

MIDI Capability Inquiry (MIDI-CI)

Bidirectional Negotiations for MIDI Devices

Version 1.1

February 20, 2020

Published By:

Association of Musical Electronics Industry AMEI

and

MIDI Manufacturers Association MMA

M2-101-UM

http://www.midi.org

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

This Version 1.1 of MIDI-CI completely replaces and deprecates MIDI-CI Version 1.0.

PREFACE

MIDI has been a successful tool for more than three decades. The features of MIDI 1.0 continue to work

well. The basic semantic language of music does not change and as a result the existing definitions of MIDI

as musical control messages continue to work remarkably well.

However, MIDI has not changed to fully take advantage of the new technical environment around it. We

want to expand the feature set of MIDI capabilities.

At the same time, we recognize there are several key hurdles and requirements to consider as we make any

additions to MIDI:

• Backwards compatibility is a key requirement. Our users expect new MIDI Devices to work

seamlessly with MIDI Devices sold over the past 33 years.

• All MIDI Status Bytes are defined. The opcodes and data payloads are defined. It is difficult to

define any new messages or change the format of the existing MIDI messages.

Expanding MIDI with new features requires a new protocol with extended MIDI messages. To protect

backwards compatibility in an environment with expanded features, Devices need to confirm the capabilities

of other connected Devices. When two Devices are connected to each other, they use MIDI 1.0 and confirm

each other’s capabilities before using new features. If both Devices share support for the same expanded

MIDI features, they can agree to use those expanded MIDI features. MIDI-CI provides this mechanism.

MIDI-CI: Solution for Expanding MIDI while Protecting Backwards Compatibility:

MIDI Capability Inquiry (MIDI-CI) is a mechanism to allow us to expand MIDI with new features while

protecting backward compatibility with MIDI Devices that do not understand these newly defined features.

MIDI-CI separates older MIDI products from newer products with new capabilities and provides a

mechanism for two MIDI Devices to understand what new capabilities are supported.

MIDI-CI assumes and requires bidirectional communication. Once a MIDI-CI connection is established

between Devices, query and response messages define what capabilities each Device has. MIDI-CI then

negotiates or auto-configures to use those features that are common between the Devices.

MIDI-CI provides test mechanisms when enabling new features. If a test fails, then Devices fall back to

using MIDI 1.0 for that feature.

MIDI-CI improves MIDI capabilities in several key areas. MIDI-CI allows Devices to use an expanded

MIDI protocol with high resolution and multiple per note controllers. It allows for incremental adoption of

new MIDI features by providing a fallback to MIDI 1.0 Devices in all cases.

MIDI-CI Includes Queries for 3 major areas of expanded MIDI functionality:

1. Protocol Negotiation

2. Profile Configuration

3. Property Exchange

©2018-2020 Association of Musical Electronics Industry (AMEI)(Japan)

©2018-2020 MIDI Manufacturers Association Incorporated (MMA)(Worldwide except Japan)

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL,

INCLUDING INFORMATION STORAGE AND RETRIEVAL SYSTEMS, WITHOUT

PERMISSION IN WRITING FROM THE MIDI MANUFACTURERS ASSOCIATION.

http://www.midi.org/

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page i Feb. 20, 2020

Table of Contents

1. INTRODUCTION 1

1.1 Background 1

1.2 Layer Model for MIDI-CI 2

1.3 Related Documents: 3

1.4 Future Pending Documents: 3

1.5 Terminology 3

1.6 Reserved Words and Specification Conformance 6

2. TOPOLOGY 7

2.1 Bidirectional 7

2.2 Initiator and Responder Relationship 7

2.3 Bidirectional Negotiation for Bidirectional Settings 7

2.4 Bidirectional Negotiation for Single Direction Settings 8

2.5 Selecting Initiator for Bidirectional Negotiation for Bidirectional Settings 8

2.5.1 Authority Level 9

2.5.2 User Selected Initiator 10

2.6 MIDI-CI Proxy Device 10

3. Message Addressing and MUID 12

3.1 System Exclusive Device ID Field 12

3.2 MIDI-CI Device’s MUID 12

3.2.1 Generating a MUID 12

3.2.2 Broadcast MUID 12

3.2.3 Potential Collisions of MUID 13

4. Establishing a MIDI-CI Connection 14

4.1 The First MIDI-CI Transaction: Discovery 14

4.2 Subsequent Transactions 14

5. MIDI-CI COMMON RULES AND GUIDELINES 15

5.1 Categories of MIDI-CI Messages 15

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page ii Feb. 20, 2020

5.2 MIDI-CI Transactions - Order of Processing 15

5.3 MIDI-CI Transaction Messages 15

5.3.1 Standard Format for MIDI-CI Messages 16

5.4 MIDI-CI Messages Format and Protocols 17

5.5 Discovery Message 17

5.6 Reply to Discovery Message 20

5.7 Invalidate MUID Message 20

5.7.1 Resolving Collisions of MUID - Responder 21

5.7.2 Resolving Collisions of MUID - Initiator 21

5.8 NAK MIDI-CI Message 22

6. PROTOCOL NEGOTIATION 23

6.1 Protocol Types Supported 23

6.2 Universal MIDI Packet Required 23

6.3 Protocol Inquiry and Negotiation Mechanism 23

6.4 Initiate Protocol Negotiation Message 24

6.5 Reply to Initiate Protocol Negotiation Message 27

6.6 Set New Protocol Message 28

6.7 Test New Protocol Initiator to Responder Message 29

6.8 Test New Protocol Responder to Initiator Message 29

6.9 Confirmation New Protocol Established Message 30

6.10 Subsequent Protocol Negotiation 31

7. PROFILE CONFIGURATION 32

7.1 Profile Configuration Mechanism 32

7.2 Profile Inquiry Message 32

7.3 Reply to Profile Inquiry Message 32

7.4 Set Profile On Message 35

7.5 Set Profile Off Message 35

7.6 Profile Enabled Report Message 36

7.7 Profile Disabled Report Message 36

7.8 Profile Specific Data Message 37

8. PROPERTY EXCHANGE 39

8.1 Property Inquiry and Negotiation Mechanism 39

8.2 Property Data May Be Sent in Multiple Chunks 39

8.2.1 No Chunking of Header Data 40

8.3 Multiple Simultaneous Inquiries and Request ID 40

8.4 Inquiry: Property Exchange Capabilities 41

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page iii Feb. 20, 2020

8.5 Reply to Property Exchange Capabilities 41

8.6 Inquiry: Has Property Data 42

8.7 Reply to Has Property Data 43

8.8 Inquiry: Get Property Data 44

8.9 Reply to Get Property Data 44

8.10 Inquiry: Set Property Data 45

8.11 Reply to Set Property Data 46

8.12 Subscription 47

8.13 Reply to Subscription 48

8.14 Notify Message 48

Appendix A: Minimum Requirements 50

Appendix B: Avoiding Collisions of MUID 51

Appendix C: MIDI Chaining Limitation 52

Appendix D: List of all MIDI-CI Messages 53

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 1 Feb. 20, 2020

1. INTRODUCTION

1.1 Background

MIDI-CI defines an architecture that allows Devices with bidirectional communication to agree to use

extended MIDI capabilities beyond those defined in MIDI 1.0, while carefully protecting backward

compatibility. MIDI-CI features “fall back” mechanisms so that if a Device does not support new features

MIDI continues to work as defined by MIDI 1.0. Goals of MIDI-CI design:

1. Fully backward compatible: supports continued MIDI 1.0 functionality for any Devices that do

not recognize extended MIDI features enabled by MIDI-CI.

2. Allow easy configuration between MIDI-CI Devices.

3. Sender can know the capabilities of a Receiver.

4. Sender and Receiver can negotiate auto-configuration details.

5. Define method for negotiating choice of Protocol between Devices.

6. Define method for using Profiles.

7. Define method for Discovering, Getting, and Setting a wide range of Device Properties.

MIDI-CI

Protocol

Negotiation

Property

Exchange

Profile

Configuration

Use MIDI 1.0 ProtocolUse MIDI 1.0 DefaultsUse MIDI 1.0 Defaults

Property Exchange Not

Supported

MIDI
Device MIDI Device

MIDI 1.0

Protocol

MIDI 2.0

Protocol

Discover, Get, Set:
 Manufacturer & Model

 List of Programs

 Controller Mappings

 Synthesis Parameters

 MIDI Implementation

 Etc.

Auto Configure:
 General MIDI

 Piano

 Organ

 MPE

 MIDI Show Control

 Etc.

Protocol

Test Failure

Profiles Not

Supported

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 2 Feb. 20, 2020

1.2 Layer Model for MIDI-CI

 MIDI-CI

INQUIRY &

NEGOTIATION

MIDI LAYER DEFINITION EXAMPLES MIDI-CI

FUNCTION

PROPERTY

EXCHANGE

DEVICE Manufacturer and

Model Specific

Details

Products sold to

the users of MIDI

MIDI-CI allows get and

set for a wide range of

properties or state of a

Device.

MIDI

IMPLEMENTATION Channels and
Messages Supported

Controller

Mappings

MIDI-CI allows

discovery of MIDI

implementation details of

a Device.

PROFILE

CONFIGU-

RATION

PROFILES
A collection of

defined Device

Parameters and MIDI
Messages common

across manufacturers

General MIDI,

MPE, Hi-Res

Piano Profile (to

come soon)

MIDI-CI allows general

auto-configuration of

MIDI Implementation

between MIDI Devices

that share common

Profiles.

PROTOCOL

NEGOTIATION

PROTOCOL Data Language

(MIDI 1.0 Messages

with 1 Status Bit and

7 Data Bits or
extended MIDI 2.0

Messages)

Note-On, Control

Change, Program

Change

MIDI-CI allows selection

of MIDI 1.0 Protocol or

"MIDI 2.0 Protocol" with

or without timestamps, or

added functionality.

none

PACKET FORMAT

Container for

Protocol Payload

MIDI 1.0 Stream,

USB-MIDI 32 bit

Message, BLE-

MIDI Packet,

Universal MIDI

Packet

None (handled by

Transport)

none BANDWIDTH
Data Flow Rate,

Throughput, Speed

31.25Kbs on

5pinDIN,

31.25Kbs on USB,

1Mbs on USB

None (handled by

Transport)

DISCOVERY TRANSPORT

Hardware or

Software Connection

Medium

5PinDIN cable,

USB, New 2 Way

UART, Ethernet,

OS API, VST,

CoreMIDI

A MIDI-CI Discovery

establishes the pairing of

an Input and Output for
Bidirectional

Communication between

Devices, independent of

hardware or software

connection medium.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 3 Feb. 20, 2020

1.3 Related Documents:

1. MIDI 1.0 Detailed Specification, Document Version 4.2 September 1995

2. USB Device Class Definition for MIDI Devices, Version 1.0

3. Specification for MIDI over Bluetooth Low Energy, Version 1.0

4. RTP Payload Format for MIDI (IETF RFC 6295)

1.4 Future Pending Documents:

MIDI-CI defines a foundational structure for expanding MIDI. It does not define the expansions themselves.

