more 64-bit UMPs, discarding the 0xF0 and 0xF7
bytes. The standard ID Number (Manufacturer ID, Special ID 0x7D, or Universal System Exclusive ID),
Device ID, and Sub-ID#1 & Sub-ID#2 (if applicable) are included in the initial data bytes, just as they are in
MIDI 1.0 Protocol message equivalents.

System Exclusive Messages use Message Type 0x3.

Figure 32 System Exclusive (7-Bit) Message Format

status

The 4-bit Status field determines the role of each UMP in a System Exclusive message:
Table 7 Status Field Values for System Exclusive (7-Bit) Messages

Status Field Value UMP Type
0x0 Complete System Exclusive Message in one UMP

0x1 System Exclusive Start UMP

0x2
System Exclusive Continue UMP
There might be multiple Continue UMPs in a single
message.

0x3 System Exclusive End UMP

A short System Exclusive message might fit into one UMP. Other System Exclusive messages might
span multiple UMPs.

Every System Exclusive Message shall be in one of two formats:

1. A Complete System Exclusive Message in one UMP

 Or

2. Begin with a System Exclusive Start UMP and terminate with a System Exclusive End UMP.
Optional System Exclusive Continue UMPs may be used between the Start and End UMPs to
provide sufficient payload space for any data set.

of bytes

This declares the number of valid data bytes in each UMP, starting with the byte after the # of bytes
field through to the end of the 64-bit UMP (i.e., 0 to 6 bytes).

Any unused bytes in the UMP are reserved, and shall be set to zero.

Note: Each System Exclusive UMP may contain fewer than 6 bytes of data. A Start or Continue with
fewer than 6 bytes does not signify a message end.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 35 Feb. 20, 2020

4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPs
A significant feature of UMP System Exclusive Messages is direct compatibility with MIDI 1.0 Protocol
System Exclusive Messages in all MIDI protocols and all MIDI systems.

To preserve robust connection to all MIDI devices and systems, Senders shall obey the following data rules
of the MIDI 1.0 Protocol that govern interspersing other messages and termination of System Exclusive
within a Group:

• The Sender shall not send any other Message or UMP between the Start and End of the System
Exclusive Message, except for System Exclusive Continue UMPs and System Real Time Messages.

• System Real Time Messages and JR Clock Messages may be inserted between the UMPs of a System
Exclusive message, in order to maintain timing synchronization.

• If any Message or UMP other than a System Real Time Message is sent after a System Exclusive Start
UMP and before the associated System Exclusive End UMP, then that UMP shall terminate the System
Exclusive Message.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 36 Feb. 20, 2020

4.5 System Exclusive 8 (8-Bit) Messages
System Exclusive 8 messages have many similarities to the MIDI 1.0 Protocol’s original System Exclusive
messages, but with the added advantage of allowing all 8 bits of each data byte to be used. By contrast, MIDI
1.0 Protocol System Exclusive requires a 0 in the high bit of every data byte, leaving only 7 bits to carry
actual data. A System Exclusive 8 Message is carried in one or more 128-bit UMPs with Message Type 0x5.

Note: System Exclusive 8 Messages cannot be translated to Non-UMP MIDI 1.0 Systems. Many MIDI
applications will continue to use traditional System Exclusive (7-bit) Messages (Section 4.4) for
compatibility across a wide range of MIDI devices. System Exclusive 8 is suitable for applications that only
apply to devices that use the UMP Format.

The initial data bytes found in MIDI 1.0 Protocol System Exclusive messages are included in the bytes
directly following the Stream ID in System Exclusive 8. These bytes are Manufacturer ID (including
Special ID 0x7D, or Universal System Exclusive IDs), Device ID, and Sub-ID#1 & Sub-ID#2 (if
applicable).

Manufacturer ID numbers, which are 7-bit and 21-bit values in the MIDI 1.0 Protocol, are encoded in a 16-
bit identifier (MfrID, see Section 4.7) for System Exclusive 8 messages.

Figure 33 System Exclusive 8 (8-Bit) Message Format

status

The 4-bit Status field determines the role of each UMP in a System Exclusive 8 message:
Table 8 Status Field Values for System Exclusive 8 (8-Bit) Messages

Status Field Value UMP Type
0x0 Complete System Exclusive 8 Message in one UMP

0x1 System Exclusive 8 Start UMP

0x2 System Exclusive 8 Continue UMP
There might be multiple Continue UMPs in a single message.

0x3 System Exclusive 8 End UMP

A short System Exclusive 8 message might fit into one UMP. Other System Exclusive 8 messages
span multiple UMPs.

Every System Exclusive 8 Message shall be in one of two formats:

1. A Complete System Exclusive 8 Message in one UMP

 Or

2. Begin with a System Exclusive 8 Start UMP, and terminate with a System Exclusive 8 End
UMP. Optional System Exclusive 8 Continue UMP may be used between Start and End UMPs
to provide sufficient payload space for any data set.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 37 Feb. 20, 2020

of bytes

This 4-bit field declares the number of valid data bytes in each UMP, starting from and including the
Stream ID through to the end of the 128-bit UMP (i.e., 1 to 14 bytes). Stream ID is mandatory (1
byte), so a value of 0x0 is not valid in the # of bytes field.

Unused bytes in the UMP are reserved, and shall be set to zero.

Note: Each System Exclusive 8 UMP may contain fewer than 14 bytes of data. A Start or Continue with
fewer than 14 bytes does not signify a message end.

stream id

Interleaving of multiple simultaneous System Exclusive 8 messages is enabled by use of an 8-bit
Stream ID field.

• A device which supports only one stream shall use 0 as the Stream ID.
• If a Sender wants to use more than one simultaneous stream, then the Sender shall first perform a

MIDI-CI Property Exchange inquiry to determine how many simultaneous Stream IDs are
supported by the Receiver (N). If either the Sender or the Receiver does not support Property
Exchange to discover the Receiver’s support for more than one simultaneous Stream, then the
Sender shall not send more than one simultaneous stream.

• For devices that support multiple streams, only Stream IDs from 0 to (N-1) shall be used.
• Stream IDs allow for simple mergers to be created. Streams from multiple sources can be

merged, with the Merger device reassigning Stream IDs as necessary. Before a merger sends
simultaneous System Exclusive 8 messages merged from various sources, it shall first perform a
MIDI-CI Property Exchange inquiry to determine how many simultaneous Stream IDs are
supported by the Receiver (N).

4.5.1 Unexpected End of Data
If the Sender runs out of payload data before sending a System Exclusive 8 End UMP, then the Sender shall
send a System Exclusive 8 End UMP with all data bytes set to zero, and the # of bytes field set to either of
the two following values:

• 0x1 if the Sender knows that the previous data in the SysEx8 message is valid.
• 0xF if the previous data is an incomplete message, or if the resulting quality of previous data is

unknown.

Note: Since System Exclusive 8 Messages cannot be translated to Non-UMP MIDI 1.0 Systems, there are no
prohibitions against interspersing other message UMPs, as there are with the 7-bit System Exclusive Messages
(see Section 4.4.1).

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 38 Feb. 20, 2020

4.6 Mixed Data Set Message
Mixed Data Set messages can carry any data payload, without the 7-bit restriction of the MIDI 1.0 Protocol.
This mechanism is targeted primarily for use with large data sets, including non-MIDI data.

Note: Small data sets should continue to use System Exclusive (7-Bit) Messages (Section 4.4) for
compatibility across a wide range of MIDI devices, or use System Exclusive 8 (8-Bit) Messages
(Section 4.5) for applications that only apply to devices that use the UMP Format.

Note: Mixed Data Set Messages cannot be translated to non-UMP MIDI 1.0 Systems. As a result, Mixed
Data Set Messages are only suitable for applications that use the UMP Format.

The Mixed Data Set can carry non-MIDI data payloads such as XML or device firmware updates. The
format of the data payload itself is not defined by this document, only the header and payload UMP Formats
are defined.

Mixed Data Set messages can carry industry-standardized payloads using Universal System Exclusive IDs
defined by MMA/AMEI in the header. Devices can use Mixed Data Set messages to carry any proprietary
data using the device manufacturer’s own Manufacturer ID.

Data is sent in 128-bit UMPs. Multiple 128-bit UMPs make up one Mixed Data Set Chunk. Each Mixed Data
Set Chunk has one Mixed Data Set Header UMP, followed by multiple Mixed Data Set Payload UMPs.
Multiple Mixed Data Set Chunks make up the total Mixed Data Set.

Mixed Data Set Messages use Message Type 0x5.

Chunk
Payload

~~ ~~

Mixed
Data Set
Message

Chunk

 first data payload UMP

group mt=5 mds id

 last data payload UMP

group mt=5 mds id

mds id

number of chunks in mixed data set

group mt=5

number of this chunk

manufacturer id

sub id #2sub id #1

device id
Header

status=8

status=9

status=9

additional data payload UMPs as needed

number of valid bytes in this chunk

Figure 34 Mixed Data Set Chunk Format

Note: The total Mixed Data Set Message may require multiple Chunks.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 39 Feb. 20, 2020

mt Message Type

0x5: Data Messages
group

Group
status

0x8: Mixed Data Set Header
0x9: Mixed Data Set Payload

mds id:

Each Mixed Data Set Message is assigned an MDS ID, included in every Chunk to clearly tie
multiple parts together. This also differentiates between up to 16 simultaneous Mixed Data Set
messages within one Group.

number of valid bytes in this message chunk

This field contains the size of this Mixed Data Set Message Chunk in bytes including the header. The
number of Message Payload UMPs in this Chunk is calculated as required to deliver the full Number
of Valid Bytes in This Message Chunk field.

If Number of Valid Bytes in This Message Chunk is not an integer multiple of 16, then the Sender
shall use pad bytes at the end of the last data payload to fill out the UMP. The pad bytes are set to
zero and are reserved.

number of chunks in mixed data set

This declares the number of Chunks expected in the data set. The Sender shall set this value to zero
if the number of chunks is unknown (e.g. for streaming data). However, when the number of chunks
is unknown, the final Chunk shall declare a new value for Number of Chunks in Mixed Data Set
which matches the Chunk count value declared in the Number of This Chunk field.

number of this chunk

The Sender shall assign each Chunk of the message an incrementing Chunk count number, starting
from 1.

