Advanced Streaming Format (ASF)
Specification

February 26, 1998
Public Specification Version 1.0

Co-authored by Microsoft Corporation and Real Networks, Inc.
© 1997-1998 Microsoft Corporation. All rights reserved.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 1 of 56

[l INTRODUGCTION ..oieiiieieieiietetetsteesesesesesesessesessssesesesesesesesesasasassssssssesssssssssssnssssassesssesssssesssnsnssesssssssesssesesseees 6|
1 DISCLAIMER.......cctutiiiiiiiiiiitttitteetiaetbeeteeessasssseetsesssassssseeseesssassasseessasssassasbesseasssasssbsesssassessanbbesasssssssnsbreseeasas 6
E.Z ST i 2o 6
3 DESIGN GGOALS .. .utttiiiiiiiieiitteite e e e ieettbeeteesssasssbbeeteasssassssseeseasssassasseeseesssassabbeeeeasssesssbbeeeeassessanbbebaeasssssnnbbaseeasas 6
EA e = [§

R ASE FEATURES.......ooooeoeeoeeeeeeeeeeeeseeeeeeeeeseeveeeseeseeneseesneeesnesnenssnssnenesnsenenssnssnenssnsenenssnssnsnssntsneessnesneessnes 8|
P.1 EXTENSIBLE IMEDIA TYPES.....iiettssssssssssssssssssssssssssnsssssnsnsnsnsnnnsnsnsnsssnsnsnsssnsnsnnnnnsnsnsnsnsnnnnnrene 8
P.2 COMPONENT DOWNLOADuvvviviieeeiesiuteeieeessaseisseresesssssasssesssesssssassssssessssssamsssssessssssmmsssssessssssmmsssesessssssmmrssees 8
D3 SCALABLEMEDIA TYPES......ooooooooooooeoooeemsoseeerseeeersseeeeerseeeeerseeeeereseeeeesseeeerseeeeeeseeeeereeeeerseeeereseeeeersemeeeree 8
? AUTHOR-SPECIFIED STREAM PRIORITIZATIONuvvieieeeeiesseeieeseseesseesesessessssssassesssaessssssssssssssssessessessssseesses 8
5 YIS R = = N X = T —— 8

P.6 BIBLIOGRAPHIC INFORMATIONuuuuuuuururunnsusnsnsnsnsssnsssene 8

B FILE FORMAT ORGANIZATIONoiiiiieteteteestsesesesesesesesessessesesesesesesesessnsasassssssssssssesssnssenenenesesssesesesesnses 9l
3.1 AASE OBJIECT DEFINITION L.uvvvviiiiiieiiurteeteessiesiisseseeessessassssesssssssasssssesssssssamssssssssssssamssssssesssssmsssssssesssesmmssssseesss 9
3.2 HIGH-LEVEL FILE STRUCTURE ..o, 9
3.3 AALSE HEADER OBUJIECTuuuutiiiieiiiiiitteeteeeiiaiustertsesssasisssesssesssasissssssssssssssssssssssssssssssssssesssessssssssesssessnssssseesses 10
3.4 S B N N O =N = s — 10
3.5 AALSE INDEX OBJIECTiciutitiiiie i i ieiittieieeeieeetittetteeessasaasbeetsasssassssseessessaasssssesssassessssssesseassesssssesesassessnnrrnseeess 10
3.6 MINIMAL IMPLEMENTATION u.uuuttttssssssssssssssssssssnsssssnsssssnsssssnsnsnnnsnsnsnsnsnssnnnnnnsnsnsnsnnnnnsnnnrnsnsnnnne 11

B ADDITIONAL CONSIDERATIONSovooeeeeeeeeeeeeeeeteeeeeeereeereereeneeseeereeseseeaeseeeeeesesnessnenenssesnensseenenssrcnecs 12|
.1 B LT LT = 12
1.2 SEND TIME VS. PRESENTATION TIMEuuuviiiiiiiiiiiuteetteessesiisseetsesssssessesesesssssssssssssesesssesmssesssessssssmsssseesssssnn 12
1.3 SCALABLE MEDIA TYPES...oosssosososososo oo 12
.4 MULTIMEDIA COMPOSITION t1vviiiiiiiiutrreteeeeesiaasssseessssssassssssessssssamssssssssssssasssssssessssamssssseesssssmmsssseesesssmnsmsse 12,
N e N = 14|
b.1 HEADER OBUJIECT ..uvvtttiiiiiiiiutteeiiesteeiesssseessssssaassssssssssssasssssssssssssasssssssssssssassssssssssssssssssssesssssssmsssssesssssssanssres 14
b.2 FILE PROPERTIES OBJECT voovooosososososososos oo, 14
b.3 STREAM PROPERTIES OBJIECT ..uvvviiiiiiiiiitttteeeteetiaaissreretesssesisrsssssssssiamssssssssesssamssssssssesssssmsssssssessseimssssssessssin 15|
531 Dala UMt EXIENSON ODJECT .o ooosoesooeosoessoeosoessosssoessoessoessoesooesooessoesosessoesssesooersoens 18