The expansions of MIDI that MIDI-CI enables will be defined in future documents of the MMA and AMEI.

These documents may include the following and more:

1. MIDI 2.0 Specification, Version 1.0

2. Universal MIDI Packet and MIDI 2.0 Protocol Specification - Adds new features to existing MIDI

messages and defines new MIDI messages.

3. Common Rules for MIDI-CI Profiles - Defines rules for all Profile Specifications

4. Individual Profile Specifications - Define implementation requirements for compliant Devices

5. Common Rules for MIDI-CI Property Exchange - Defines Property Data semantics for Property

Exchange

6. Approved Resource Definitions – Define sets of Property Data used by Property Exchange

7. USB Device Class Definition for MIDI Devices, Version 2.0

1.5 Terminology

Chunk – A single System Exclusive message that is one segment of a complete Property Exchange message

which spans multiple System Exclusive messages.

Device – A hardware unit or software component.

Endpoint – MIDI Endpoint.

Initiator – One of two MIDI-CI Devices with a bidirectional communication between them. Initiator has the

management role of setting and negotiating parameters for interoperability between the two Devices. The

primary goal of Initiator is usually (but not strictly required to be) configuring two Devices for subsequent

communication from Initiator as MIDI transmitter to Responder as MIDI receiver.

Inquiry – A message sent by an Initiator Device to begin a Transaction.

MIDI 1.0 Protocol – Version 1.0 of the MIDI Protocol as originally specified in [MMA01]. The native

format for the MIDI 1.0 Protocol is a byte stream, but it has been adapted for many different transports. The

UMP format for MIDI 1.0 Messages is defined in Section 4 of this specification.

MIDI 2.0 Protocol – Version 2.0 of the MIDI Protocol, as defined in this specification. The native format

for MIDI 2.0 messages is UMP as defined in Section 4 of this specification.

MIDI-CI Device – A Device that has the ability to act as a Responder that replies to inquiries received from

an Initiator. The ability to act as an Initiator is recommended but optional.

MIDI Endpoint – An original source of MIDI messages or final consumer of MIDI messages. Supports only

MIDI 1.0 or is switchable between MIDI 1.0 and MIDI 2.0 Protocol messages.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 4 Feb. 20, 2020

MIDI Event Processor (Sequencer, Arpeggiator) – Records, Edits, and Plays messages or Transforms

messages in real time. Supports only MIDI 1.0 or Switchable between MIDI 1.0 and MIDI 2.0 Protocol

messages on a port by port basis.

MIDI Gateway – A special purpose embedded OS Device (e.g., Workstation, Router) that manages a Node

of Connected Devices/Applications/Plugins. Provides connection & routing between all Endpoints on the

Node. Acts as MIDI-CI Proxy for Endpoints whenever necessary. Supports only MIDI 1.0 or is switchable

between MIDI 1.0 and MIDI 2.0 Protocol messages.

MIDI Node Server (PC) – General purpose OS, with wide range of MIDI service and MIDI API e.g., Mac

or Windows PC. Manages a Node of Connected Devices/Applications/Plugins. Provides connection &

routing between all Endpoints on the Node. Acts as MIDI-CI Proxy for Endpoints whenever necessary. May

act as MIDI-CI Proxy for Single Direction Endpoints (i.e. API as Proxy for Plugin) Supports both MIDI 1.0

and MIDI 2.0 Protocol messages. It is strongly recommended that a Central MIDI Node PC have protocol

translation capability on every Input/Output MIDI-CI connection.

MIDI Port – A physical connector associated with a MIDI Endpoint. Some people may consider a MIDI

Port to be synonymous with a MIDI Endpoint. A MIDI Port always has a MIDI Endpoint. But a MIDI

Endpoint does not always have a (physical) MIDI Port; It may have a Virtual MIDI Port instead. Inside

software a MIDI Port is a virtual representation of a MIDI Port. In this case it sometimes called a Virtual

MIDI Port. When using MIDI-CI on a system that uses the Universal MIDI Packet format, definitions in this

specification which refer to a MIDI Port shall apply to a Group of the Universal MIDI Packet format (See the

Universal MIDI Packet and MIDI 2.0 Protocol Specification).

MIDI-CI Proxy – A MIDI-CI Device, such as a MIDI Node Server, MIDI Gateway, or MIDI Translator,

that represents another MIDI Device in a MIDI-CI Transaction. While acting as a MIDI-CI Proxy, a Device

reports the MUID, manufacturer and other fields with values from another Device that it is representing and

not its own.

MIDI Translator – Located between Bidirectional Endpoints. Performs Translation between MIDI 1.0 and

MIDI 2.0 Protocol whenever necessary. Acts as MIDI-CI Proxy for Endpoints whenever necessary. Passes

both MIDI 1.0 and MIDI 2.0 Protocol messages.

MIDI Transport – Carries MIDI data between Bidirectional Endpoints. Acts as MIDI-CI Proxy for

Endpoints whenever necessary. Passes both MIDI 1.0 and MIDI 2.0 Protocol messages. Does NOT do any

protocol translation.

MUID (MIDI Unique Identifier) – A 28 bit random number generated by a Device used to uniquely

identify the Device in MIDI-CI messages to or from that Device.

Profile – A set of MIDI messages and defined responses to those messages. A Profile may have a defined

minimum set of mandatory messages, along with some optional or recommended messages. General MIDI is

one example of a profile (although in original form it does not quite meets all requirements of a MIDI-CI

Profile). General MIDI defines a requirement for supporting GM messages on all 16 channels of 1 virtual

cable (or stream). Future Profiles may define support on only 1 channel within a virtual cable, or support for

more than 16 channels using multiple virtual cables or Groups.

Protocol – A defined data message structure that defines the semantics for MIDI control messages. In MIDI

1.0 the Protocol includes the Opcode of the control message being sent, system-wide messages, addressing

for some messages in the form of 16 MIDI Channels, and for some types of message a value associated with

the specific Opcode.

Property Data – The whole set of properties that make up a reply to a Resource inquiry/request. By default,

such properties are presented in JSON key:value pairs but a Resource may define other data formats.

Resource – A defined set of properties that comprise a set of Property Data.

Responder – One of two MIDI-CI Devices with a bidirectional communication between them. The

Responder is the Device that receives an Inquiry message from an Initiator Device as part of a MIDI-CI

Transaction and acts based on negotiation messages managed by an Initiator Device.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 5 Feb. 20, 2020

Single Direction Endpoint – A MIDI Device that only sends or receives and is, therefore, NOT capable of

MIDI-CI. In some cases, a MIDI Node Server, MIDI Gateway, MIDI Translator, or MIDI Transport may

“know” details about a Device from a non-MIDI source (USB Device Descriptors, PlugIn API properties,

etc.). The MIDI Node Server, MIDI Gateway, MIDI Translator, or MIDI Transport may act as a MIDI-CI

Proxy: it engages in MIDI-CI Transactions in place of the Single Direction Endpoint Device.

Transaction – A set of MIDI-CI messages that include an Inquiry sent by an Initiator Device and a reply to

the Inquiry returned by the Responder. The Responder’s reply to an Inquiry might be a single message that

satisfies the Inquiry, a set of multiple messages that satisfy the Inquiry, or an error message.

USB Endpoint – The source or sink of data sent over USB. This is a physical Device with a buffer. A typical

USB-MIDI Interface has 3 USB Endpoints: 1 bidirectional Control Endpoint, and 2 USB-MIDI Endpoints

(one in each direction) that each can support up to 16 virtual cables with 16 channels each (256 channels).

USB-MIDI Endpoint – A USB Endpoint used to transfer MIDI Data. In version 1.0 of the USB-MIDI

specification, a USB Endpoint supports 16 virtual cables worth of MIDI data, by using a 32 bit MIDI Event

packet.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 6 Feb. 20, 2020

1.6 Reserved Words and Specification Conformance
In this document, the following words are used solely to distinguish what is required to conform to

this specification, what is recommended but not required for conformance, and what is permitted

but not required for conformance:

Words Relating to Specification Conformance:

Word Reserved For Relation to Spec Conformance

shall Statements of

requirement

Mandatory.

A conformant implementation conforms to all ’shall’ statements.

should Statements of

recommendation

Recommended but not mandatory.

An implementation that does not conform to some or all ‘should’

statements is still conformant, providing all ’shall’ statements are

conformed to.

may Statements of

permission

Optional.

An implementation that does not conform to some or all ’may’

statements is still conformant, providing all ’shall’ statements are

conformed to.

By contrast, in this document, the following words are never used for specification conformance

statements; they are used solely for descriptive and explanatory purposes:

Words Not Relating to Specification Conformance:

Word Reserved For Relation to Spec Conformance

must Statements of

unavoidability

Describes an action to be taken that, while not required (or at

least not directly required) by this specification, is unavoidable.

Not used for statements of conformance requirement (see ’shall’

above).

will Statements of

fact

Describes a condition that as a question of fact is necessarily

going to be true, or an action that as a question of fact is

necessarily going to occur, but not as a requirement (or at least

not as a direct requirement) of this specification.

Not used for statements of conformance requirements (see ‘shall’

above).

can Statements of

capability

Describes a condition or action that a system element is capable

of possessing or taking.

Not used for statements of conformance permission (see ‘may’

above).

might Statements of

possibility

Describes a condition or action that a system element is capable

of electing to possess or take.

Not used for statements of conformance permission (see ‘may’

above).

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 7 Feb. 20, 2020

TOPOLOGY OF MIDI-CI DEVICES

2. TOPOLOGY

2.1 Bidirectional

MIDI-CI requires bidirectional MIDI communications.

Every MIDI-CI capable Input Port shall be paired with a matching Output Port. Devices may have

multiple pairs of MIDI Ports for Input and Output.

Each pair of Ports (1 Input + 1 Output) is used for MIDI-CI Transactions.

See Appendix C for topology limitations related to MIDI Thru and MIDI merge functions.

2.2 Initiator and Responder Relationship
MIDI-CI assumes that MIDI communications tend to be receiver centric; MIDI-CI assumes a

system where a MIDI transmitter “learns” something about the receiver and adapts its output as

much as possible to support the capabilities of the receiver.

However, through MIDI-CI Negotiation mechanisms, a transmitter can also ask a receiving Device

to enable features reported as supported capabilities to adapt the Receiver to the capabilities of the

Sender.

In a MIDI-CI bidirectional connection, both Devices are senders and both Devices are receivers for

various MIDI-CI messages that constitute a Transaction. Therefore, Initiator and Responder are

terms used to clarify the relationship between the two MIDI Devices with a bidirectional

connection.

Either of the two Devices may choose to function as the Initiator. The Initiator takes on the

management role of setting and negotiation of parameters in the Transaction for interoperability

between the two Devices. The primary goal of Initiator is usually (but not strictly required to be)

configuring two Devices for subsequent communication from Initiator as MIDI transmitter to

Responder as MIDI receiver.