The end of the messages is reached when (Number of this Chunk = Number of Chunks in Mixed
Data Set).

See Section 4.6.1 for exception cases for the ending of a Mixed Data Set.
manufacturer id

This field contains Manufacturer ID. The ID is encoded in a 16-bit ID (MfrID) per Section 4.7.
device id

If the Manufacturer ID field contains a Universal System Exclusive ID, then this Device ID field is
intended to indicate which device in the system is supposed to respond.

The device ID 0xFFFF, sometimes referred to as the ‘all call’ Device ID, is equivalent to the 0x7F
value in the MIDI 1.0 Protocol and is used to indicate that all devices should respond. For more
details, see Device ID in the MIDI 1.0 Specification [MMA01].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 40 Feb. 20, 2020

sub id #1

If the Manufacturer ID field contains a Universal System Exclusive ID, then other MMA/AMEI
specifications related to that Universal System Exclusive ID define the Sub ID #1 field. For more
details, see Sub ID #1 in the MIDI 1.0 Specification [MMA01].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

sub id #2

If the Manufacturer ID field contains a Universal System Exclusive ID, other MMA/AMEI
specifications related to that Universal System Exclusive ID define the Sub ID #2 field. For more
details, see Sub ID #2 in the MIDI 1.0 Specification [MMA01].

If the Manufacturer ID is manufacturer specific, then the manufacturer may define the use of this
field.

4.6.1 End of Mixed Data Set
Under normal circumstances the Mixed Data Set ends and the current MDS ID is closed when (Number of
this Chunk = Number of Chunks in Mixed Data Set).

If Sender runs out of data or is otherwise unable to complete a data set before reaching the expected end of
the Mixed Data Set, then the Sender shall terminate the data set and close the MDS ID in either of the
following two ways:

• If the Sender knows that the data in this Mixed Data Set Message Chunk is valid, then this final Chunk
shall declare a new value for the Number of Mixed Data Set Message Chunks in Mixed Data Set
which matches the Number of this Chunk.

• If the Sender does NOT know that the data already sent in this Mixed Data Set Message is valid, then for
this final Chunk it shall set the Number of this Chunk field to Zero.

If the Sender runs out of payload data before sending a final Mixed Data Set Message Chunk as above, then
the Sender should send one more Mixed Data Set Message Chunk with Number of Bytes in This Message
Chunk set to 16 (header bytes only) and set the Number of Chunks in Mixed Data Set and Number of
this Chunk fields as defined above.

Note: Mixed Data Set Messages cannot be translated to Non-UMP MIDI 1.0 Systems. Therefore, there are no
prohibitions against interspersing other message UMPs, as there are with the 7-bit System Exclusive Messages
described in Section 4.4.1.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 41 Feb. 20, 2020

4.7 16-Bit Manufacturer IDs
The Manufacturer ID used in System Exclusive 8 and Mixed Data Set messages encodes the 7-bit and 21-bit
Manufacturer IDs and Universal System Exclusive IDs from the MIDI 1.0 Protocol into a 16-bit ID (MfrID).
MMA/AMEI might define other messages in the future which also use this format.

Figure 35 Manufacturer ID Translations

7-Bit (1-byte) Manufacturer IDs

All MIDI 1.0 style 7-bit Manufacturer IDs are expanded to 16 bits, with the highest byte set to 0x00 followed
by the lowest byte set to same value as in the MIDI 1.0 format.

21-Bit (3-byte) Manufacturer IDs

All MIDI 1.0 style 21-bit Manufacturer IDs have their highest byte set to 0x00. This first byte 0x00 is
replaced by the most significant bit set high in the lowest byte of the new format. The 7-bit values from byte
2 and byte 3 of the 21-bit Manufacturer ID are copied into the highest and lowest byte of the new format,
respectively.

Special IDs

Special ID values are encoded into the 16-bit format following the format as shown above for all other 7-bit
Manufacturer IDs:

Table 9 16-Bit Values for 7-Bit Special IDs
Special ID 7-Bit Value 16-Bit Value

Non-Commercial / Research
No Public Release 0x7D 0x007D

Universal System Exclusive Non-Real Time 0x7E 0x007E

Universal System Exclusive Real Time 0x7F 0x007F

Reserved 0x00 0x0000

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 42 Feb. 20, 2020

Example Conversion Code

• Convert MIDI 1.0 Protocol 3-byte Sys Ex ID (MFID_1, MFID_2, MFID_3) to MIDI 2.0 Protocol
16-bit format (MfrID)

 if (MFID_1 == 0x00)

 // 3-Byte format: use Bytes 2 & 3, and set high bit

 MfrID = 0x8000 | (MFID_2 << 8) | MFID_3;

 else

 // 1-Byte format: use Byte 1 only
 MfrID = MFID_1;

• Convert MIDI 2.0 Protocol 16-bit MfrID to three MIDI 1.0 Protocol Sys Ex ID bytes (MFID_1,
MFID_2, MFID_3)

 if ((MfrID & 0x8000) == 0) {
 // 1-Byte format

 MFID_1 = (MfrID & 0x007F);
 MFID_2 = 0;
 MFID_3 = 0;
 } else {
 // 3-Byte format

 MFID_1 = 0;
 MFID_2 = ((MfrID & 0x7F00) >> 8;

 MFID_3 = (MfrID & 0x007F);
 }

Table 10 MIDI 2.0 MfrID Conversions of Example Existing Manufacturer IDs

Manufacturer
MIDI 1.0 1- or 3-Byte ID

mfid_32
MIDI 2.0 16-bit MfrID

MFID_1 MFID_2 MFID_3 MfrID MfrID_hi MfrID_lo
Moog 0x04 – – 0x00040000 0x0004 0x00 0x04

Midi 9 0x09 – – 0x00090000 0x0009 0x00 0x09

Yamaha 0x43 – – 0x00430000 0x0043 0x00 0x43

Mark of the Unicorn 0x00 0x00 0x3b 0x0000003b 0x803b 0x80 0x3b

imitone 0x00 0x02 0x13 0x00000213 0x8213 0x80 0x3b

Sensel Inc 0x00 0x02 0x1d 0x0000021d 0x821d 0x82 0x1d

Samick 0x00 0x20 0x25 0x00002025 0xa025 0xa0 0x25

Native Instruments 0x00 0x21 0x09 0x00002109 0xa109 0xa1 0x09

Bome Software 0x00 0x21 0x32 0x00002132 0xa132 0xa1 0x32

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 43 Feb. 20, 2020

4.8 Utility Messages
The UMP Format provides a set of Utility Messages. Utility Messages include but are not limited to NOOP
and timestamps, and might in the future include UMP transport-related functions.

Figure 36 Utility Message General Format

4.8.1 NOOP
A NOOP (no operation) message is provided in the Utility Messages Message Type, using opcode zero.

Figure 37 NOOP Message Format

4.8.2 Basic Timestamp Format
Timestamp messages in Message Type 0 can be either stand-alone messages, or prepended to any non-
Timestamp Message. When the Timestamp is prepended to another message, the Timestamp message is sent
in a separate UMP which is prepended to another UMP.

The Status field describes the application of the message and the contents, semantics, and application of the
Timestamp Data field, whether stand alone or prepended to another message.

 status indexgroupmt = 0x4

data

Example 2: Timestamped MIDI 2.0 Channel Voice Message (uses 2 UMPs)

timestamp_datagroupmt = 0x0

Example 3: Timestamped System Message (uses 2 UMPs)

 status datamt = 0x1

 status

Example 1: Timestamps Stand Alone Clock Message

group

timestamp_datagroupmt = 0x0 status

timestamp_datagroupmt = 0x0 status

Timestamp (32-Bit UMP):

MIDI 2.0 CV Message
(64-Bit UMP)

96-Bit Timestamped
Message

64-Bit Timestamped
Message

Timestamp (32-Bit UMP):

System Message (32-Bit UMP):

Figure 38 Timestamp Format Examples

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 44 Feb. 20, 2020

4.8.3 Jitter Reduction (JR) Timestamps (and JR Clock)

Timestamps with Status Set to 0x1 and 0x2

This mechanism defines simple clock synchronization for jitter reduction:

• Sender sends clock messages from time to time so that the Receiver knows the current Sender’s time
• Clock messages allow the Receiver to estimate the maximum jitter, and to continuously adapt to drift
• Sender can precisely specify the timestamp for every non-timestamp message: the render time (in

Sender’s time) of the following message(s)
• This is a simple, peer to peer mechanism, not a system-wide synchronization

Goals of JR Timestamps:

1. Capture a performance with accurate timing

2. Transmit MIDI Messages with accurate timing over a system that is subject to jitter

3. Does not depend on system-wide synchronization, master clock, or explicit clock synchronization
between Sender and Receiver.

Note: There are two different sources of error for timing: Jitter (precision) and Latency (sync). The Jitter Reduction
Timestamp mechanism only addresses the errors introduced by jitter. The problem of synchronization or time
alignment across multiple devices in a system requires a measurement of latency. This is a complex problem and
is not addressed by the JR Timestamping mechanism.

4.8.4 MIDI-CI Protocol Negotiation and JR Timestamps
MIDI-CI Protocol Negotiation allows devices to agree to use a MIDI Protocol without JR Timestamps, or a
MIDI Protocol with JR Timestamps. Using the MIDI-CI Protocol Negotiation mechanism, JR Timestamps
are only used when both devices indicate support for JR Timestamps.

MIDI-CI Protocol Negotiation determines the choice of protocol and use of JR Timestamps in both
directions between two devices. If JR Timestamps are being used between two devices, they shall be used
bidirectionally.

If devices agree to use JR Timestamps, then the devices shall continue to use JR Timestamps with every
message exchanged in both directions until a new MIDI-CI Protocol Negotiation is performed. If devices
agree to use a MIDI Protocol without JR Timestamps, then neither device shall send JR Timestamps.