b.4 CONTENT DESCRIPTION OBJIECT ...eeiiiiietvereieteeesesiusreetsesssesasssesssessssssssesssssessssmmsssssssssssesmsssesssesssssmmssssssesssssnn 19
b.5 SCRIPT COMMAND OBUJIECT ...vtvtiieieieseeuseeeeeesessassneeeessssssassssssssesssssmmssestessssssmmsssseessssssmmnsseessesssmmnrsseseessessne 21
b.6 IMIARKER OBUJECT ..uvvvviiiiiieeutteetteeseesessseseeasssssaassssesssssssasssssssssssssssssssssssssssasssssssssssssssssssesssssssmsssssesssssssemssrres 22
5.7 COMPONENT DOWNLOAD OBJECToooooovvoooooersoeeersseeeeeeseeeerseeeeeeseeeeeeseeeerseeeeeseeeeeereeeeerseeeersseeeeereeeeerees 23|
E.S STREAM GROUP OBJECT ...veeveeeeeeeeeeeeeeeteeseeeeesneeeseeesesenesenssnesessseesnssenssenssessseesssessssesssensseesessreessesesesenesoes 24

0 SCALABLE OBJECT .o 25
B.10 PRIORITIZATION OBJIECT .uuviiiiiiiiiiiitieeieeeieiatteeteesssesiasteseessssssasssssesssssssassssesssssssmssssssssssssssmsssssssesssessmssssssesss 26
B.11 MUTUAL EXCLUSION OBJECTuvvtiiiiiiiieiitteiiieseeeieuteeeeesesssaassesesssesssasssssesssesssesassssssesesesamssseeeseessmmmnsreeees 27
B12 INTER-MEDIA DEPENDENCY OBJIECT oooiooooooooooooosooooosoosoosssossssssssssosssssssoeessessssessmesoeesseessesssersoeeseessoersore 27|
ST =7 TN TcX O =N = o s 28
B.14 INDEX PARAMETERS OBJIECTuuvviiiiieiiiiiutteeteeseeaiissseseessssssasssssessssssaassssesssssssmmssssssssssssmsssssssesssessmssssssesss 28
IS oo N =l V- =TI =0 =N = s —— 29
N NV e = N O =N = o ST T T —— 30

B DATA OBJIECT .iiiiititiitiisieteteieieiesestststesesesesesesestatsesseesesssstaeseassesessssssessasstsesesesssatatasassesesesssssasasseaesesessessasssace 31
A ASE DATA UNIT DEFINITION.......cocuuttiiieeiieiuterieeessesissesteesssssissessssssssssssesssssssssssssssesssessmsssseeessessmmssseesses 31

E.Z ASE DATA UNIT EXAMPLES..........oo.cooooooooooeesooeeersseeeesseeeeesseeeersseeeesseeeeereeeereeeeereeeeerseeeerseeeereeeeersee 33
B.2.1 Complete Key Frame EXAMPIE:c.oooiiiiiieieeeeeees et see st e sne e eneeneeeeseeseesneeneeneenseses 33
5.2.2 Partial JPEG EXAMPIEccoiiiiie ettt steeeaeeee e e sseasteenbeentesssesseesseesseenseenseenes 33
5.2.3 Three Delta FrameS EXAMPDIEcc.vecuieeiceeeeeee ettt et e e enteeneesteesreesreenseeneeenes 34

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 2 of 56

AN e =N = o 35|
B STANDARD ASE MEDIA TYPESoooovoeeeeeeeeeeeeeeeeeteeeeeeereeereereseeseseeeeeeseseeaesnsnenssesnenssesnenssesncneeesneesenensscs 36|
L AUDIOIMEDIA TYPE...uiuteieieeeeeeeeeeeeeeeeseeeeevererseseressesesersesesessesesessssesessesesnssssnsnssesnsnessnsessssnensnssnsesssseseesesece 3§|
S e 10 o L= U o (Lo T T T T —— 37|