2.3 Bidirectional Negotiation for Bidirectional Settings

Some MIDI-CI Transactions make settings that are common to both directions. In these cases, when the

Initiator determines and controls negotiation of particular settings, it does so for equal and identical

subsequent interoperability in both directions.

MIDI-CI Protocol Negotiation causes simultaneous changes to the protocol used in both directions. In the

diagram in Section 2.1, regardless of whether MIDI Device 1 or MIDI Device 2 is the Initiator, one MIDI-CI

Protocol Negotiation establishes a chosen protocol in both Direction A and Direction B.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 8 Feb. 20, 2020

2.4 Bidirectional Negotiation for Single Direction Settings

Some MIDI-CI Transactions make settings for chosen interoperability in just one direction. In these cases,

when the Initiator determines and controls negotiation of particular settings, it does so for subsequent

interoperability of messages sent from Initiator to the Responder.

By default, MIDI-CI Transactions for Profile Configuration and Property Exchange are intended for

discovering and making settings for interoperability in just one direction, from Initiator to Responder.

When a Device chooses to be Initiator, it takes on the management role of setting parameters in the

Transaction for MIDI interoperability from Initiator to Responder. If the Device that is Responder also wants

to set parameters in the opposite direction, then the Responder switches roles and becomes Initiator to

manage settings for communication in the opposite direction.

Example: MIDI Device 1 starts as Initiator Device by sending a Profile Inquiry and the MIDI Device

2 acts as Responder and answers with a Reply to Profile Inquiry. Then MIDI Device 1 may send

messages to enable and disable Profiles that on MIDI Device 2. If MIDI Device 2 wishes to control

Profiles on MIDI Device 1 (that is the opposite direction), then it shall take on the role of Initiator,

and initiate a Profile Inquiry.

2.5 Selecting Initiator for Bidirectional Negotiation for
Bidirectional Settings

When two Devices share a bidirectional connection to each other, either Device may choose to act in the

Initiator role for any Transaction. In some cases, both Devices want to act as the Initiator.

This is not a problem for Bidirectional Negotiation for Single Direction Settings (specifically Profile

Negotiation and Property Exchange).

However, when MIDI-CI uses a Bidirectional Negotiation for Bidirectional Settings (specifically Protocol

Negotiation), there can be a conflict between the two Devices simultaneously vying to manage the

connection.

The following rules allow Devices to assign the Initiator role to one of two connected Devices in a

Bidirectional Negotiation for Bidirectional Settings (see Section 2.3). In this version of MIDI-CI, these rules

apply only to Protocol Negotiation. These do not apply to Profile Configuration or Property Exchange. Apply

the rules in the following order:

1. First Inquiry

The MIDI-CI Device that first sends a MIDI-CI inquiry assumes the role of Initiator. The MIDI-CI Device

that receives the initial inquiry assumes the role of Responder.

2. Authority Level Overrides First Inquiry (See Section 3.2.2)

A Device may optionally refuse to act as a Responder only if it has a higher Authority Level as reported in an

Authority Level field of a message.

When a 1st MIDI-CI Device takes the role of Initiator, a 2nd MIDI-CI Device may refuse to act as a

Responder if the 2nd MIDI-CI Device has a higher Authority Level than the 1st Device’s Authority Level.

Instead of sending a Responder reply message, the 2nd MIDI-CI Device may send an initial inquiry message

to claim Initiator role. When the 1st Device receives that inquiry in reply from the 2nd Device using the same

Source MUID as the 1st Device’s inquiry’s Destination MUID, it shall change its role to Responder.

3. Simultaneous Inquiries = Use Authority Level (See Section 3.2.2)

In some cases, both Devices may try to initiate a MIDI-CI Transaction at the same time. In those cases, the

Devices shall use their Authority Level fields to determine which Device continues as Initiator.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 9 Feb. 20, 2020

When a Device sends an initial inquiry message it takes the role of Initiator. If the Device receives an initial

inquiry message at the same time as or following its own initial inquiry message, it shall compare its own

Authority Level to the Authority Level of the incoming message. If the incoming message has a higher

Authority Level, the Device shall set its role to Responder and send a reply to the inquiry message it

received.

If the Device’s own Authority Level to the Authority Level of the incoming message are the same, the

Device will use the MUID of the two Devices to assign authority according to the following rule.

4. Same Authority Level = Use Highest MUID (See Section 3.2.3)

When two Devices simultaneously try to take the Initiator role and both Devices are of the same Authority

Level, the Device that has the highest value for MUID shall take the role of Initiator.

The Device that sent the lower MUID shall set its role to Responder and send a reply to the inquiry message

it received.

2.5.1 Authority Level

MIDI-CI provides an Authority Level, a 1 byte field with integer value, to designate Devices that have

management authority (the Initiator role) as compared to other Devices. Devices are prioritized in the

following order (highest integer value = highest level of authority):

0x70-0x7F Reserved

0x60-0x6F Highest Authority Level

0x50-0x5F

0x40-0x4F

0x30-0x3F

0x20-0x2F

0x10-0x1F Lowest Authority Level

0x00-0x0F Reserved

Descriptions and requirements of those Devices follow. These are not strict requirements, sometimes it is

difficult to classify a Device to any defined type. These are just recommendations to help Device

manufacturers decide what value to assign to the Device’s Authority Level field.

While these are just recommendations, no Device shall claim the highest level of authority if the Device does

not provide a wide range of MIDI services and API to manage multiple connected Devices as are typically

found in a general-purpose PC.

AUTHORITY LEVEL RECOMMENDED FOR THESE TYPICAL DEVICES

0x70-0x7F Reserved

0x60-0x6F

Highest Authority Level

MIDI Node Server (PC)

0x50-0x5F MIDI Gateway

0x40-0x4F MIDI Translator

0x30-0x3F MIDI Endpoint

0x20-2F MIDI Event Processor (Sequencer, Arpeggiator)

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 10 Feb. 20, 2020

2.5.2 User Selected Initiator

Some Devices may allow a user to trigger a MIDI-CI inquiry from that Device. In most cases, other Devices

should allow the Device of user’s choice to take authority.

One typical example implementation might be a “MIDI-CI AutoConfiguration” button on the front

panel of a Device. This is useful for a controller keyboard connected to a DAW and several plugins.

As the user changes plugins, the “MIDI-CI AutoConfiguration” performs dynamic configuration

changes on the controller keyboard to match the state or functions of the currently selected plugin.

The primary application for User Selected Initiator is to perform Profile Configuration and Property

Exchange.

The Device manufacturer should take care in implementation of this function to avoid triggering unnecessary

system changes. In particular, this function may perform Protocol Negotiation once upon startup, but it

should not trigger Protocol Negotiation again until a power cycle or there has been a topology change that

necessitates a new Protocol Negotiation.

2.6 MIDI-CI Proxy Device

MIDI Node Servers, MIDI Gateways, and MIDI Translators manage connections and pass MIDI streams to

different ports or via different protocols. Example Devices include a MIDI API in a general-purpose

computer, Plugin API, MIDI-DIN to USB-MIDI converters, MIDI processors (hardware or in software),

DAWs with multiple Plugins, or networked MIDI bridges like RTP-MIDI. There are multiple options for if

and how MIDI Node Servers, MIDI Gateways, and MIDI Translators may engage in the MIDI-CI

connection.

1. If a MIDI Node Server, MIDI Gateway, or MIDI Translator merely passes the MIDI stream

through, it should act as a transparent bridge and pass on the MIDI-CI messages without

modification. Then MIDI-CI enabled Devices on both ends of the MIDI Node Server, MIDI

Gateway, or MIDI Translator will be able to establish a direct connection to each other.

2. Sometimes a MIDI Node Server, MIDI Gateway, or MIDI Translator may act as a MIDI-CI

Proxy for other Devices. It reports the manufacturer and other fields with values from the other

Device and not its own. A MIDI Node Server, MIDI Gateway, or MIDI Translator shall not

misrepresent the Device; fields should only be populated with known values (e.g. from USB

descriptors or Plugin API properties). A MIDI Node Server, MIDI Gateway, or MIDI Translator

shall not guess values or use arbitrary default values. Some example applications include:

• If a MIDI Node Server or MIDI Gateway is managing routing between various Devices, it

may need to inform connected Devices of routing changes. The MIDI Node Server or MIDI

Gateway may act as a MIDI-CI Proxy to inform Devices of Profile changes triggered by

connection or topology changes.

• If a Device that is NOT capable of MIDI-CI is connected to a MIDI Node Server, MIDI

Gateway, or MIDI Translator, and if the MIDI Node Server, MIDI Gateway, or MIDI

Translator has some knowledge about that Device, the MIDI Node Server, MIDI Gateway,

or MIDI Translator should act as a MIDI-CI Proxy; it engages in MIDI-CI Negotiation in

place of that Device.

0x10-1F

Lowest Authority Level

MIDI Transport

0x00-0x0F Reserved

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 11 Feb. 20, 2020

3. In some cases, it makes sense for a MIDI Node Server, MIDI Gateway, or MIDI Translator to

engage in the MIDI-CI Negotiation as itself. For example, if it modifies the MIDI data stream in a

way that is incompatible with MIDI-CI such as converting to a non-MIDI protocol, or

merging/duplicating MIDI streams.

In all cases, it is up to the manufacturer to decide the most sensible approach. MIDI Node Servers, MIDI

Gateways, and MIDI Translators which can be configured by the user may offer different options to be

selected by the user.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 12 Feb. 20, 2020

3. Message Addressing and MUID
MIDI-CI messages are exchanged between Devices using addresses or routing determined by a

combination of:

1. An established Bidirectional MIDI connection

2. System Exclusive Device ID Fields

3. MIDI-CI Devices’ MUIDs

3.1 System Exclusive Device ID Field
Values in the Universal System Exclusive Device ID are used for Channel addressing. Values 0x00-

0x0F map to MIDI Channels 1-16. Messages with a Value of 0x7F are addressed to the whole MIDI

port/cable, not channelized. Whether this field refers to the Source or Destination depends on the

definition of each message type. See Section 5.3 and individual messages for more details.

3.2 MIDI-CI Device’s MUID

MUID is 28 bit random number generated by a MIDI-CI Device used to uniquely identify messages to or

from that Device. All MIDI-CI messages include the MUID of the source Device and the MUID of the

destination Device.

The value of the MUID shall be in the range 0x00000000 to 0x0FFFFFFF.

The values 0x0FFFFF00 to 0x0FFFFFFE are reserved.

The value 0x0FFFFFFF is used as a Broadcast MUID (see Section 3.2.2).

3.2.1 Generating a MUID

Every time a MIDI-CI Device is powered up, it shall create a new, randomly generated MUID. The MIDI-CI

Device shall use this same MUID for every Transaction until the Device is shut down and restarted or until it

receives an Invalidate MUID message (see Section 5.7) for that MUID. When a Device is restarted it shall

generate a new MUID.