Each Group has its own JR Timestamp time domain, based on the time of the Sender using that Group. JR
Timestamps are in the time domain of the Sender. While this is implementation specific, it is likely that a
Sender will use a single, common source clock when sending to multiple Groups, so JR Timestamps would
all be within the same time domain. If a Receiver cannot handle multiple JR Timestamps time domains, from
multiple Senders on multiple Groups, then it should negotiate to use the protocol with JR Timestamps on
only one Group.

If a device supports JR Timestamps, then it shall also support operation without them.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 45 Feb. 20, 2020

4.8.5 JR Clock Message Format

Figure 39 JR Clock Message Format

status

0x1, JR Clock
reserved

Reserved for future definition by MMA/AMEI. It shall be set to zero by the Sender, and ignored by
the Receiver.

sender clock time

A 16-bit time value in clock ticks of 1/31250 of one second (32 µsec, clock frequency of 1 MHz /
32).

The time value is expected to wrap around every 2.09712 seconds.

To avoid ambiguity of the 2.09712 seconds wrap, and to provide sufficient JR Clock messages for
the Receiver, the Sender shall send a JR Clock message at least once every 250 milliseconds.

4.8.6 JR Timestamp Message Format

Figure 40 JR Timestamp Message Format

status

0x2, JR Timestamp
reserved

Reserved for future definition by the MMA/AMEI. It shall be set to zero by the Sender, and ignored
by the Receiver.

sender clock timestamp

A 16-bit time value in clock ticks of 1/31250 of one second (32 µsec, clock frequency of 1 MHz /
32).

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 46 Feb. 20, 2020

4.8.7 JR Clock Mechanism
The JR Clock message defines the current time of the Sender. The Sender shall send the JR Clock message
as close as possible to the time stated in the Time field. The Sender sends independent JR Clock messages,
not related to any other message. JR Clock time is monotonically increasing except when it wraps around.

The Sender shall send a JR Clock message at least once every 250 milliseconds. The JR Clock messages will
be received with the same jitter as other messages, so the Receiver uses JR Clock messages to discover the
jitter characteristics of the connection. The Receiver may use smoothing or averaging of time from each JR
Clock message compared to reception time of the JR Clock message UMP to determine a steady JR Clock to
render against. Then, the Receiver can also determine a suitable delay, based on the discovered jitter, that
shall then be applied to effectively render messages with increased timing accuracy.

A Sender may send additional JR Clock messages with a shorter period to help the Receiver analyze the jitter
and calculate the current time. Because the Sender is not mandated to send messages at an exact period (only
“at least once every 250 ms” is required), the Receiver should not draw any conclusions from the interval
between JR Clock messages.

There is no requirement that Senders or Receivers support the full resolution (of 1/31250 ticks per second
accuracy).

4.8.8 JR Timestamp Mechanism
The JR Timestamp message defines the time of the following message(s). It is a complete message. It is not a
part of another message. The timing of every non-JR Timestamp message is set by the most recent preceding
JR Timestamp.

A JR Timestamp shall be sent before every non-JR Timestamp message, except in the case of simultaneous
messages. If two or more messages are intended to be rendered simultaneously then they can be preceded by
a single JR Timestamp. “Simultaneous” in this case is defined as being within the JR Timestamp tick
(1/31250 seconds). If a message does not have its own, immediately preceding JR Timestamp, the last
received JR Timestamp applies to the message.

JR Timestamps are specified in the Sender’s clock domain as communicated via JR Clock Messages. For
real-time scheduling, the Receiver should convert the time for each message from the Sender's clock domain
to the Receiver's clock domain. The Receiver shall render events at the time referenced against the time of
the JR Clock Mechanism described above.

Sender: JR Timestamped messages shall be sent in the order in which they are intended to be rendered.

Receiver: JR Timestamped messages shall be rendered in the order in which they are received.

There is no requirement that Senders or Receivers support the full resolution (of 1/31250 ticks per second
accuracy).

Receiver Handling of Error Cases

• If a Receiver has not yet received any JR Clock messages but receives other messages, whether with JR
Timestamps or not, the Receiver shall render those messages as soon as possible.

• If a Receiver that does not support JR Timestamps receives a JR Timestamp message, it should render
the message as soon as possible and initiate a MIDI-CI Protocol Negotiation to switch the Sender to a
protocol without JR Timestamps.

4.8.9 JR Timestamps and JR Clock Recommended Practice
When a Sender first starts sending JR Clock messages, it could send many of them for a few seconds to help
the Receiver measure the jitter on the system.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 47 Feb. 20, 2020

4.8.10 Translation to/from the MIDI 1.0 Protocol
This specification does not require all Translators to support JR Timestamps. If a Translator supports JR
Timestamps the Translator relies on MIDI-CI Protocol Negotiation to determine whether to use JR
Timestamps on each connection.

JR Clock and JR Timestamps cannot be translated to Non-UMP MIDI 1.0 Systems, but they can be used by a
Translator to improve timing. When translating from a connection with JR Timestamps to a connection that
does not support JR Timestamps, the Translator shall schedule the MIDI 1.0 Protocol messages according to
the received JR Timestamps. When translating from a connection that does not support JR Timestamps to a
connection with JR Timestamps, the Translator may generate JR Timestamps based on the time of reception.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 48 Feb. 20, 2020

Appendix A MIDI 2.0 Registered Per-Note Controllers
The following table lists the MIDI 2.0 Registered Per-Note Controller numbers whose application/function
has been defined.

Table 11 MIDI 2.0 Registered Per-Note Controllers

RPNC
Number Registered Per-Note Controller Name Default Reference

1 Modulation – –

2 Breath – –

3 Pitch 7.25 – Section 4.2.14.2

4–6 Reserved – –

7 Volume – –

8 Balance – –

9 Reserved – –

10 Pan – –

11 Expression – –

12–69 Reserved – –

70 Sound Controller 1 Sound Variation –

71 Sound Controller 2 Timbre/Harmonic
Intensity

–

72 Sound Controller 3 Release Time –

73 Sound Controller 4 Attack Time –

74 Sound Controller 5 Brightness –

75 Sound Controller 6 Decay Time MMA RP-021
[MMA04]

76 Sound Controller 7 Vibrato Rate

77 Sound Controller 8 Vibrato Depth

78 Sound Controller 9 Vibrato Delay

79 Sound Controller 10 Undefined

80–90 Reserved – –

91 Effects 1 Depth Reverb Send Level MMA RP-023
[MMA05]

92 Effects 2 Depth (formerly Tremolo Depth) – –

93 Effects 3 Depth Chorus Send Level MMA RP-023
[MMA05]

94 Effects 4 Depth (formerly Celeste [Detune] Depth) – –

95 Effects 5 Depth (formerly Phaser Depth) – –

96 and
above Reserved – –

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 49 Feb. 20, 2020

Appendix B Special Control Change Messages

B.1 Channel Mode Messages: Applicable Channels
MIDI has eight Channel Mode Messages. These are special purpose Control Change messages.

• CC#120 All Sound Off
• CC#121 Reset All Controllers
• CC#122 Local Control
• CC#123 All Notes Off
• CC#124 Omni Off
• CC#125 Omni On
• CC#126 Mono On (Poly Off)
• CC#127 Poly On (Omni Off)

The UMP Format preserves the fundamental definition of these messages, with added clarifications for
implementation as follows below.

The MIDI 1.0 Specification [MMA01] states: “These messages are recognized only when sent on the Basic
Channel to which a Receiver is assigned, regardless of the current mode.”

In UMP implementations, Channel Mode messages are defined the same as in the MIDI 1.0 Specification
[MMA01] within a single Group. Functionality of Mode Messages received in one Group does not apply to
Channels in any other Group in the device.

B.2 Reset All Controllers
The MIDI 2.0 Protocol has newly defined controller types. The function of the Reset All Controllers message
remains as defined by the MIDI 1.0 Specification [MMA01].

The following new Per-Note controllers are NOT reset by the Reset All Controllers message:

• MIDI 2.0 Registered Per-Note Controllers
• MIDI 2.0 Assignable Per-Note Controllers
• MIDI 2.0 Per-Note Pitch Bend

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 50 Feb. 20, 2020

Appendix C Using MIDI 2.0 Per-Note Messages
The Per-Note Messages of the MIDI 2.0 Protocol (Poly Aftertouch, MIDI 2.0 Per-Note Registered
Controllers, MIDI 2.0 Per-Note Assignable Controllers, and MIDI 2.0 Per-Note Pitch Bend) bring expanded
expression beyond the MIDI 1.0 Protocol. But the assumed statefulness of MIDI controllers, now at the Per-
Note level, brings some new challenges. Per-Note Controllers are shared between all notes that share the
same Note Number.

This appendix examines in depth three implementation options for Per-Note Controllers:

• Shared Per-Note Controllers: Useful for some traditional MIDI instruments, used in a manner similar
to Poly Pressure in the MIDI 1.0 Protocol.

• With Per-Note Management Message: Enables increased Per-Note expression capability.
• Fully Independent Control with Note Number Rotation mechanism, Per-Note Pitch mechanisms, and

Per-Note Management message: Useful for multitouch devices that allow multiple simultaneous notes on
the same pitch.

C.1 Shared Per-Note Controllers
For the simplest implementation of Per-Note Controllers, notes of the same Note Number share Per-Note
Controllers. Figure 41 shows a typical example where the trailing envelope of Note A shares the Per-note
Controllers that are also controlling Note B.

Figure 41 Two Notes of Same Note Number Share Per-Note Controllers

Per-Note Controller sharing is not problematic on some devices with traditional musical performance
interfaces. This implementation has always been true for the MIDI 1.0 Protocol with Polyphonic Pressure.
With Polyphonic Pressure on a synthesizer keyboard, it is assumed that when you stop playing a note,
Pressure value has returned to a value of zero.

However, this can be a limitation for some instruments which allow multitouch and separate expression on
more than one simultaneously sounding note on the same Note Number. Sequencing/editing in software
might also suffer from problems when notes overlap.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 51 Feb. 20, 2020

C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to
Reallocate Per-Note Expression

To enable separate control of notes on the same Note Number, the Sender inserts a Per-Note Management
message with Detach bit set before any new Note On message (see Figure 42). The Receiver uses the Per-
Note Management message to detach Per-Note Controllers from any current sounding Notes of the target
Note Number and reset the assignment to the next following Note of the same Note Number.