A MIDI-CI Device shall not use the same MUID every time it restarts.

The chances of a collision of MUID, where more than one Device on a MIDI connection selects the same

MUID, is greatly reduced if all MIDI-CI Devices use good random number generators for their MUIDs (see

Appendix B). In the rare case that a collision does occur, MIDI-CI provides rules and mechanisms for

resolving the collision (see Section 3.2.3).

3.2.2 Broadcast MUID

Certain MIDI-CI messages are defined to use a Broadcast MUID as a replacement for a specific MUID. This

Broadcast MUID is used because the sender of a MIDI-CI message does not know the MUID of a potential

receiver, or because the intended destination of the message is several Devices.

Broadcast MUID = 0x0FFFFFFF

Messages sent to the Broadcast MUID shall not be larger than 512 bytes or shall have a defined chunking

mechanism so the buffers of any connected receivers will not overflow.

The Broadcast MUID shall be used only for the following MIDI-CI Messages:

• Discovery

• Invalidate MUID

• Profile Enabled Report

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 13 Feb. 20, 2020

• Profile Disabled Report

• Profile Specific Data (If defined as allowed by the active Profile)

Broadcast MUID shall not be used as the destination for any MIDI-CI message unless the definition for that

message specifically defines the use of the Broadcast MUID.

3.2.3 Potential Collisions of MUID

Even if every MIDI-CI Device uses a good random number generator for its MUID, there is the rare

possibility that two Devices might select the same MUID. Section 5.7.1 defines mechanisms to

resolve collisions.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 14 Feb. 20, 2020

4. Establishing a MIDI-CI Connection
To begin using MIDI-CI, a pair of MIDI-CI Devices find each other using a Discovery Transaction.

4.1 The First MIDI-CI Transaction: Discovery

A MIDI-CI Device shall find another MIDI-CI Device by acting as an Initiator and sending a Discovery

message (see Section 5.5) with its own MUID as the source. Any MIDI-CI Device that receives the

Discovery Message shall act as a Responder by sending a Reply to Discovery message (see Section 5.6) with

its own MUID as the source and the Initator’s MUID as the destination.

4.2 Subsequent Transactions

Following a successful Discovery Transaction between two Devices, either Device may take the role of
Initiator for any subsequent Transactions between the two Devices by sending a MIDI-CI Inquiry to the

destination MUID of a targeted Responder. For any subsequent Transaction, the Responder is a Device that

receives a MIDI-CI Inquiry that was sent to the Responders MUID, acts based on the content of the inquiry

sent by an Initiator Device, and responds to the Initiator with a reply message.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 15 Feb. 20, 2020

5. MIDI-CI COMMON RULES AND GUIDELINES
This section outlines concepts and rules common to all categories of MIDI-CI messages and

Transactions.

5.1 Categories of MIDI-CI Messages

MIDI-CI defines Universal System Exclusive messages, Transactions, and mechanisms for the inquiry and

negotiation of Device capabilities in four Categories. Each Category contains multiple messages that work

together to deliver a targeted scope of MIDI-CI functionality.

The Category is declared by the value of the highest nibble in the Universal System Exclusive Sub-ID#2

byte.

Category Sub-ID#2 Range Description

0 0x00-0x0F Reserved – No Messages Defined Yet

1 0x10-0x1F Protocol Negotiation Messages

2 0x20-0x2F Profile Configuration Messages

3 0x30-0x3F Property Exchange Messages

4 0x40-0x4F Reserved – No Messages Defined Yet

5 0x50-0x5F Reserved – No Messages Defined Yet

6 0x60-0x6F Reserved – No Messages Defined Yet

7 0x70-0x7F Management Messages

5.2 MIDI-CI Transactions - Order of Processing

Devices do not need to support all Categories of MIDI-CI implementation.

The first time Devices establish a MIDI-CI connection, the Devices shall proceed through Transactions in the

following order for any Categories of MIDI-CI that they support.

1. Discovery Transaction

2. Protocol Negotiation

3. Profile Configuration (Profile Inquiry Transaction)

4. Property Exchange (Inquiry: Property Exchange Capabilities Transaction)

If either the Initiator or Responder do not support a Category of MIDI-CI Inquiry and Negotiation, then the

Devices shall proceed with the next Category of MIDI-CI.

After this first set of Transactions take place, a Device may freely use any Inquiry or Negotiation message as

required and independently from other Categories or messages of Inquiry and Negotiation.

5.3 MIDI-CI Transaction Messages

MIDI-CI Transactions are accomplished using Universal System Exclusive messages.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 16 Feb. 20, 2020

Message layout tables in this specification show the 0xF0 SysEx Start and 0xF7 SysEx End bytes, which are

required when using the MIDI 1.0 data format. In some AMEI/MMA protocols, including those carried

inside a Universal MIDI Packet, the F0 and F7 are omitted.

All messages conform to a common format with header and data as follows.

5.3.1 Standard Format for MIDI-CI Messages

All MIDI-CI messages use 0x0D as value for Universal System Exclusive Sub-ID#1.

The Universal System Exclusive Sub-ID#2 determines the Category of message and the function of each

message.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Device ID: Source or Destination (depending on type of message)

7F = to/from MIDI Port

00-0F = to/from MIDI Channels 1-16

10-7E = Reserved

0D Universal System Exclusive Sub-ID#1: MIDI-CI

1 byte Universal System Exclusive Sub-ID#2: Category and Type of

MIDI-CI Message

0x00-0F Reserved

0x10-1F Protocol Negotiation Messages

0x20-2F Profile Configuration Messages

0x30-3F Property Exchange Messages

0x40-6F Reserved

0x70-7F Management Messages

1 byte MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first*)

4 bytes Destination MUID (LSB first*)

nb bytes Data. Includes any necessary fields to suit the needs of each type

of MIDI-CI message.

F7 End Universal System Exclusive

*Note: Multibyte fields are generally LSB First unless defined by MIDI 1.0 as a byte sequence.

Device ID: Source or Destination (depending on type of message)

Values in this Universal System Exclusive Device ID are used for Channel addressing. Values 0x00-

0xF map to MIDI Channels 1-16. Messages with a Value of 0x7F are addressed to the whole MIDI

Port, not channelized.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 17 Feb. 20, 2020

Some MIDI-CI messages, such as Protocol Negotiation messages, are only valid when sent to a

whole MIDI Port 0x7F. See individual messages as defined in this document for whether each

message can be used on a per channel basis.

In a MIDI-CI inquiry message sent by the Initiator, this is the destination of the inquiry. Default

value is 0x7F = MIDI Port based inquiry. But value can be 0x00-0x0F to address a specific MIDI

Channel.

In a MIDI-CI reply message sent by the Responder, this is the source of the reply. Default value is

0x7F = MIDI Port based reply. But the value can be 0x00-0x0F to reply about a specific MIDI

Channel.

Values 0x00-0x0F are for 16 MIDI channels. This allows inquiries and negotiation on a specific

channel. This is useful for using Profile Configuration and Property Exchange on a per channel basis.

Values 0x00-0x0F shall not be used for Protocol Negotiation messages.

1 byte MIDI-CI Message Version/Format

In this 1.1 version of the MIDI-CI specification, the version number is 0x01.

4 bytes Source MUID

The MUID of the Device sending this message.

4 bytes Destination MUID

The MUID of the Device intended to receive this message.

Data

If the message contains any payload it is in this field. Some messages define multiple fields in the

Data field.

5.4 MIDI-CI Messages Format and Protocols

MIDI-CI enables switching between various protocol types. This MIDI-CI specification defines MIDI-CI

messages using a MIDI Universal System Exclusive message format for use with any protocol that supports

System Exclusive.

If MIDI-CI is used to negotiate to an AMEI / MMA standard protocol that does not support System

Exclusive, that protocol shall define equivalent MIDI-CI messages using native messages of that protocol.

5.5 Discovery Message

An Initiator shall establish connections to other MIDI-CI Devices by sending a Discovery message. The

Discovery message also declares the MUID of the Initiator. A Discovery message may be sent in response to

various events on the Initiator Device. Some examples of when a Discovery message might be sent include:

• A MIDI-CI capable Device should send a Discovery message after its power on and boot up

procedure is complete.

• A MIDI-CI capable Device should send a Discovery message when the user selects the MIDI-CI

Start button or similar autoconfiguration function on a MIDI Device.

• The Application Programming Interface (API) and/or Driver for MIDI services on a host computer

should notify all applications on the host when a new MIDI Device is connected and discovered. The

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 18 Feb. 20, 2020

API or applications should send a Discovery message to auto-configure interoperability with the new

Device.

• The Device has had it previous MUID invalidated and wants to re-establish MIDI-CI connections

using a new MUID.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F Device ID: 7F = to MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

70 Universal System Exclusive Sub-ID#2: Discovery

1 byte MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

7F 7F 7F 7F Destination MUID (LSB first) (to Broadcast MUID)

3 bytes Device Manufacturer (System Exclusive ID Number)

2 bytes Device Family (LSB first)

2 bytes Device Family Model Number (LSB first)

4 bytes Software Revision Level (Format is Device specific)

1 byte Capability Inquiry Category Supported (bitmap)

4 bytes Receivable Maximum SysEx Message Size (LSB first)

F7 End Universal System Exclusive

Four fields for Device Identification

The four fields described below identify the Device using the same data as defined by the “Device

Inquiry” Universal System Exclusive message (See MIDI 1.0 Detailed Specification). The data is

formatted as follows:

3 bytes Device Manufacturer

This is the System Exclusive ID of the Device manufacturer. For System Exclusive ID
values that are only 1 byte in length, the System Exclusive ID value is in the first byte and

the remaining 2 bytes are filled with zeroes: ID 00 00

2 bytes Device Family

This identifies the related group of models to which the Device belongs. The manufacturer is

free to determine the grouping of models and the format of the data in this field.

2 bytes Device Family Model Number

This identifies a specific model from the Device Manufacturer. The manufacturer is free to

determine the assignment of values and the format of the data in this field.

4 bytes Software Revision Level

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 19 Feb. 20, 2020

This is the version number of a Device model number. This is typically version of software

or firmware but may also be version of hardware. If a model undergoes any version update

or other design change that changes its midi implementation or capabilities as may be

discovered by MIDI-CI (including Property Exchange), then this Software Revision Level

shall be changed. The manufacturer is free to determine the format of the data in this field.

Capability Inquiry Category Supported

This field is a bitmap which reports the Categories of MIDI-CI messages the Device supports. A

value which is set high in any bit indicates support for some inquiry messages of that Category.

Support for all messages of that Category are not required to declare support.

The bitmap contains bits corresponding to the high nibble of the Sub-ID#2 of various MIDI-CI

messages.

Bit Category Supported Sub-ID#2 Range Description

0 0 0x00-0x0F Reserved – No Messages Defined Yet

1 1 0x10-0x1F Protocol Negotiation Supported

2 2 0x20-0x2F Profile Configuration Supported

3 3 0x30-0x3F Property Exchange Supported

4 4 0x40-0x4F Reserved – No Messages Defined Yet

5 5 0x50-0x5F Reserved – No Messages Defined Yet

6 6 0x60-0x6F Reserved – No Messages Defined Yet

7 none none Most significant bit of MIDI Data

Byte. This is always set to zero.