Figure 42 Only the Note After the Per-Note Management Message has Per-Note Control

Following the Per-Note Management message, Per-Note controllers are used to set up the upcoming note or
to control it while it is sounding. Note A is no longer controlled by Per-Note Controllers.

Note A might continue to sound while keeping the last known state of controllers that occurred before the
Per-Note Management message.

Note B might optionally reset Per-Note Controller Values upon receiving the Per-Note Management
message. In this case, if no other Per-Note controllers are sent between the Per-Note Management and the
next Note One, the new Note B uses its default values of all Per-Note controllers.

Figure 43 D and S Fields in MIDI 2.0 Per-Note Management Message

D: Detach Per-Note Controllers from previous sounding Note(s)

S: Reset (Set) Per-Note Controllers to default values

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 52 Feb. 20, 2020

Figure 44 Per-Note Management Example with Per-Note Pan

Per-Note Management @Note Number 60
Per-Note Controller @Note Number 60, Pan Left
Note On #60
Per-Note Controller @Note Number 60, Pan Center
Note Off #60

Per-Note Management @Note Number 60
Per-Note Controller @Note Number 60, Pan Right
Note On #60
Per-Note Controller @Note Number 60, Pan Center
Note Off #60

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 53 Feb. 20, 2020

C.3 Using Note Number Rotation, Per-Note Pitch, and Per-Note
Management Message for Independent Per-Note Expression

A MIDI 2.0 Protocol Sender can have fully independent control over individual Notes, even applied to
simultaneous Notes on the same pitch. MIDI Polyphonic Expression (MPE) on the MIDI 1.0 Protocol uses a
Channel Rotation mechanism for this kind of flexible expressive control with up to 16 notes of polyphony. In
the MIDI 2.0 Protocol, a Note Number Rotation mechanism can replace the Channel Rotation mechanism for
some applications. This improves on MPE by utilizing only a single MIDI Channel while providing
polyphony of up to 128 notes.

Using the MIDI 2.0 Protocol, the Sender plays Notes with added Pitch data. The added Pitch data overrides
any notion of pitch that might be implied by the Note Number field in the Note On, Note Off, and Per-Note
Controllers. Note Number loses any implication of pitch and only functions as a Note Index.

The Pitch data for each note can come from two different sources:

• Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)
• Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)

In either case, a Semitone field in the message sets a pitch as a Note Number of the same value might
otherwise imply.

The Sender assigns a Note Number to each note it sends in a rotating fashion. It might try to use the same
value for Note Number as in the Pitch data whenever feasible to serve translation to the MIDI 1.0 Protocol.
Or it might rotate through all 128 Note Number on a Least Recently Used basis to more robustly avoid Per-
Note controller overlap. Or it might use any other scheme it sees fit to assign Note Numbers.

Note Numbers are reused for notes of various pitch. In order guarantee that a new note does not adopt any
state from controllers previously addressed to that Note Number, the Sender sends Per-Note Management
message before sending every Note On message.

Receiver Implementation

Receivers do not necessarily need to know that a rotation scheme is used. They shall respond to the two
standard methods of Pitch control listed above. Many Receivers already do this, in order to support alternate
scales or flexible microtuning. Receivers shall also implement the Per-Note Management message.

Note: Receivers that select samples for playing a note based on Note Number might choose to instead select
samples based on the first 7 bits of the pitch data in the last valid Registered Per-Note Controller #3: Pitch 7.25 or
in the Note On With Attribute #3 Pitch 7.9.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 54 Feb. 20, 2020

Sender Implementation

Senders have two choices of source for Pitch Data for each Note, described below as Method 1 and Method
2. The choice between the two methods will largely be determined by the Sender’s user
performance/controller interface.

Method 1: Sender Using Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)
Some Sender devices’ performance interfaces are designed to provide continuous control over pitch for every
note for the whole life cycle of the note. Such controllers should use the Registered Per-Note Controller #3:
Pitch 7.25 (PNCC#3) to achieve that continuous control.

Figure 45 MIDI 2.0 Registered Per-Note Controller Message with Controller #3 (Pitch 7.25)

Such devices can then use this pitch controller with Note Rotation and Per-Note Management messages to
achieve independent expressive control over each note. The message sequence for two successive notes that
both play a Middle C might look like this:

Per-Note Management @Note Number 00
PNCC#3 @Note Number 00 Set Pitch 60.0
Note On #00 (Pitch sounds as 60.0)
Several other Per-Note Controllers @Note Number 00
Note Off #00

Per-Note Management @Note Number 01
PNCC#3 @Note Number 01 Set Pitch 60.0
Note On #01 (Pitch sounds as 60.0)
Several other Per-Note Controllers @Note Number 01
Note Off #01

Because the two notes of the same pitch use different Note Numbers, they can even overlap in time. Multiple
notes can sound simultaneously on the pitch of Middle C, each with its own dedicated set of Per-Note
Controllers.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 55 Feb. 20, 2020

Method 2: Sender Using Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)
Some Sender devices’ performance interfaces are designed to provide continuous control over various
parameters, but pitch is generally constant for the whole life cycle of the note. Such controllers can use the
Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3) as described above. Or such devices can use Note
On messages with AttrPitch7.9 with Note Rotation to achieve independent expressive control over each note.
This alternate mechanism is only suited to applications that do not need to use the Note On Attribute field for
any other purpose.

Figure 46 MIDI 2.0 Note On Message with Attribute #3 (Pitch 7.9)

The message sequence of two successive notes that play a Middle C might look like this:
Per-Note Management @Note Number 00
Note On #00 with AttrPitch7.9 = 60.0
Several Per-Note Controllers @Note Number 00
Note Off #00

Per-Note Management @Note Number 01
Note On #01 with AttrPitch7.9 = 60.0
Several Per-Note Controllers @Note Number 01
Note Off #01

Because the two notes use different Note Numbers, they can even overlap in time. Multiple notes can sound
simultaneously on the pitch of Middle C, each with its own dedicated set of Per-Note Controllers.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 56 Feb. 20, 2020

Appendix D Translation: MIDI 1.0 and MIDI 2.0 Messages
This section explains how MIDI 1.0 Protocol messages are translated to MIDI 2.0 Protocol messages and
vice versa, including translation between data fields of different sizes. Proper translation is crucial for
preserving intended functionality across a MIDI 1.0 Protocol / MIDI 2.0 Protocol boundary.

There is one strict set of translation rules, the Default Translation Mode, which is compliant with the MIDI
2.0 Specifications. To be compliant, a device must be able to operate in the Default Translation Mode where
it shall follow every rule in Appendix D.1 through Appendix D.3 of this specification.

Devices may optionally make Alternate Translation Modes (i.e., using different translation rules) available as
detailed in Appendix D.4.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 57 Feb. 20, 2020

D.1 Data Value Translations
In the MIDI 1.0 Protocol, data values are represented by 7-bit or 14-bit numbers. In the MIDI 2.0 Protocol,
data values are represented by 16-bit or 32-bit numbers. This section explains how to convert between these
different resolutions when translating MIDI 1.0 Protocol messages to MIDI 2.0 Protocol messages and vice
versa.

D.1.1 Overview
Default translation of data values shall always scale the value to the full range. For example, this ensures that
continuous controllers always go from minimum to maximum. Discrete enumerations are usually encoded by
dividing the range into sections, where each section represents one enumeration value. This encoding also
survives data scaling (as long as the number of sections does not exceed the data range).

When translating MIDI Protocol 1.0 values, translation should be lossless, in the sense that translating a
MIDI 1.0 Protocol message to a MIDI 2.0 Protocol message and then back to the MIDI 1.0 Protocol should
yield the same or equivalent data as the original MIDI 1.0 Protocol message. Translating MIDI 2.0 Protocol
messages to the MIDI 1.0 Protocol and back to the MIDI 2.0 Protocol will usually result in quantization, due
to the lower resolution of the MIDI 1.0 Protocol.

D.1.2 Core Rules
• Minimum/Lowest value is translated to Minimum/Lowest
• Maximum/Highest value is translated to Maximum/Highest

For example, a 7-bit value of 127 is translated to a 16-bit value of 65535.

• Center Value always translates to Center Value
Center = TRUNC((Highest + 1) / 2)

Table 12 Center Value Examples

Value Size
Center Value

Hex Binary
7 bits 0x40 8’b 01000000

14 bits 0x2000 16’b 00100000 00000000

8 bits 0x80 8’b 10000000

16 bits 0x8000 16’b 10000000 00000000

32 bits 0x80000000 32’b 10000000 00000000 00000000 00000000

• When upscaling, smoothly distribute low resolution values on the range of the high resolution.
• The translation algorithm shall yield the same output as the input data when translating:

MIDI 1.0 Protocol MIDI 2.0 Protocol MIDI 1.0 Protocol

Note: In some cases, translation in each direction might be performed by independent entities, and in such cases
this result is not mandated.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 58 Feb. 20, 2020

D.1.3 Upscaling Translation Methods:
For upscaling values to higher resolution, use this algorithm:

• For values from minimum to the center, use simple bit shifting. This ensures smooth increments towards
the center value. The center value remains the center value.

• Use an expanded bit-repeat scheme for the range from center to maximum. This causes the values to
smoothly increase from center to maximum value.

Pseudo Code for the Upscaling Algorithm

(Optimized for readability, not efficiency.)
scaleUp(srcVal, srcBits, dstBits) {
 // simple bit shift
 uint scaleBits = (dstBits – srcBits);
 uint bitShiftedValue = srcVal << scaleBits;
 uint srcCenter = 2^(srcBits-1);
 if (srcVal <= srcCenter) {
 return bitShiftedValue;
 }
 // expanded bit repeat scheme
 uint repeatBits = srcBits – 1;
 uint repeatMask = (2^repeatBits) – 1;
 uint repeatValue = srcVal & repeatMask;
 if (scaleBits > repeatBits) {
 repeatValue <<= scaleBits – repeatBits;
 } else {
 repeatValue >>= repeatBits - scaleBits;
 }
 while (repeatValue != 0) {
 bitShiftedValue |= repeatValue;
 repeatValue >>= repeatBits;
 }
 return bitShiftedValue;
}

First, the scaled value using bit shift is calculated by shifting left by the difference of the different bit sizes. If
the original value is the center value or smaller, the bit shifted value is returned.