See Appendix D for a list of all MIDI-CI messages in all Categories.

Note: Management Messages (Sub-ID#2 value=0x70-0x7F) shall be supported by all

Devices that implement MIDI-CI. This MIDI-CI Discovery message and the associated

reply (following) that contain this field are both of that Management Message Category.

Receivable Maximum SysEx Message Size

1. All MIDI-CI Devices shall support System Exclusive message lengths of at least 128

bytes. The allowed values in the Receivable Maximum SysEx Message Size are 128 or

greater.

2. MIDI-CI Devices that have the ability to Initiate Transactions for Profile Configuration or

Property Exchange categories shall support message lengths of at least 512 bytes. The

allowed values in the Receivable Maximum SysEx Message Size are 512 or greater.

5.5.1 Timeout for Discovery

After sending a Discovery Message, an Initiator shall wait at least 3 seconds for all Reply to Discovery

Messages to be returned before timing out.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 20 Feb. 20, 2020

5.6 Reply to Discovery Message

When a MIDI-CI Device receives a Discovery message it shall become a Responder and send this Reply to

Discovery message. This message declares the MUID of the Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F Device ID: 7F = from MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

71 Universal System Exclusive Sub-ID#2: Reply to Discovery

1 byte MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

3 bytes Device Manufacturer (System Exclusive ID Number)

2 bytes Device Family (LSB first)

2 bytes Device Family Model Number (LSB first)

4 bytes Software Revision Level (Format is Device specific)

1 byte Capability Inquiry Category Supported

4 bytes Receivable Maximum SysEx Message Size (LSB first)*

F7 End Universal System Exclusive

*See the Receivable Maximum SysEx Message Size in Section 5.5

Note: This Reply to Discovery message is mandatory for all MIDI-CI Devices. Devices which do not support

any MIDI-CI Categories may optionally send a this reply to inform the Initiator of the existence of a device

which does not support any MIDI-CI functions.

5.7 Invalidate MUID Message

An Invalidate MUID message has 2 applications:

• A Device should send an Invalidate MUID message when it is shutting down or if for any other

reason the Device will not continue to use its MUID.

• An Invalidate MUID messages is used in mechanisms for resolving collisions of MUID when 2 or

more Devices declare the same MUID (see Section 5.7.1).

Every MIDI-CI Device shall process received Invalidate MUID messages.

If a Device receives an Invalidate MUID message with the Target MUID set to the same value as its own

MUID, it shall terminate any active Transactions and generate a new MUID.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 21 Feb. 20, 2020

If a Device receives an Invalidate MUID message with the Target MUID set to the same value as any other

Devices it has previously discovered, it shall terminate any active Transactions with that MUID and should

discard all cached information of Devices with the invalidated MUID.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F Device ID: 7F = to MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

7E Universal System Exclusive Sub-ID#2: Invalidate MUID

1 byte MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

7F 7F 7F 7F Destination MUID (LSB first) (to Broadcast MUID)

4 bytes Target MUID (the MUID to Invalidate) (LSB first)

F7 End Universal System Exclusive

When sending or receiving an Invalidate MUID message, a Device is not required to disable any enabled

Profiles or revert to previous Protocols. An Invalidate MUID message immediately ends all current, pending,

or outstanding Transactions that are using the Target MUID, including Property Exchange inquiries, replies,

and Subscriptions.

When a Device receives an Invalidate MUID message, it does not send any reply or confirmation message.

5.7.1 Resolving Collisions of MUID - Responder

If a Responder receives a MIDI-CI Discovery message with the Source MUID set to the same value as its

own MUID, then the Responder shall select one of two options to resolve the collision:

Option A, only applicable if the Responder has not yet used its MUID in any prior Transactions:

1. The Responder shall change its own MUID to a new value.

2. The Responder shall send a Reply to Discovery message with the new MUID value.

Option B:

1. The Responder shall reply with an Invalidate MUID message with the Target MUID set to the

duplicated MUID.

2. The Responder shall change its own MUID to a new value.

3. The Initiator shall change its own MUID to a new value.

4. Any Device or all Devices may Initiate a new Discovery Transaction

5.7.2 Resolving Collisions of MUID - Initiator

If an Initiator sends a MIDI-CI Discovery message and receives multiple replies and where two or

more of the Responders have the same MUID as each other, then:

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 22 Feb. 20, 2020

1. The Initiator shall send an Invalidate MUID message with the Target MUID set to the duplicated

MUID.

2. All Devices with the duplicated MUID shall change their MUID to a new value.

3. Any Device or all Devices may Initiate a new Discovery Transaction

5.8 NAK MIDI-CI Message

The MIDI-CI NAK message is used to respond to any message that a Device does not understand. Examples

of application for this NAK message include:

• Reply to a MIDI-CI message the Device does not support

• Reply to a MIDI-CI message with MIDI-CI message Version/Format the Device does not support*

• Reply to a malformed MIDI-CI message

• Reply to a Profile Enable or Disable message for a Profile the Responder does not support or does

not support on the requested channel.

Receiver response to a NAK message is undefined.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Device ID: Source

7F = from MIDI Port

00-0F = from MIDI Channels 1-16

10-7E = Reserved

0D Universal System Exclusive Sub-ID#1: MIDI-CI

7F Universal System Exclusive Sub-ID#2: MIDI-CI NAK

1 byte MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 23 Feb. 20, 2020

6. PROTOCOL NEGOTIATION
This mechanism selects a new protocol for communication between MIDI-CI Devices. The Protocol selected

for use between MIDI-CI Devices is common to both directions of a bidirectional connection. If Protocol

used is changed in one direction, the Protocol in the opposite direction is changed at the same time.

6.1 Protocol Types Supported

MIDI-CI enables switching to protocols supported by two Devices connected to each other. The choice of

protocols available in this revision of MIDI-CI are:

0x01 MIDI 1.0

0x02 MIDI 2.0 Protocol

Values 0x00, 0x03-0x7F are Reserved

6.2 Universal MIDI Packet Required
MIDI-CI Protocol Negotiation is dependent on the use of the Universal MIDI Packet format. If

MIDI Devices are not connected by a transport that supports the Universal MIDI Packet format, the

Protocol Negotiation should not be initiated. If it is initiated, the Protocol Negotiation has a very

high probability of failure.

6.3 Protocol Inquiry and Negotiation Mechanism

Initiator shall begin Protocol Negotiation with Initiate Protocol Negotiation. When Responder is ready to

switch Protocols, it shall reply with Responder Reply Protocol Capabilities message. At this point Initiator

may decide a Timeout before escaping negotiation or restarting the negotiation. Other Timeout and escapes

are defined and shown in the following diagram.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 24 Feb. 20, 2020

In case of failure, both Devices shall always return to “Previous Protocol”. In many cases Previous Protocol

will be MIDI 1.0. But in some cases, Devices might be using some other Protocol (Example MIDI 2.0

Protocol) and then start a negotiation to yet another Protocol. If that negotiation fails, the return to Previous

Protocol is not a return to MIDI 1.0 (Example MIDI 2.0 Protocol).

6.4 Initiate Protocol Negotiation Message

This initial message is both an Inquiry and a Report of Initiator capabilities.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

10 Universal System Exclusive Sub-ID#2: Initiate Protocol Negotiation

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

1 byte Number of Supported Protocols (np)

5 bytes Preferred Protocol Type:

Protocol

Byte 1

0x01=MIDI 1.0 0x02=MIDI 2.0

Protocol

Byte 2

Version Version

Protocol

Byte 3

Extensions Extensions

Protocol

Byte 4

Reserved *1

Set to 0x00

Reserved *1

Set to 0x00

Protocol

Byte 5

Reserved *1

Set to 0x00

Reserved *1

Set to 0x00

*1: Reserved field value is 0x00 (null). Other values may be defined in future
specifications.

(np-1)x5 bytes Optional: Another Supported Protocol in 5 bytes.

...

Optional: Last Supported Protocol

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 25 Feb. 20, 2020

1 byte Authority Level

See Section 2.5.1.

Supported Protocols:

Each Protocol supported by a Device is listed with a set of 5 bytes (Protocol Byte 1 - Protocol Byte 5). The

Protocol that is preferred by the Device should be the first in the list of Supported Protocols.

All Devices shall support MIDI 1.0 as one of the Protocol choices. If a Device only supports one Protocol, it

shall be MIDI 1.0.

The preferred choice of Protocol for the Device shall be the first one listed. Other Protocols supported shall

be listed in order of preference.

Using MIDI 1.0 Protocol

Protocol Byte 1, Protocol Type

The type number for MIDI 1.0 is 0x01.

Protocol Byte 2, Version

The version number for MIDI 1.0 is 0x00.

Protocol Byte 3, Extensions

If the 2 Devices agreeing to a MIDI-CI Protocol Negotiation are connected by a transport

that supports the Universal MIDI Packet format, then there are defined extensions available

for using MIDI 1.0. The Extensions field is a bitmap of extension flags or optional features.

At time of writing this version of MIDI-CI, there are 2 extensions defined. Further

extensions may be defined by the Association of Musical Electronics Industry and the MIDI

Manufacturers Association in future revisions of MIDI-CI or in the MIDI 2.0 Protocol

specification.

S = Size of Packet extension flag. When MIDI 1.0 Devices use the Universal MIDI Packet format

they shall be capable of handling messages of up to 64 bits in size. When S=0, message packets

exchanged shall not exceed 64 bits in size. When S=1, message packets of 96 bits and 128 bits in

size may also be exchanged. This larger size is necessary to support SysEx 8 and Mixed Data Set

messages.

J = Jitter Reduction Timestamps extension flag. When J=1 then Jitter Reduction Timestamps are

supported and shall be used preceding every MIDI 1.0 Protocol message.

When a Device reports S=0 and J = 1, then the Device shall be able to handle messages up to 64 bits

in size with 32 additional bits for JR Timestamps for a total combined size of 96 bits.

When a Device reports S=1 and J = 1, then the Device shall be able to handle messages of 128 bits in

size with 32 additional bits for JR Timestamps for a total combined size of 160 bits.

Using MIDI 2.0 Protocol

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 26 Feb. 20, 2020

Protocol Byte 1, Protocol Type

The type number for MIDI 2.0 Protocol is 0x02.

Protocol Byte 2, Version

The version number for Version 1.0 of MIDI 2.0 Protocol is 0x00.

Protocol Byte 3, Extensions

The Extensions field is a bitmap of extension flags or optional features. At time of writing

this version of MIDI-CI, the only extension defined at the time of this specification release

is Jitter Reduction Timestamps. Further extensions may be defined by the Association of

Musical Electronics Industry and the MIDI Manufacturers Association in future revisions of

MIDI-CI or in the MIDI 2.0 Protocol specification.