For values above the center, a repeatValue is calculated: it is the original value with the top 2 bits
removed. So it has repeatBits significant bits. Finally, the repeatValue is used according to the Bit-
Repeat scheme to fill the low order bits of the bit shifted value.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 59 Feb. 20, 2020

Pseudo Code for Scaling Up from 7-Bit to 16-Bit
uint16 convert7to16(uint7 value7) {
 uint16 bitShiftedValue = value7 << 9;
 if (value7 <= 64) {
 return bitShiftedValue;
 }
 // use bit repeat bits from extended value7
 uint6 repeatValue6 = value7 & 0x3F;
 return bitShiftedValue
 | (repeatValue6 << 3)
 | (repeatValue6 >> 3);
}

Figure 47 Value Upscaling Diagram

Numerical Examples

• 10 (0x0a) 0x1400
• 64 (0x40) 0x8000
• 87 (0x57) 0xaeba
• 127 (0x7f) 0xffff

D.1.4 Downscaling Translation Methods
For scaling a high resolution value to a value with lower resolution, simple bit shifting (i.e. cutting off the
lower bits) is sufficient and accurate enough.

Pseudo Code for Downscaling Algorithm
scaleDown(srcVal, srcBits, dstBits) {
 // simple bit shift
 uint scaleBits = (srcBits – dstBits);
 return srcVal >> scaleBits;
}

Numerical Examples

• 0x1400 0x0a
• 0x8000 0x40

• 0xaeba 0x57
• 0xffff 0x7f

D.1.5 Special Considerations
Some devices assign a special meaning to Minimum and Maximum values of some properties. If a Translator
is aware of a special case, then the Translator may choose to translate near-zero data values to a value of 1,
and to translate near-Maximum data values to a value of (Maximum - 1).

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 60 Feb. 20, 2020

D.2 MIDI 2.0 to MIDI 1.0 Default Translation
D.2.1 Note On/Off, Poly Pressure, Control Change

Figure 48 Translate MIDI 2.0 Note Off, Note On, Poly Pressure, and Control Change to MIDI 1.0

MIDI 2.0 Note On Velocity

The allowable Velocity range for a MIDI 2.0 Note On message is 0x0000-0xFFFF. However, depending on
the chosen translation method, near-zero values can result in a MIDI 1.0 Note On with Velocity of 0, which
has the same function as a Note Off. Therefore, if the translated MIDI 1.0 value of the Velocity is 0, replace
the value with 1. If translation to MIDI 1.0 High Resolution Velocity Prefix (using Control Change #88, see
MMA/AMEI CA#031 [MMA03]) is supported, then the minimum combined value for the 14-bit velocity is
0x0080.

D.2.2 Channel Pressure

Figure 49 Translate MIDI 2.0 Channel Pressure to MIDI 1.0

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 61 Feb. 20, 2020

D.2.3 Assignable Controllers (NRPN) and Registered Controllers (RPN)

Figure 50 Translate MIDI 2.0 Assignable (NRPN) and Registered (RPN) Controller to MIDI 1.0

Assignable Controllers and Registered Controllers

Assignable Controllers and Registered Controllers are singular messages in the MIDI 2.0 Protocol. When
translating to the MIDI 1.0 Protocol, each message generates a sequence of four MIDI 1.0 Protocol
messages.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 62 Feb. 20, 2020

D.2.4 Program Change and Bank Select

Figure 51 Translate MIDI 2.0 Program Change to MIDI 1.0

Program Change & Bank Select

Program Change and Bank Select are one message in the MIDI 2.0 Protocol. When translating to the MIDI
1.0 Protocol they generate up to three messages:

• If the value of the Bank Valid (B) bit is 0, then only translate the Program Change value to a MIDI 1.0
Protocol Program Change message.

• If the value of the Bank Valid bit is 1, then translate to three MIDI 1.0 Protocol messages in the
following order:

Bank Select MSB
Bank Select LSB
Program Change

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 63 Feb. 20, 2020

D.2.5 Pitch Bend

Figure 52 Translate MIDI 2.0 Pitch Bend to MIDI 1.0

Note that Pitch Bend values in the MIDI 1.0 Protocol are presented as Little Endian.

D.2.6 System Messages

Figure 53 Translate MIDI 2.0 System Message to MIDI 1.0

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 64 Feb. 20, 2020

D.2.7 System Exclusive
When translating System Exclusive Messages from the MIDI 2.0 Protocol to the MIDI 1.0 Protocol, all the
data bytes from the whole message (often spanning multiple UMPs) are placed between a starting Status
Byte of 0xF0 and an ending Status byte of 0xF7.

Example:

Figure 54 Translate MIDI 2.0 System Exclusive to MIDI 1.0

D.2.8 Messages That Cannot Be Translated to MIDI 1.0
The following MIDI 2.0 Protocol messages have no equivalent messages in the MIDI 1.0 Protocol:

• Relative Registered Controllers
• Relative Assignable Controllers
• Per-Note Controllers

• Per-Note Management
• Per-Note Pitch Bend

As a result, the Default Translation does not address these MIDI 2.0 Protocol Messages. However,
translations for these MIDI 2.0 Protocol Messages may be implemented using Alternate Translation Modes
(see Section D.4).

D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems
When not using the UMP Format, the following MIDI 2.0 Protocol messages shall not be used with MIDI
1.0:

• System Exclusive 8
• Mixed Data Set
• Utility Messages

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 65 Feb. 20, 2020

D.3 MIDI 1.0 to MIDI 2.0 Default Translation
D.3.1 Note On/Off

Figure 55 Translate MIDI 1.0 Note On and Note Off to MIDI 2.0

MIDI 1.0 Note On and Note Off

A MIDI 1.0 Protocol Note On message with a Velocity of 0x00 is special (i.e., is equal to Note Off), and
shall be translated to a MIDI 2.0 Protocol Note Off message with Velocity 0x0000.

Attribute Type and Attribute Value: When MIDI 1.0 Protocol Note On and Note Off messages translate to
MIDI 2.0 Protocol Note On and Note Off messages, the Attribute Type shall be set to 0x00 and the Attribute
Value shall be set to 0x0000, unless a MIDI-CI Profile specification that is in effect specifies a different
translation for the Attribute Type and Attribute Value fields.

D.3.2 Poly Pressure

Figure 56 Translate MIDI 1.0 Poly Pressure to MIDI 2.0

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 66 Feb. 20, 2020

D.3.3 Control Change, RPN, and NRPN

Figure 57 Translate MIDI 1.0 Control Change to MIDI 2.0

Control Change Messages for RPN/NRPN

• MIDI 1.0 Protocol Inc/Dec messages are translated to Control Change messages in the MIDI 2.0
Protocol. They have no RPN/NRPN related function in the MIDI 2.0 Protocol.

• Individual use of controllers CC 6, 38, 98, 99, 100, and 101 do not translate to the MIDI 2.0 Protocol,
unless they are properly formed RPN/NRPN messages. The Default Translation shall hold the latest
values for controllers CC 6, 98, 99, 100, and 101 until a CC#38 is received. Then, if the Translator has
all the data needed to make a valid RPN or NRPN, it shall send the MIDI 2.0 Protocol message as
follows:

Figure 58 Translate MIDI 1.0 Data Entry LSB Control Change to MIDI 2.0

Bank Select Control Change

Individual use of controllers CC 0 and CC 32 shall not translate to the MIDI 2.0 Protocol, unless they are
used in a MIDI 2.0 Protocol Program Change message with the Bank Valid bit set.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 67 Feb. 20, 2020

D.3.4 Program Change and Bank Select
When translating MIDI 1.0 Protocol Program Change Messages to the MIDI 2.0 Protocol, include the current
valid Bank Select values in the MIDI 2.0 Protocol Program Change message. If there is no current Bank
Select value associated with the Program Change, then in the MIDI 2.0 Protocol message set the Bank Valid
bit to 0 and fill the Bank Select fields with zeroes.

MIDI 2.0 Program Change

groupmt=4

program

MIDI 1.0 Program Change, no Bank Select Information Available

reserved=0x00 status & channel

status & channel program

option flags 0

reserved=0x00 bank msb=0x00 bank lsb=0x00

Set Bank Valid B=0

Figure 59 Translate MIDI 1.0 Program Change to MIDI 2.0 (No Bank)

Figure 60 Translate MIDI 1.0 Bank and Program Change to MIDI 2.0

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 68 Feb. 20, 2020

D.3.5 Channel Pressure

Figure 61 Translate MIDI 1.0 Channel Pressure to MIDI 2.0

D.3.6 Pitch Bend

Figure 62 Translate MIDI 1.0 Pitch Bend to MIDI 2.0

Note: Pitch Bend values in the MIDI 1.0 Protocol are presented as Little Endian.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 69 Feb. 20, 2020

D.3.7 System Messages

Figure 63 Translate MIDI 1.0 System Message to MIDI 2.0

System Exclusive

When translating a System Exclusive Message from the MIDI 1.0 Protocol to the MIDI 2.0 Protocol, the
starting Byte of 0xF0 and ending byte of 0xF7 are discarded. Only the data between those bytes is placed
into the payload of the MIDI 2.0 Protocol System Exclusive message. See example in Figure 64.

Figure 64 Translate MIDI 1.0 System Exclusive to MIDI 2.0 (Example)

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 70 Feb. 20, 2020

D.4 Alternate Translation Modes
Devices are allowed to implement Alternate Translation Modes for special cases. Alternate Translation
Modes can be marketed as features that bring added value. MIDI 2.0 Protocol Devices are not required to
support Alternate Translation Modes.

A device with Alternate Translation Modes can still be compliant with the MIDI 2.0 specification, as long as
the device has a configuration for the Default Translation.

Products with Alternate Translation Modes should inform the user that the Alternate Translation Mode is
active.

D.4.1 Selecting an Alternate Translation Mode Using a Profile
Some MIDI 2.0 Protocol messages or parameters that do not have a direct equivalent in the MIDI 1.0
Protocol might be part of a MIDI-CI Profile for use in MIDI 2.0 Protocol Devices. The Profile specification
might define an indirect equivalent (perhaps via System Exclusive, a compound message, MPE, or some
other mechanism) for use in MIDI 1.0 Protocol Devices. Such Profiles might define a special case
translation.

For example, a MIDI-CI Profile might define Per-Note Controllers in the MIDI 2.0 Protocol and MPE in the
MIDI 1.0 Protocol. Then the Profile might define a translation. Devices that understand the Profile
specification may choose to perform the alternate translations defined by that Profile.

D.4.2 Selecting Alternate Translation Modes Without a Profile
There can be useful alternate translations that are not defined by any MMA specification.

Devices may also enter Alternate Translation Modes by means other than “Profile enable”. The device
should notify the user that an Alternate Translation Mode is in use.

For example, a MIDI 2.0 Protocol Device could receive a System Exclusive message that enables MPE
mode, and this would enable an Alternate Translation Mode translation for MPE note allocation.

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 71 Feb. 20, 2020

Appendix E System Exclusive (7-Bit) and System Exclusive 8
(8-Bit) Message Examples

E.1 Table of System Exclusive Message UMPs
Table 13 UMPs for System Exclusive (7-Bit) Messages

 Byte Number
Message 1 2 3 4 5 6 7 8

UMP Type MT GR Status #bytes Data

Complete SysEx 0x3 gr 0x0 0x0* Reserved Reserved Reserved Reserved Reserved Reserved

Complete SysEx 0x3 gr 0x0 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved

Complete SysEx 0x3 gr 0x0 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved

Complete SysEx 0x3 gr 0x0 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved

Complete SysEx 0x3 gr 0x0 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved

Complete SysEx 0x3 gr 0x0 0x5 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved

Complete SysEx 0x3 gr 0x0 0x6 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd

SysEx Start 0x3 gr 0x1 0x0* Reserved Reserved Reserved Reserved Reserved Reserved

SysEx Start 0x3 gr 0x1 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved

SysEx Start 0x3 gr 0x1 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved

SysEx Start 0x3 gr 0x1 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved

SysEx Start 0x3 gr 0x1 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved

SysEx Start 0x3 gr 0x1 0x5 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved

SysEx Start 0x3 gr 0x1 0x6 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd

SysEx Continue 0x3 gr 0x2 0x0 Reserved Reserved Reserved Reserved Reserved Reserved

SysEx Continue 0x3 gr 0x2 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved

SysEx Continue 0x3 gr 0x2 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved

SysEx Continue 0x3 gr 0x2 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved

SysEx Continue 0x3 gr 0x2 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved

SysEx Continue 0x3 gr 0x2 0x5 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved

SysEx Continue 0x3 gr 0x2 0x6 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd

SysEx End 0x3 gr 0x3 0x0 Reserved Reserved Reserved Reserved Reserved Reserved

SysEx End 0x3 gr 0x3 0x1 0ddddddd Reserved Reserved Reserved Reserved Reserved

SysEx End 0x3 gr 0x3 0x2 0ddddddd 0ddddddd Reserved Reserved Reserved Reserved

SysEx End 0x3 gr 0x3 0x3 0ddddddd 0ddddddd 0ddddddd Reserved Reserved Reserved

SysEx End 0x3 gr 0x3 0x4 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved Reserved

SysEx End 0x3 gr 0x3 0x5 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd Reserved

SysEx End 0x3 gr 0x3 0x6 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd 0ddddddd

* Some values for #bytes are not valid as long as messages are required to contain ID Number (Manufacturer ID), which is true for all
System Exclusive messages at the time of the drafting of this specification. These values are only included in the table in case future
MMA/AMEI specifications define the use of short messages without ID Number.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 72 Feb. 20, 2020

E.2 Complete System Exclusive Message Examples

Figure 65 MIDI 2.0 System Exclusive Message Example 1

Figure 66 MIDI 2.0 System Exclusive Message Example 2

Figure 67 MIDI 2.0 System Exclusive Message Example 3

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 73 Feb. 20, 2020

E.3 Table of System Exclusive 8 (8-Bit) Message UMPs
Table 14 UMPs for System Exclusive 8 (8-Bit) Messages

 Byte Number
Message 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
UMP Type MT GR Status Size Data

SysEx8 Complete 5 grp 0x0 0x1* StreamID rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x2* StreamID data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x3 StreamID data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x4 StreamID data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x5 StreamID data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x6 StreamID data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x7 StreamID data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x8 StreamID data data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0x9 StreamID data data data data data data data data rsvd rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0xA StreamID data data data data data data data data data rsvd rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0xB StreamID data data data data data data data data data data rsvd rsvd rsvd
SysEx8 Complete 5 grp 0x0 0xC StreamID data data data data data data data data data data data rsvd rsvd
SysEx8 Complete 5 grp 0x0 0xD StreamID data data data data data data data data data data data data rsvd
SysEx8 Complete 5 grp 0x0 0xE StreamID data data data data data data data data data data data data data
SysEx8 Start 5 grp 0x1 0x1* StreamID rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x2* StreamID data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x3 StreamID data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x4 StreamID data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x5 StreamID data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x6 StreamID data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x7 StreamID data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x8 StreamID data data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0x9 StreamID data data data data data data data data rsvd rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0xA StreamID data data data data data data data data data rsvd rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0xB StreamID data data data data data data data data data data rsvd rsvd rsvd
SysEx8 Start 5 grp 0x1 0xC StreamID data data data data data data data data data data data rsvd rsvd
SysEx8 Start 5 grp 0x1 0xD StreamID data data data data data data data data data data data data rsvd
SysEx8 Start 5 grp 0x1 0xE StreamID data data data data data data data data data data data data data
SysEx8 Continue 5 grp 0x2 0x1 StreamID rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x2 StreamID data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x3 StreamID data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x4 StreamID data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x5 StreamID data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x6 StreamID data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x7 StreamID data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x8 StreamID data data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0x9 StreamID data data data data data data data data rsvd rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0xA StreamID data data data data data data data data data rsvd rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0xB StreamID data data data data data data data data data data rsvd rsvd rsvd
SysEx8 Continue 5 grp 0x2 0xC StreamID data data data data data data data data data data data rsvd rsvd
SysEx8 Continue 5 grp 0x2 0xD StreamID data data data data data data data data data data data data rsvd
SysEx8 Continue 5 grp 0x2 0xE StreamID data data data data data data data data data data data data data
SysEx8 End 5 grp 0x3 0x1 StreamID rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x2 StreamID data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x3 StreamID data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x4 StreamID data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x5 StreamID data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x6 StreamID data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x7 StreamID data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x8 StreamID data data data data data data data rsvd rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0x9 StreamID data data data data data data data data rsvd rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0xA StreamID data data data data data data data data data rsvd rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0xB StreamID data data data data data data data data data data rsvd rsvd rsvd
SysEx8 End 5 grp 0x3 0xC StreamID data data data data data data data data data data data rsvd rsvd
SysEx8 End 5 grp 0x3 0xD StreamID data data data data data data data data data data data data rsvd
SysEx8 End 5 grp 0x3 0xE StreamID data data data data data data data data data data data data data
SysEx8 End
Incomplete 5 grp 0x3 0xF** StreamID rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd rsvd

* Some values for #bytes are not valid as long as messages are required to contain ID Number (manufacturer ID), which is true for all
System Exclusive 8 messages at the time of the drafting of this specification. They are only included in the table in case future
MMA/AMEI specifications define the use of short messages without ID Number.

** 0xF is not a valid size. This indicates that a System Exclusive 8 message is terminating unexpectedly with no data.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 74 Feb. 20, 2020

Appendix F All Defined UMP Formats

F.1 4-Byte UMP Formats

F.1.1 Message Type 0x0: Utility
Table 15 4-Byte UMP Formats for Message Type 0x0: Utility

Message
Byte 1 Byte 2 Byte 3 Byte 4

MT GR Status Data

UTILITY

NOOP 0x0 gggg 0000 0000 00000000 00000000

JR Clock 0x0 gggg 0001 reserv tttttttt tttttttt

JR Timestamp 0x0 gggg 0010 reserv tttttttt tttttttt

F.1.2 Message Type 0x1: System Common & System Real Time
Table 16 4-Byte UMP Formats for Message Type 0x1: System Common & System Real Time

Message
Byte 1 Byte 2 Byte 3 Byte 4

MT GR Status Data

SYSTEM COMMON

MIDI Time Code 0x1 gggg 11110001 0nnndddd reserved

Song Position Pointer 0x1 gggg 11110010 0lllllll 0mmmmmmm

Song Select 0x1 gggg 11110011 0sssssss reserved

Tune Request 0x1 gggg 11110110 reserved reserved

SYSTEM REAL TIME

Timing Clock 0x1 gggg 11111000 reserved reserved

Start 0x1 gggg 11111010 reserved reserved

Continue 0x1 gggg 11111011 reserved reserved

Stop 0x1 gggg 11111100 reserved reserved

Active Sensing 0x1 gggg 11111110 reserved reserved

Reset 0x1 gggg 11111111 reserved reserved

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 75 Feb. 20, 2020

F.1.3 Message Type 0x2: MIDI 1.0 Channel Voice Messages
Table 17 4-Byte UMP Formats for Message Type 0x2: MIDI 1.0 Channel Voice Messages

Message
Byte 1 Byte 2 Byte 3 Byte 4

MT GR Status Index/Data

MIDI 1.0 CHANNEL VOICE

Note Off 0x2 gggg 1000nnnn rkkkkkkk rvvvvvvvv

Note On 0x2 gggg 1001nnnn rkkkkkkk rvvvvvvvv

Poly Pressure 0x2 gggg 1010nnnn rkkkkkkk rddddddd

Control Change 0x2 gggg 1011nnnn rccccccc rddddddd

Program Change 0x2 gggg 1100nnnn rppppppp reserved

Channel Pressure 0x2 gggg 1101nnnn rddddddd reserved

Pitch Bend 0x2 gggg 1110nnnn rddddddd rDDDDDDD

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 76 Feb. 20, 2020

F.2 8-Byte UMP Formats
F.2.1 Message Type 0x3: 8-Byte Data Messages

Table 18 8-Byte UMP Formats for Message Type 0x3: 8-Byte Data Messages

Message
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

MT GR Status Data or Pad/Reserved
DATA

Sys.Ex. in 1 UMP 0x3 gggg 0000bbbb 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad

SysEx Start 0x3 gggg 0001bbbb 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad

SysEx Continue 0x3 gggg 0010bbbb 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad

SysEx End 0x3 gggg 0011bbbb 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad 0data/pad

F.2.2 Message Type 0x4: MIDI 2.0 Channel Voice Messages

COLOR KEY: Does not translate to the MIDI 1.0 Protocol Reserved for future use by MMA/AMEI.
Pad with zeros.