J = Jitter Reduction Timestamps extension flag. When J=1 then Jitter Reduction Timestamps are

supported and shall used preceding every MIDI 2.0 Protocol message.

Note: When Devices use MIDI 2.0 Protocol in the Universal MIDI Packet format, they shall be

capable of handling messages of up to 128 bits in size. When a Device reports J = 1, then the Device

shall be able to handle messages of 128 bits in size with 32 additional bits for JR Timestamps for a

total combined size of 160 bits.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 27 Feb. 20, 2020

6.5 Reply to Initiate Protocol Negotiation Message

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

11 Universal System Exclusive Sub-ID#2: Reply to Initiate Protocol Negotiation

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

1 byte Number of Supported Protocols (np)

5 bytes Preferred Protocol Type:

Protocol

Byte 1

0x01=MIDI 1.0 0x02=MIDI 2.0

Protocol

Byte 2

Version Version

Protocol

Byte 3

Extensions Extensions

Protocol

Byte 4

Reserved *1

Set to 0x00

Reserved *1

Set to 0x00

Protocol

Byte 5

Reserved *1

Set to 0x00

Reserved *1

Set to 0x00

*1: Reserved field value is 0x00 (null). Other values may be defined in future
specifications.

(np-1)x5

bytes

Optional: Another Supported Protocol in 5 bytes.

...

Optional: Last Supported Protocol

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 28 Feb. 20, 2020

Supported Protocols:

The Responder should reply with a list of all Protocols that it can support, in order of preference of the

Responder. However, the Responder may optionally adapt its list of supported Protocols to leave out

protocols that are not supported by the Initiator (as reported in the Initiate Protocol Negotiation message).

6.6 Set New Protocol Message

The Initiator selects new Protocol based on matching its own capabilities against the capabilities of the

Responder. Initiator sends the newly selected Protocol to the Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

12 Universal System Exclusive Sub-ID#2: Set New Selected Protocol

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

5 bytes New Protocol Type:

Protocol

Byte 1

0x01=MIDI 1.0 0x02=MIDI 2.0

Protocol

Byte 2

Version Version

Protocol

Byte 3

Extensions Extensions

Protocol

Byte 4

Reserved *1

Set to 0x00

Reserved *1

Set to 0x00

Protocol
Byte 5

Reserved *1
Set to 0x00

Reserved *1
Set to 0x00

*1: Reserved field value is 0x00 (null). Other values may be defined in future

specifications.

F7 End Universal System Exclusive

After the Initiator sends this Set New Protocol message, it shall switch its own Protocol while also waiting
100ms to allow the Responder to switch Protocol. The Initiator shall then send the next message, Test New

Protocol Initiator to Responder. (100ms is a guideline)

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 29 Feb. 20, 2020

After the Responder receives this Set New Protocol message, it shall switch its own Protocol. It also starts a

300ms timeout with expectation of receiving the Test New Protocol Initiator to Responder message from the

Initiator. (300ms is a guideline)

6.7 Test New Protocol Initiator to Responder Message

The Initiator sends this confirmation test message in the new Protocol. The Responder uses this to confirm

that the Protocol has been successfully established between Initiator MIDI Out and Responder MIDI In.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

13 Universal System Exclusive Sub-ID#2: Test New Protocol Initiator

to Responder

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

48

bytes

Test Data: string of 48 numbers in ascending order: 0x00, 0x01, 0x02

... 0x2E, 0x2F.

F7 End Universal System Exclusive

After the Initiator sends this test message, it shall start a 300ms timeout counter with expectation of receiving

a Test New Protocol Responder to Initiator message from the Responder. (300ms is a guideline)

After the Responder successfully receives this test message, it shall reply with the next message, the Test

New Protocol Responder to Initiator.

If the Responder does not successfully receive this test message before its 300ms timeout counter expires, it
shall reset its Protocol to the previous value. (300ms is a guideline)

6.8 Test New Protocol Responder to Initiator Message

The Responder sends this confirmation test message in the new Protocol. The Initiator uses this to confirm

that the Protocol has been successfully established between Initiator MIDI Out and Responder MIDI In (via

previous test) and between Responder MIDI Out and Initiator MIDI In.

Value Parameter

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 30 Feb. 20, 2020

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

14 Universal System Exclusive Sub-ID#2: Test New Protocol

Responder to Initiator

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

48

bytes

Test Data: string of 48 numbers in ascending order: 0x00, 0x01, 0x02

... 0x2E, 0x2F.

F7 End Universal System Exclusive

After the Initiator successfully receives this test message, it shall reply with the next message, the

Confirmation New Protocol Established.

If the Initiator does not successfully receive this test message before its 300ms timeout counter expires, it

shall reset its Protocol to the previous value. Then the Initiator can decide whether to restart Protocol

Negotiation. (300ms is a guideline)

6.9 Confirmation New Protocol Established Message

The Initiator sends this confirmation test message in the new Protocol. The Responder uses to confirm that

the Protocol has been successfully established.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

7F To/From whole MIDI Port

0D Universal System Exclusive Sub-ID#1: MIDI-CI

15 Universal System Exclusive Sub-ID#2: Confirmation New Protocol

Established

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Authority Level

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 31 Feb. 20, 2020

F7 End Universal System Exclusive

Ongoing MIDI messages may now be exchanged bidirectionally between the two Devices using the newly

established Protocol.

6.10 Subsequent Protocol Negotiation
If two Devices have used Protocol Negotiation to successfully negotiate to another Protocol and want to

negotiate again to another protocol (such as a negotiated return to MIDI 1.0) then the entire Protocol

Negotiation process shall be restarted. There is one difference in the process:

It is assumed that Protocol Negotiation generally starts between two MIDI Devices using MIDI 1.0

messages. However, after a Protocol Negotiation, the two Devices may be using another Protocol.

Therefore, Protocol Negotiation shall start using the negotiation messages in the current Protocol

(not always MIDI 1.0)

Also see Section 5.4

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 32 Feb. 20, 2020

7. PROFILE CONFIGURATION

Profiles define specific implementations of a set of MIDI messages chosen to suit a particular instrument,

Device type, or to accomplish a particular task. Two Devices that conform to the same Profile will have

generally have greater interoperability between them than Devices using MIDI without Profiles. Profiles

increase interoperability and ease of use while reducing the amount of manual configuration of Devices by

users.

7.1 Profile Configuration Mechanism

Profiles are controlled by the following Common Profile Configuration messages:

• Profile Inquiry

• Reply to Profile Inquiry

• Set Profile On

• Set Profile Off

• Profile Enabled Report

• Profile Disabled Report

More information about Profiles is defined in other specifications of MMA and AMEI.

7.2 Profile Inquiry Message

An Initiator may send this to request a list of Profiles that a connected Responder Device supports.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

20 Universal System Exclusive Sub-ID#2: Profile Inquiry

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

F7 End Universal System Exclusive

7.3 Reply to Profile Inquiry Message

When a Responder receives the Profile Inquiry message it shall reply with this message to report a list of

Profiles the Responder supports.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 33 Feb. 20, 2020

There are 2 lists of Supported Profiles in the message:

1. Profiles that are Supported and Currently Enabled

2. Profiles that are Supported but Currently Disabled

The Initiator may use this information to auto-configure the connection between the Devices for increased

interoperability.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

21 Universal System Exclusive Sub-ID#2: Reply to Profile Inquiry

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

2 bytes Number of Currently-Enabled Profiles (cep) (LSB first)

5 bytes Profile ID of First Currently-Enabled Profile:

Profile ID

Byte 1

0x7E Standard

Defined Profile

Manufacturer SysEx ID 1 Profile

Profile ID

Byte 2

Profile Bank Manufacturer SysEx ID 2 Profile

Profile ID

Byte 3

Profile Number Manufacturer SysEx ID 3 Profile

Profile ID

Byte 4

Profile Version Manufacturer Specific Info

Profile ID

Byte 5

Profile Level Manufacturer Specific Info

(cep - 1)

x 5 bytes

Optional: Profile ID of Other Currently-Enabled Profiles in sets of 5 bytes.

...

Optional: Profile ID of Last Currently-Enabled Profile

2 bytes Number of Currently-Disabled Profiles Supported (cdp) (LSB first)

5 bytes Profile ID of First Currently-Disabled Profile Supported

(cdp - 1) Optional: Profile ID of Other Currently-Disabled Profiles Supported in sets of 5 bytes.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 34 Feb. 20, 2020

x 5 bytes ...

Optional: Profile ID of Last Currently-Disabled Profile Supported

F7 End Universal System Exclusive

Profile ID

Each Profile has a 5 byte identifier. Standard Defined Profiles are those adopted by AMEI and

MMA. Each one uses the ID defined by each Profile Specification and by other AMEI/MMA Profile

related specifications. The value of the Profile ID Byte 1 is 0x7E (Universal)

Manufacturers may use MIDI-CI to control Profiles of their own proprietary design by using their

own System Exclusive ID. For System Exclusive ID values that are only 1 byte in length, the System

Exclusive ID value is in the first byte and the remaining 2 bytes are filled with zeroes.

Each Manufacturer SysEx ID can freely use the 2 bytes of Manufacturer Specific Info. These 2 bytes

allow up to 16384 different Manufacturer Profile Numbers.

Profile ID Byte 1 0x7E Standard Defined Profile Manufacturer SysEx ID 1 Profile

Profile ID Byte 2 Profile Bank Manufacturer SysEx ID 2 Profile

Profile ID Byte 3 Profile Number Manufacturer SysEx ID 3 Profile

Profile ID Byte 4 Profile Version Manufacturer Specific Info

Profile ID Byte 5 Profile Level Manufacturer Specific Info

Currently Enabled

These are Profiles that the Device supports and that are currently active at the time of inquiry. Some

Devices might have a Profile that is already active (Enabled) before receiving a Set Profile On

message. For example, a MIDI acoustic piano might be fixed to conform to a Piano Profile

Specification; Piano Profile is always Enabled.

Currently Disabled

These are Profiles that a Device can support but that are not currently active. When a Profile on a

Device is not active (Disabled), the Device does not currently conform to the requirements of the

Profile specification. But the Device can be switched to conform to the requirements of the Profile

specification using the Set Profile On message.

Note: If a Device does not support any Profiles, then the Device may send this Reply to Profile

Inquiry message with the Number of Currently-Enabled Profiles set to 0x00 and with the Number of

Currently-Disabled Profiles Supported set to 0x00.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 35 Feb. 20, 2020

7.4 Set Profile On Message

An Initiator may send this to enable a Profile on a Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

22 Universal System Exclusive Sub-ID#2: Set Profile On

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

5 bytes Profile ID of Profile to be Set to On (to be Enabled)

F7 End Universal System Exclusive

7.5 Set Profile Off Message

An Initiator may send this to disable a Profile on a Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

23 Universal System Exclusive Sub-ID#2: Set Profile Off

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

5 bytes Profile ID of Profile to be Set to Off (to be Disabled)

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 36 Feb. 20, 2020

7.6 Profile Enabled Report Message

A Device shall send this message if it has enabled a Profile.

This is an acknowledgement upon receipt of a Set Profile On message.

This is an informative message if any other event enables a Profile.

A Device shall send this message if it is unable to comply with a Set Profile Off message and the Profile

remains enabled.

The Profile Enabled Report message shall always have the Destination MUID field set to the Broadcast

MUID.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

24 Universal System Exclusive Sub-ID#2: Profile Enabled

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

7F 7F 7F 7F Destination MUID (LSB first) (to Broadcast MUID)

5 bytes Profile ID of Profile that is now Enabled

F7 End Universal System Exclusive

7.7 Profile Disabled Report Message

A Device shall send this message if it has disabled a Profile.

This is an acknowledgement upon receipt of a Set Profile Off message.

This is an informative message if any other event disables a Profile.

A Device shall send this message if it is unable to comply with a Set Profile On message and the Profile

remains disabled.

The Profile Disabled Report message shall always have the Destination MUID field set to the Broadcast

MUID.

Value Parameter

F0 System Exclusive Start

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 37 Feb. 20, 2020

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

25 Universal System Exclusive Sub-ID#2: Profile Disabled

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

7F 7F 7F 7F Destination MUID (LSB first) (to Broadcast MUID)

5 bytes Profile ID of Profile that is now Disabled

F7 End Universal System Exclusive

7.8 Profile Specific Data Message
Some Profile specifications might need to define some System Exclusive messages to support unique

features or to communicate data relating to that Profile ID. This message allows a Profile to send data that is

specific to the Profile ID without the need for a separately assigned Universal SysEx Sub ID. Profile

specifications may make use of this message and may freely define the contents of the Profile Specific Data

field.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

2F Universal System Exclusive Sub-ID#2: Profile Specific Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)*

5 bytes Profile ID

4 bytes Length of Following Profile Specific Data (LSB first)

nn bytes Profile Specific Data

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 38 Feb. 20, 2020

* Profile Specific Data messages shall not be sent to the Broadcast MUID unless the Profile Specification

defines the use of the Broadcast MUID. Messages sent to the Broadcast MUID shall not be larger than 512

bytes or shall have a defined chunking mechanism so the buffers of any connected receivers will not

overflow.

For future definition of a Profile Specific Data message, the designer should consider the application and the

capabilities of targeted receiver types. Some simple Responders might not be able to receive any message

larger than 128 bytes. See “Receivable Maximum SysEx Message Size” in Section 5.5.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 39 Feb. 20, 2020

8. PROPERTY EXCHANGE

Property Exchange is used to Inquire, Get, and Set many properties including but not limited to

Device configuration settings, a list of controllers and resolution, a list of patches with names and

other metadata, manufacturer, model number, and version.

Detailed information about the Header Data and Property Data used in Property Exchange messages

is defined in the Common Rules for Property Exchange specification. The MIDI-CI specification

contains only the base messages used for Property Exchange. Most of the definition for

implementing Property Exchange, including all defined properties and semantics, exists outside of

the MIDI-CI specification.

8.1 Property Inquiry and Negotiation Mechanism
Properties are exchanged by the following Common Property Exchange messages:

• Inquiry: Property Exchange Capabilities

• Reply to Property Exchange Capabilities

• Inquiry: Has Property Data

• Reply to Has Property Data

• Inquiry: Get Property Data

• Reply to Get Property Data

• Inquiry: Set Property Data

• Reply to Set Property Data

• Subscription

• Reply to Subscription

• Notify

8.2 Property Data May Be Sent in Multiple Chunks
A Device may choose to send a Property Exchange message as a single SysEx message or as a set

of multiple SysEx messages or “Chunks”.

When a complete Property Exchange message, with all defined SysEx fields and the payload

Property Data, exceeds the size of the “Receivable Maximum SysEx Message Size” of the other

Device (discovered in the initial Discovery Transaction between the Devices) the sender shall break

the message into multiple Chunks. A Device may also choose to send a message in multiple Chunks

for its own design requirements.

If the Device chooses to send Property Data in multiple Chunks, it shall specify the “Number of

Chunks in Message” and shall label each Chunk with a sequential “Number of This Chunk”. The

Number of This Chunk shall always start counting from a value of 0x0001.

If the sender Device does not know the total number of Chunks in advance, the Device shall set the

Number of Chunks in Message to 0x0000. Then when sending Chunks, the sender shall set the

Number of This Chunk for each Chunk in a sequential count as usual.

When Number of Chunks in Message is unknown, the final Chunk shall declare a new value for

Number of Chunks in Message to match the sequential count value of Number of This Chunk.

If a sender runs out of Property Data or otherwise needs to terminate a message before sending the

expected number of Chunks to match Number of Chunks in Message, then the final Chunk sent

shall indicate the end of data in one of two ways.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 40 Feb. 20, 2020

1. If the sender knows that all the Property Data sent is complete or usable, then the sender

shall change the Number of Chunks in Message to match the Number of This Chunk.

2. If the sender does not know if all the Property Data sent is complete or usable, then the

Number of This Chunk for the final Chunk shall be set to 0x0000.

If the sender runs out of Property Data before sending a final Chunk with data, then the sender shall

send one more Chunk with no Property Data to complete the data set as defined above.

8.2.1 No Chunking of Header Data

Any message that contains Header Data only and does not contain any Property Data shall not use

the Chunking mechanism. For any message that does not contain any Property Data, Number of

Chunks in Message shall be set to 1 and Number of This Chunk shall be set to 1.

Chunking Example: Data Sets that Require 6 Chunks:

Total Expected

Number of Chunks

For First Chunk to (Final-1 Chunk) For Final Chunk

Number of Chunks

in Message

Number of This

Chunk

Number of Chunks

in Message

Number of This

Chunk

Known Number: 6

Property Data is

Successful

6 1-5 6 6

Known Number: 6

But Property Data is

Bad

6 1-5 6 0

Known Number: 6

But Unexpected End

Before Chunk 6,

Property Data

Remains Good/Valid

6 1-4 5 5

Known Number: 6

But Unexpected End

Before Chunk 6,

Property Data is

Unknown or Bad

6 1-4 5 0

Unknown Number

Property Data is

Successful

0 1-5 6 6

Unknown Number

Property Data is

Unknown or Bad

0 1-5 6 0

8.3 Multiple Simultaneous Inquiries and Request ID
A Request ID allows the Device to support multiple messages or PE Transactions being sent and

received at one time. This is useful to prevent a larger PE message which is split over many chunks

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 41 Feb. 20, 2020

from blocking smaller requests. Each Device may support one or more Request IDs, with the

default being one Request ID. Every Chunk of a message shall contain the same Request ID. The

reply to an inquiry message shall contain the same Request ID as was sent in the associated inquiry

message.
As the Number of Simultaneous Property Exchange Requests Supported is indicative of the processing

power of the Device, the same pool of Request IDs should be used across all PE Inquiry types.

Request ID values are unique only to the connection between a specific Initiator and specific

Responder, determined by the MUID of those two Devices. The same Request ID value may be

active on a separate MIDI connection between a different pair of MUIDs without incurring a

collision.

8.4 Inquiry: Property Exchange Capabilities

An Initiator shall send this to exchange basic information with the Responder before sending and receiving

subsequent Property Exchange messages.

This inquiry does not need to be performed for every Property Exchange Transaction. Devices may cache

information discovered by this message so that this inquiry might be performed only once after the

Discovery Transaction and before starting any other Property Exchange inquiries.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

30 Universal System Exclusive Sub-ID#2: Inquiry: Property Data

Exchange Capabilities

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Number of Simultaneous Property Exchange Requests Supported

F7 End Universal System Exclusive

8.5 Reply to Property Exchange Capabilities

When a Responder receives the Inquiry: Property Exchange Capabilities message it shall reply with this

message to report basic information for sending and receiving PE messages.

Value Parameter

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 42 Feb. 20, 2020

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

31 Universal System Exclusive Sub-ID#2: Reply to Property Data

Exchange Capabilities

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Number of Simultaneous Property Exchange Requests Supported

F7 End Universal System Exclusive

8.6 Inquiry: Has Property Data

A Reserved message. Shall not be used until defined by AMEI/MMA.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

32 Universal System Exclusive Sub-ID#2: Inquiry: Has Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 43 Feb. 20, 2020

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB First)

nn bytes Property Data

F7 End Universal System Exclusive

8.7 Reply to Has Property Data

A Reserved message. Shall not be used until defined by AMEI/MMA.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

33 Universal System Exclusive Sub-ID#2: Reply to Has Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 44 Feb. 20, 2020

8.8 Inquiry: Get Property Data

An Initiator shall send this to discover Property Data in a receiving Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

34 Universal System Exclusive Sub-ID#2: Inquiry: Get Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data*

F7 End Universal System Exclusive

*This message does not include any Property Data as defined in this version of MIDI-CI. Set Length

of Following Property Data to 0x0000.

8.9 Reply to Get Property Data

A Responder shall send this reply after receiving an Inquiry: Get Property Data message.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 45 Feb. 20, 2020

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

35 Universal System Exclusive Sub-ID#2: Reply to Get Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

F7 End Universal System Exclusive

8.10 Inquiry: Set Property Data

An Initiator shall send this to set Property Data in a receiving Responder.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

36 Universal System Exclusive Sub-ID#2: Inquiry: Set Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 46 Feb. 20, 2020

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data*

F7 End Universal System Exclusive

8.11 Reply to Set Property Data

A Responder shall send this reply after receiving an Inquiry: Set Property Data message.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

37 Universal System Exclusive Sub-ID#2: Reply to Set Property Data

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 47 Feb. 20, 2020

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

F7 End Universal System Exclusive

*This message does not include any Property Data as defined in this version of MIDI-CI. Set Length

of Following Property Data to 0x0000.

8.12 Subscription
An Initiator may establish a Subscription to Property Data in a Responder using a Subscription

message. Subsequently, the Responder may then send updates for that Property Data via this

Subscription messages or may use this message to end the Subscription (depending on Header Data

as defined in the Common Rules for Property Exchange).

Note: An Initiator shall not send updates to the Property Data by this message but shall send updates

to the Property Data using an Inquiry: Set Property Data message instead.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Destination

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

38 Universal System Exclusive Sub-ID#2: Subscription

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 48 Feb. 20, 2020

F7 End Universal System Exclusive

8.13 Reply to Subscription
A Device shall send this reply after receiving a Subscription message.

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

39 Universal System Exclusive Sub-ID#2: Reply to Subscription

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

F7 End Universal System Exclusive

8.14 Notify Message

This is an informative message which may be sent by either Initiator or Responder, to report some types of

error messages or other information.