Table 19 8-Byte UMP Formats for Message Type 0x4: MIDI 2.0 Channel Voice Messages

Message
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

MT GR Status Index Data

MIDI 2.0 CHANNEL VOICE

Note Off 0x4 gggg 1000nnnn rkkkkkkk AttributeType VVVVVVVV vvvvvvvv AAAAAAAA aaaaaaaa

Note On 0x4 gggg 1001nnnn rkkkkkkk AttributeType VVVVVVVV vvvvvvvv AAAAAAAA aaaaaaaa

Poly Pressure 0x4 gggg 1010nnnn rkkkkkkk reserved DDDDDDDD dddddddd dddddddd dddddddd

Registered Per-Note Ctrl. 0x4 gggg 0000nnnn rkkkkkkk cccccccc DDDDDDDD dddddddd dddddddd dddddddd

Assignable Per-Note Ctrl. 0x4 gggg 0001nnnn rkkkkkkk cccccccc DDDDDDDD dddddddd dddddddd dddddddd

Per-Note Management 0x4 gggg 1111nnn rkkkkkkk option flags reserved reserved reserved reserved

Control Change 0x4 gggg 1011nnnn rccccccc reserved DDDDDDDD dddddddd dddddddd dddddddd

Registered Ctrl. (RPN) 0x4 gggg 0010nnnn rbbbbbbb rppppppp DDDDDDDD dddddddd dddddddd dddddddd

Assignable Ctrl. (NRPN) 0x4 gggg 0011nnnn rbbbbbbb rppppppp DDDDDDDD dddddddd dddddddd dddddddd

Relative Registered Ctrl 0x4 gggg 0100nnnn rbbbbbbb rppppppp DDDDDDDD dddddddd dddddddd dddddddd

Relative Assignable Ctrl 0x4 gggg 0101nnnn rbbbbbbb rppppppp DDDDDDDD dddddddd dddddddd dddddddd

Program Change 0x4 gggg 1100nnnn reserved option flags rppppppp reserved rBBBBBBB rbbbbbbb

Channel Pressure 0x4 gggg 1101nnnn reserved reserved DDDDDDDD dddddddd dddddddd dddddddd

Pitch Bend 0x4 gggg 1110nnnn reserved reserved DDDDDDDD dddddddd dddddddd dddddddd

Per-Note Pitch Bend 0x4 gggg 0110nnnn rkkkkkkk reserved DDDDDDDD dddddddd dddddddd dddddddd

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 77 Feb. 20, 2020

F.3 16-Byte UMP Formats

F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data
Set)

Table 20 16-Byte UMP Formats for Message Type 0x5: System Exclusive 8 and Mixed Data Set

Message
Byte 1 Byte 2

Byte 3 Bytes 4−16
MT GR Status Low 4 Bits

DATA

SysEx8 in 1 UMP 0x5 gggg 0000 #bytes stream id data/pad
SysEx8 Start 0x5 gggg 0001 #bytes stream id data/pad
SysEx8 Continue 0x5 gggg 0010 #bytes stream id data/pad
SysEx8 End 0x5 gggg 0011 #bytes stream id data/pad
Mixed Data Set Header 0x5 gggg 1000 mds id Header Fields

Mixed Data Set
Payload 0x5 gggg 1001 mds id Payload Data

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 78 Feb. 20, 2020

Appendix G All Defined Messages

Message Type MIDI Message
Byte 1 Byte 2

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Bytes
9-16

(64 bits) 4 bit
MT

4 bit
Group Status Channel

/ Other

UTILITY NOOP 0x0 0xg 0x0 24 bit 0x00 0000

UTILITY JR Clock 0x0 0xg 0x1 reserved 16 bit 0xtttt

UTILITY JR Timestamp 0x0 0xg 0x2 reserved 16 bit 0xtttt

SYSTEM COMMON MIDI Time Code 0x1 0xg 0xF1 7 bit time code 0xnd reserved

SYSTEM COMMON Song Position Pointer 0x1 0xg 0xF2 7 bit position LSB 0xll 7 bit position MSB 0xmm

SYSTEM COMMON Song Select 0x1 0xg 0xF3 7 bit song# 0xss reserved

SYSTEM COMMON Tune Request 0x1 0xg 0xF6 reserved reserved

SYSTEM REAL TIME Timing Clock 0x1 0xg 0xF8 reserved reserved

SYSTEM REAL TIME Start 0x1 0xg 0xFA reserved reserved

SYSTEM REAL TIME Continue 0x1 0xg 0xFB reserved reserved

SYSTEM REAL TIME Stop 0x1 0xg 0xFC reserved reserved

SYSTEM REAL TIME Active Sensing 0x1 0xg 0xFE reserved reserved

SYSTEM REAL TIME Reset 0x1 0xg 0xFF reserved reserved

MIDI 1.0 CHANNEL VOICE Note Off 0x2 0xg 0x8 0xn 7 bit note# 0xkk 7 bit velocity 0xvv

MIDI 1.0 CHANNEL VOICE Note On 0x2 0xg 0x9 0xn 7 bit note# 0xkk 7 bit velocity 0xvv

MIDI 1.0 CHANNEL VOICE Poly Pressure 0x2 0xg 0xA 0xn 7 bit note# 0xkk 7 bit pressure 0xpp

MIDI 1.0 CHANNEL VOICE Control Change 0x2 0xg 0xB 0xn 7 bit controller# 0xcc 7 bit value 0xvv

MIDI 1.0 CHANNEL VOICE Program Change 0x2 0xg 0xC 0xn 7 bit program# 0xpp reserved

MIDI 1.0 CHANNEL VOICE Channel Pressure 0x2 0xg 0xD 0xn 7 bit chan pressure reserved

MIDI 1.0 CHANNEL VOICE Pitch Bend 0x2 0xg 0xE 0xn 7 bit pitch bend LSB 7 bit pitch bend MSB

DATA 64 BIT SysEx in 1 Packet 0x3 0xg 0x0 0xb 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad

DATA 64 BIT SysEx Start 0x3 0xg 0x1 0xb 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad

DATA 64 BIT SysEx Continue 0x3 0xg 0x2 0xb 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad

DATA 64 BIT SysEx End 0x3 0xg 0x3 0xb 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad 7 bit data/pad

M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 79 Feb. 20, 2020

Message Type MIDI Message
Byte 1 Byte 2

Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
Bytes
9-16

(64 bits) 4 bit
MT

4 bit
Group Status Channel

/ Other

MIDI 2.0 CHANNEL VOICE Regist. Per-Note Ctrl. 0x4 0xg 0x0 0xn 7 bit note# 0xkk 7 bit controller# 0xcc 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Assign. Per-Note Ctrl. 0x4 0xg 0x1 0xn 7 bit note# 0xkk 7 bit controller# 0xcc 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Registered Ctrl. (RPN) 0x4 0xg 0x2 0xn 7 bit bank# 0xbb 7 bit index# 0xpp 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Assignable Ctrl. (NRPN) 0x4 0xg 0x3 0xn 7 bit bank# 0xbb 7 bit index# 0xpp 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Relative Regist. Ctrl. 0x4 0xg 0x4 0xn 7 bit bank# 0xbb 7 bit index# 0xpp 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Relative Assign. Ctrl. 0x4 0xg 0x5 0xn 7 bit bank# 0xbb 7 bit index# 0xpp 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Per-Note Pitch Bend 0x4 0xg 0x6 0xn 7 bit note# 0xkk reserved 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Note Off 0x4 0xg 0x8 0xn 7 bit note# 0xkk attribute type 16 bit velocity 0xvvvvv 16 bit attribute value 0xaaaa

MIDI 2.0 CHANNEL VOICE Note On 0x4 0xg 0x9 0xn 7 bit note# 0xkk attribute type 16 bit velocity 0xvvvvv 16 bit attribute value 0xaaaa

MIDI 2.0 CHANNEL VOICE Poly Pressure 0x4 0xg 0x10 0xn 7 bit note# 0xkk reserved 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Control Change 0x4 0xg 0x11 0xn 7 bit controller# 0xcc reserved 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Program Change 0x4 0xg 0x12 0xn reserved option flags 7 bit program 0xpp reserved 7 bit bank MSB
0xBB

7 bit bank LSB
0xbb

MIDI 2.0 CHANNEL VOICE Channel Pressure 0x4 0xg 0x13 0xn reserved reserved 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Pitch Bend 0x4 0xg 0x14 0xn reserved reserved 32 bit data 0xdddd dddd

MIDI 2.0 CHANNEL VOICE Per-Note Management 0x4 0xg 0x15 0xn 7 bit note# 0xkk option flags reserved reserved reserved reserved

DATA 128 BIT SysEx8 in 1 Packet 0x5 0xg 0x0 #bytes stream id 104 bit data/pad

DATA 128 BIT SysEx8 Start 0x5 0xg 0x1 #bytes stream id 104 bit data/pad

DATA 128 BIT SysEx8 Continue 0x5 0xg 0x2 #bytes stream id 104 bit data/pad

DATA 128 BIT SysEx8 End 0x5 0xg 0x3 #bytes stream id 104 bit data/pad

DATA 128 BIT Mixed Data Set Header 0x5 0xg 0x8 mds id 112 bit header fields

DATA 128 BIT Mixed Data Set Payload 0x5 0xg 0x9 mds id 112 bit payload data/pad

Color Key
Does not translate to MIDI 1.0 Protocol
Does not translate to MIDI 1.0 Protocol, but may be used by a UMP MIDI 1.0 Device
Reserved for future use by the Association of Musical Electronics Industry and the MIDI Manufacturers Association. Pad with zeros.