Errors are most commonly reported in Reply messages. See the Common Rules for Property Exchange

specification for details.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 49 Feb. 20, 2020

Value Parameter

F0 System Exclusive Start

7E Universal System Exclusive

1 byte Source

7F = to/from whole MIDI Port

00-0F = to/from MIDI Channels 1-16

0D Universal System Exclusive Sub-ID#1: MIDI-CI

3F Universal System Exclusive Sub-ID#2: Notify

01 MIDI-CI Message Version/Format

4 bytes Source MUID (LSB first)

4 bytes Destination MUID (LSB first)

1 byte Request ID

2 bytes Length of Following Header Data (in this Chunk) (LSB first)

nn bytes Header Data

2 bytes Number of Chunks in Message (LSB first)

0x0000 = Number of Chunks in Message is Unknown

2 bytes Number of This Chunk (count starts from 0x0001) (LSB first)

0x0000 = Final Chunk when Number of Chunks in Message is

Unknown

2 bytes Length of Following Property Data (in this Chunk) (LSB first)

nn bytes Property Data

F7 End Universal System Exclusive

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 50 Feb. 20, 2020

Appendix A: Minimum Requirements

To support MIDI-CI at the very minimum, every MIDI-CI Device shall do all of the following.

1) MIDI-CI Devices shall meet all of these general requirements:

- Support System Exclusive message lengths of at least 128 bytes

- Send and Respond to MIDI-CI Discovery messages

- Respond to Invalidate MUID Messages

2) MIDI-CI Devices shall implement multiple features, as defined in the MIDI-CI

specification, in order to properly and fully meet the general requirements listed in 1) above.

For example: To properly respond to MIDI-CI Discovery message, a MIDI-CI

Device must generate its own random MUID, detect any conflict between the MUID

of another Device with its own MUID and take steps to resolve the collision (not the

only requirements). To Respond to Invalidate MUID Message, a MIDI-CI

Device must be able to generate a new, different MUID (not the only requirement).

Even devices that do not implement any Category of MIDI-CI negotiations (Protocol Negotiation,

Profile Configuration, or Property Exchange) are encouraged to use MIDI-CI. The central feature of

the minimum requirements is the ability to Send and Respond to a MIDI-CI Discovery messages. A

MIDI-CI Discovery Transaction informs the MIDI system that a device exists on a connection and

provides fundamental, identifying data which is very useful for system configuration.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 51 Feb. 20, 2020

Appendix B: Avoiding Collisions of MUID

MIDI-CI relies on every Device on a MIDI connection having its own, unique MUID. If a collision

of MUID occurs, where more than one Device on a MIDI connection selects the same MUID,

MIDI-CI provides rules and mechanisms for resolving the collision (see Section 3.2.3). But it is

better if collision is avoided in the first place. Following are some suggestions for avoiding

collisions of MUID. None of the suggestions in this appendix are requirements for conformance.

Device Design

The chances of a collision of MUID is greatly reduced if all MIDI-CI Devices use good random

number generators for their MUIDs.

There are multiple methods to generate a good random number. Some possible designs may include

some of the following mechanisms:

• In any Device with a real time clock or high resolution timer, use current time as input seed

to the Random Number Generator. Do not use such a time when powering up, but of the

(first) use of an MUID, or another irregular event, to avoid MUID collisions when similar

Devices are powered up at the same time.

• Use the low bits of a high frequency timer (megahertz range), e.g. CPU clock cycles.

• Devices with a unique serial number might include it in the RNG seed

• Events and incoming numbers from outside can be used for a RNG seed, too. E.g. data in

incoming non-MIDI data (e.g. UDP/TCP source port numbers, hash or CRC on a series of

data coming in on different interfaces), time of arrival of incoming data.

• USB and/or network topology can be used to seed the RNG.

• Desktop PC Operating Systems generate good Random Numbers. Software should use

system supplied numbers.

• Many high powered MCUs have built in random number generators.

• Use onboard circuitry to generate noise for use as an input seed

• Note that simulation of Random Number Generators that use floating pins or

clocks/oscillators with logic gates will not likely generate a random number.

Manufacturer Suggestions to Users
Device manufacturers can help users to avoid the chances of a MUID collision with system

configuration advice including the following:

• Connect one Device to one Device. Do not use MIDI Thru. Do not use MIDI merger

(especially for low power Devices).

• Connect directly by USB to a Host to get unique addressing for one Device on one Port.

• If you need to merge MIDI streams, use an intelligent Central Hub or Connection Manager

that acts as a Device MUID proxy, translating MUID in all messages to/from the colliding

Devices.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 52 Feb. 20, 2020

Appendix C: MIDI Chaining Limitation

It is strongly recommended not to use MIDI Thru ports or a MIDI merger when using MIDI-

CI.

Behavior is undefined.

MIDI-CI Negotiations will work reliably on a bidirectional link between two Devices that both

support MIDI-CI. MIDI-CI does not support all topologies that MIDI 1.0 allows. MIDI Thru ports

add a complication that might cause significant errors. A MIDI merger Device may also often

introduce significant errors.

Some MIDI-CI Devices may provide an intelligent MIDI Thru function or an intelligent MIDI

merge function that performs any conversions necessary to support such topologies and help

mitigate potential incompatibility issues for the user. The details of such a design are not defined in

this version of MIDI-CI.

Device #3 does not have

the 2-way connection

necessary for MIDI-CI. It

may not be able to

support changes that are

negotiated between

Device #1 and Device #2.

Behavior is undefined.

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 53 Feb. 20, 2020

Appendix D: List of All MIDI-CI Messages

List of all MIDI-CI Messages sorted by Universal System Exclusive Sub-ID#2.

Universal System Exclusive Sub-ID#2 declares the Category and Type of MIDI-CI Message:

0x00-0F Reserved

0x10-1F Protocol Negotiation Messages

0x20-2F Profile Configuration Messages

0x30-3F Property Exchange Messages

0x40-6F Reserved

0x70-7F Management Messages

Sub-ID#2 Message Type Message Source

Category 0: Reserved Space

0x00-0x0F Reserved

Category 1: Protocol Negotiation Messages

0x10 Initiate Protocol Negotiation Message Initiator

0x11 Reply to Initiate Protocol Negotiation Message Responder

0x12 Set New Selected Protocol Initiator

0x13 Test New Protocol Initiator to Responder Initiator

0x14 Test New Protocol Responder to Initiator Responder

0x15 Confirmation Protocol Established Initiator

0x16-1F Reserved

Category 2: Profile Configuration Messages

0x20 Profile Inquiry Initiator

0x21 Reply to Profile Inquiry Responder

0x22 Set Profile On Initiator

0x23 Set Profile Off Initiator

0x24 Profile Enabled Report Initiator or Responder

0x25 Profile Disabled Report Initiator or Responder

0x26-2E Reserved

0x2F Profile Specific Data Initiator or Responder

Category 3: Property Exchange Messages

0x30 Inquiry: Property Exchange Capabilities Initiator

0x31 Reply to Property Exchange Capabilities Responder

0x32 Inquiry: Has Property Data(Reserved)

0x33 Reply to Has Property Data(Reserved)

0x34 Inquiry: Get Property Data Initiator

0x35 Reply to Get Property Data Responder

0x36 Inquiry: Set Property Data Initiator

0x37 Reply to Set Property Data Responder

0x38 Subscription Initiator or Responder

0x39 Reply to Subscription Initiator or Responder

0x3A-3E Reserved

0x3F Notify Initiator or Responder

M2-101-UM MIDI Capabilities Inquiry (MIDI-CI)

Version 1.1 Page 54 Feb. 20, 2020

Categories 4-6: Reserved Space

0x40-6F Reserved

Category 7: Management Messages

0x70 Discovery Initiator

0x71 Reply to Discovery Responder

0x72 Invalidate MUID Initiator or Responder

0x73-7E Reserved

0x7F NAK Initiator or Responder

	Table of Contents
	1. INTRODUCTION
	1.1 Background
	1.2 Layer Model for MIDI-CI
	1.3 Related Documents:
	1.4 Future Pending Documents:
	1.5 Terminology
	1.6 Reserved Words and Specification Conformance

	2. TOPOLOGY
	2.1 Bidirectional
	2.2 Initiator and Responder Relationship
	2.3 Bidirectional Negotiation for Bidirectional Settings
	2.4 Bidirectional Negotiation for Single Direction Settings
	2.5 Selecting Initiator for Bidirectional Negotiation for Bidirectional Settings
	2.5.1 Authority Level
	2.5.2 User Selected Initiator
	2.6 MIDI-CI Proxy Device

	3. Message Addressing and MUID
	3.1 System Exclusive Device ID Field
	3.2 MIDI-CI Device’s MUID
	3.2.1 Generating a MUID
	3.2.2 Broadcast MUID
	3.2.3 Potential Collisions of MUID

	4. Establishing a MIDI-CI Connection
	4.1 The First MIDI-CI Transaction: Discovery
	4.2 Subsequent Transactions

	5. MIDI-CI COMMON RULES AND GUIDELINES
	5.1 Categories of MIDI-CI Messages
	5.2 MIDI-CI Transactions - Order of Processing
	5.3 MIDI-CI Transaction Messages
	5.3.1 Standard Format for MIDI-CI Messages
	5.4 MIDI-CI Messages Format and Protocols
	5.5 Discovery Message
	5.5.1 Timeout for Discovery
	5.6 Reply to Discovery Message
	5.7 Invalidate MUID Message
	5.7.1 Resolving Collisions of MUID - Responder
	5.7.2 Resolving Collisions of MUID - Initiator
	5.8 NAK MIDI-CI Message

	6. PROTOCOL NEGOTIATION
	6.1 Protocol Types Supported
	6.2 Universal MIDI Packet Required
	6.3 Protocol Inquiry and Negotiation Mechanism
	6.4 Initiate Protocol Negotiation Message
	6.5 Reply to Initiate Protocol Negotiation Message
	6.6 Set New Protocol Message
	6.7 Test New Protocol Initiator to Responder Message
	6.8 Test New Protocol Responder to Initiator Message
	6.9 Confirmation New Protocol Established Message
	6.10 Subsequent Protocol Negotiation

	7. PROFILE CONFIGURATION
	7.1 Profile Configuration Mechanism
	7.2 Profile Inquiry Message
	7.3 Reply to Profile Inquiry Message
	7.4 Set Profile On Message
	7.5 Set Profile Off Message
	7.6 Profile Enabled Report Message
	7.7 Profile Disabled Report Message
	7.8 Profile Specific Data Message

	8. PROPERTY EXCHANGE
	8.1 Property Inquiry and Negotiation Mechanism
	8.2 Property Data May Be Sent in Multiple Chunks
	8.2.1 No Chunking of Header Data
	8.3 Multiple Simultaneous Inquiries and Request ID
	8.4 Inquiry: Property Exchange Capabilities
	8.5 Reply to Property Exchange Capabilities
	8.6 Inquiry: Has Property Data
	8.7 Reply to Has Property Data
	8.8 Inquiry: Get Property Data
	8.9 Reply to Get Property Data
	8.10 Inquiry: Set Property Data
	8.11 Reply to Set Property Data
	8.12 Subscription
	8.13 Reply to Subscription
	8.14 Notify Message