 M2-104-UM Universal MIDI Packet (UMP) Format and MIDI 2.0 Protocol

Version 1.0 Page 80 Feb. 20, 2020

Appendix H Overview of Extensions to MIDI
Note: The lists below are overviews and are not exhaustive.

H.1 Extensions Enabled by the Universal MIDI Packet Format
These extensions apply to both the MIDI 1.0 Protocol and the MIDI 2.0 Protocol:

• 16 Groups. Each Group has a set of System Messages and 16 Channels
• Messages expanded to 32, 64, 96, or 128-bit message UMPs
• Running Status is no longer used
• Adds a NOOP (no operation) message
• Adds optional Jitter Reduction Timestamps
• Adds new System Exclusive 8 Message without the 7-bit limitation of System Exclusive
• Adds new Mixed Data Set Message for carrying large data sets
• The Message Type field allows future extensibility. Many opcodes are available for new messages to be

defined in the future by MMA/AMEI. The Message Type field also allows future definition of longer
versions of existing messages to include more properties.

H.2 Further Extensions in the MIDI 2.0 Protocol
• Increases Resolution of Velocity in Note On and Note Off to 16 bits
• Adds 8-bit Articulation Type and 16-bit Articulation Data fields to Note On and Note Off
• Increases Resolution of Poly Pressure messages to 32 bits
• New Message: Registered Per-Note Controllers
• New Message: Assignable Per-Note Controllers
• New Message: Per-Note Management Message
• Increases Resolution of Control Change messages to 32 bits
• RPN and NRPN are now unified messages, and as a result are easier to use plus their resolution has been

extended to 32 bits
• Relative Control of RPN/NRPN (Increment & Decrement) now easier to use and high resolution
• Renames RPN and NRPN to Registered Controllers and Assignable Controllers
• Program Change and Bank Select are combined into a single, unified message
• Increases Resolution of Channel Pressure messages to 32 bits
• Increases Resolution of Pitch Bend to 32 bits
• Adds Per-Note Pitch Bend Message

	Table of Contents
	Figures
	Tables
	1. Introduction
	1.1 Reliance Upon Other Specifications
	1.2 References
	1.3 Terminology
	1.4 Reserved Words and Specification Conformance

	2. Universal MIDI Packet (UMP) Format
	2.1 UMP Basic Packet and Message Format
	2.1.1 Bit, Byte, and Word Order in UMP Format Diagrams
	2.1.1.1 Scope of Bit, Byte, and Word Order Guidance

	2.1.2 UMP Format Universal Fields
	2.1.3 Reserved Items
	2.1.4 Message Type (MT) Allocation

	3. MIDI Protocols in UMP Format
	3.1 Overview
	3.1.1 Groups, Ports, and Virtual MIDI Cables
	3.1.2 Selecting a MIDI Protocol for a Group
	3.1.2.1 MIDI-CI Protocol Negotiation

	3.2 MIDI 1.0 Protocol in UMP Format
	3.2.1 Message Types for MIDI 1.0 Protocol
	3.2.1.1 Message Types for Traditional MIDI 1.0 Functionality
	3.2.1.2 Message Types to Extend MIDI 1.0 Functionality

	3.2.2 MIDI 1.0 Protocol and Future Expansion
	3.2.3 Protocol Negotiation to the MIDI 1.0 Protocol

	3.3 MIDI 2.0 Protocol in UMP Format
	3.3.1 Message Types for MIDI 2.0 Protocol
	3.3.2 MIDI 2.0 Protocol and Future Expansion
	3.3.3 Protocol Negotiation to the MIDI 2.0 Protocol

	4. MIDI Messages in UMP Format
	4.1 MIDI 1.0 Channel Voice Messages
	4.1.1 MIDI 1.0 Note Off Message
	4.1.2 MIDI 1.0 Note On Message
	4.1.3 MIDI 1.0 Poly Pressure Message
	4.1.4 MIDI 1.0 Control Change Message
	4.1.5 MIDI 1.0 Program Change Message
	4.1.6 MIDI 1.0 Channel Pressure Message
	4.1.7 MIDI 1.0 Pitch Bend Message

	4.2 MIDI 2.0 Channel Voice Messages
	4.2.1 MIDI 2.0 Note Off Message
	4.2.2 MIDI 2.0 Note On Message
	4.2.3 MIDI 2.0 Poly Pressure Message
	4.2.4 MIDI 2.0 Registered Per-Note Controller and Assignable Per-Note Controller Messages
	4.2.5 MIDI 2.0 Per-Note Management Message
	4.2.6 MIDI 2.0 Control Change Message
	4.2.7 MIDI 2.0 Registered Controller (RPN) and Assignable Controller (NRPN) Messages
	4.2.8 MIDI 2.0 Relative Registered Controller (RPN) and Assignable Controller (NRPN) Messages
	4.2.9 MIDI 2.0 Program Change Message
	4.2.10 MIDI 2.0 Channel Pressure Message
	4.2.11 MIDI 2.0 Pitch Bend Message
	4.2.12 MIDI 2.0 Per-Note Pitch Bend Message
	4.2.13 MIDI 2.0 Note On/Off: Attribute Type & Attribute Data
	4.2.14 MIDI 2.0 Notes and Pitch
	4.2.14.1 MIDI Tuning Standard
	4.2.14.2 MIDI 2.0 Registered Per-Note Controller #3: Pitch 7.25
	Two Typical Uses of Registered Per-Note Controller #3: Pitch 7.25:

	4.2.14.3 MIDI 2.0 Note On With Attribute #3 Pitch 7.9

	4.3 System Common and System Real Time Messages
	4.4 System Exclusive (7-Bit) Messages
	4.4.1 Limitations of Interspersing Other Messages with System Exclusive UMPs

	4.5 System Exclusive 8 (8-Bit) Messages
	4.5.1 Unexpected End of Data

	4.6 Mixed Data Set Message
	4.6.1 End of Mixed Data Set

	4.7 16-Bit Manufacturer IDs
	4.8 Utility Messages
	4.8.1 NOOP
	4.8.2 Basic Timestamp Format
	4.8.3 Jitter Reduction (JR) Timestamps (and JR Clock)
	4.8.4 MIDI-CI Protocol Negotiation and JR Timestamps
	4.8.5 JR Clock Message Format
	4.8.6 JR Timestamp Message Format
	4.8.7 JR Clock Mechanism
	4.8.8 JR Timestamp Mechanism
	4.8.9 JR Timestamps and JR Clock Recommended Practice
	4.8.10 Translation to/from the MIDI 1.0 Protocol

	Appendix A MIDI 2.0 Registered Per-Note Controllers
	Appendix B Special Control Change Messages
	B.1 Channel Mode Messages: Applicable Channels
	B.2 Reset All Controllers

	Appendix C Using MIDI 2.0 Per-Note Messages
	C.1 Shared Per-Note Controllers
	C.2 Using a MIDI 2.0 Per-Note Management Message Before Note On to Reallocate Per-Note Expression
	C.3 Using Note Number Rotation, Per-Note Pitch, and Per-Note Management Message for Independent Per-Note Expression
	Method 1: Sender Using Registered Per-Note Controller #3: Pitch 7.25 (PNCC#3)
	Method 2: Sender Using Note On With Attribute #3 Pitch 7.9 (AttrPitch7.9)

	Appendix D Translation: MIDI 1.0 and MIDI 2.0 Messages
	D.1 Data Value Translations
	D.1.1 Overview
	D.1.2 Core Rules
	D.1.3 Upscaling Translation Methods:
	D.1.4 Downscaling Translation Methods
	D.1.5 Special Considerations

	D.2 MIDI 2.0 to MIDI 1.0 Default Translation
	D.2.1 Note On/Off, Poly Pressure, Control Change
	D.2.2 Channel Pressure
	D.2.3 Assignable Controllers (NRPN) and Registered Controllers (RPN)
	D.2.4 Program Change and Bank Select
	D.2.5 Pitch Bend
	D.2.6 System Messages
	D.2.7 System Exclusive
	D.2.8 Messages That Cannot Be Translated to MIDI 1.0
	D.2.9 Messages That Cannot Be Translated to Non-UMP MIDI 1.0 Systems

	D.3 MIDI 1.0 to MIDI 2.0 Default Translation
	D.3.1 Note On/Off
	D.3.2 Poly Pressure
	D.3.3 Control Change, RPN, and NRPN
	D.3.4 Program Change and Bank Select
	D.3.5 Channel Pressure
	D.3.6 Pitch Bend
	D.3.7 System Messages

	D.4 Alternate Translation Modes
	D.4.1 Selecting an Alternate Translation Mode Using a Profile
	D.4.2 Selecting Alternate Translation Modes Without a Profile

	Appendix E System Exclusive (7-Bit) and System Exclusive 8 (8-Bit) Message Examples
	E.1 Table of System Exclusive Message UMPs
	E.2 Complete System Exclusive Message Examples
	E.3 Table of System Exclusive 8 (8-Bit) Message UMPs

	Appendix F All Defined UMP Formats
	F.1 4-Byte UMP Formats
	F.1.1 Message Type 0x0: Utility
	F.1.2 Message Type 0x1: System Common & System Real Time
	F.1.3 Message Type 0x2: MIDI 1.0 Channel Voice Messages

	F.2 8-Byte UMP Formats
	F.2.1 Message Type 0x3: 8-Byte Data Messages
	F.2.2 Message Type 0x4: MIDI 2.0 Channel Voice Messages

	F.3 16-Byte UMP Formats
	F.3.1 Message Type 0x5: 16-Byte Data Messages (System Exclusive 8 and Mixed Data Set)

	Appendix G All Defined Messages
	Appendix H Overview of Extensions to MIDI
	H.1 Extensions Enabled by the Universal MIDI Packet Format
	H.2 Further Extensions in the MIDI 2.0 Protocol