B.2 N = Y N =Y N 5 7 T —— 38
B.3 I_MAGE MEDIA TYPE ... 38
8.4 T o = Y T oYY = ST ——— 39
B.5 TEXT IMIEDIA TY PE ... ccuuutiiiiiiiiiititiiie e e e ieetttt et eeeessaabbbeeeeeessasbbbeeeseessassasbeeaeesssasssbbeeasasssassssbenssasssasssbbnnnaasssasan 39
8.6 IMIIDT IMEDIA TY PE ..oiiutiiiiiteiiiiiteieeeetteeseetessssssessssassesssassessessssssssansssesanssssssnssssssanssnesanssssssnssssssssenessssesessnnes 40
B.7 COMMAI:ID MEDIA TYPE.................. OO OO PO OO PO PO O PO PO O PO PO O PO PO PO PO PO PO PO R PO POTR PO 41
5.8 MEDIA-OBJIECTS (HOTSPOT) IMEDIA TYPE ...ttt ettt sbe st sbeneeneseeneens 42
HEENE S A 46|
JAPPENDIX Az ASE GUIDS........covetieeeeeteeeeeeteeeeeeete ettt eeneteteeeteteeneseteasesesensesesensanesessasesssesessasssessaseseneans 47|
IAPPENDIX B: BIT STREAM TYPESooeeoeeeeeeeeeeeeeeeeeeeeeeveeeeeeserenseseeenseseeenseseeessesneessesneessesnenssesnenssnenseesnensscs 49|
ESCII .. 49
[T S T —— 49
CLUTI 0 ————— 49
L 50
WINTEO O]) = ——— 50
IAPPENDIX C: GUIDS AND UUIDS.......cooeoieieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeseeeeseeseeessnesseessneesenesnensenesnenssnesnesnensenesnenene 51|
NTRODUGCTION ..eviisieueeeessneeessssnsesssenesesssnseessamsesessanesesssnssessamsesessmnesessmsessssamsssessnnesessssessssmmsessssnseessomnessssmmsesessoseeesen 51

N anY 7 N AT N T 51
BEPECIFICATION............coooovresoeereseeeerseeeerseeeeeesseeeeessseeeersseeeeeseeeeerseeeeeseeeeeerseeeeerseeeerseeeeeerseeeereeeerseeeeeeeseeeerseeeerees 51
E.l Format............. oo ORI 5]

C.2 AlQorithms for Creating 8 GUIDooeieiiieieiiieeeieetese ettt seeesteseeiesreseeneas 52

C.3 String Representation Of GUIDS.........ccveiuicicececeec ettt e eaetees e et eeneeeneesneesreenseeneeenes 54

C.4 Comparing GUIDS. ..o 5_4|

C.5 Node IDswhen no IEEE 802 network card isavailable............cccccooocuiiiiciiiiiiiiii e 55

S R T Ao =TT — 56

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 3 of 56

Errata

The following changes have been made to the November 12, 1997 version of this specification:

The final paragraph of Section 1.2 was modified to indicate that the semantics of the ASF Header Object must be
received before the ASF Data Object can be interpreted. Previous versions inadvertently implied that the header
object format itself must be transmitted which would have precluded the use of session announcement protocolsto
convey thisinformation.

The text was changed in Section 3.2 to indicate that the Header Object should be the first object in an ASF file.

Clarifications were made within Section 5.3 (Stream Properties Object) concerning the implementation of the

following fields:

* The specific timeline reference of Start Time and End Time

* Guidelines for the computation of Maximum Bit Rate and Average Bit Rate

e Guidelines for the computation of Average Data Unit Size and Maximum Data Unit Size

» Clarification of the purpose of preroll

* Clarification on the semantics of the Seekable Flag

* Anexplanation is provided asto why zero is not avalid Stream Number value to refer to a specific media
stream.

* Removed an assumption in the Full Data Unit Presentation time flag field that the presentation timeisin
milliseconds.

In Section 5.6 (Marker Object) it was stated that the same invalid offset value as that used in the Index Object
(Section 7) isalso used in the Marker Object to signify invalid offsets.

The Index Entry Time Interval of Section 5.14 (Index Parameters Object) was changed to be a UINT 32 (instead of
16) to make it conform to the Index Entry Time Interval of the Index (i.e., Section 7). The text was also changed in
to indicate the indexing indices are in terms of presentation time.

The text was altered to state in Section 6.1 (ASF Data Unit) that if an object containing a clean point flag is
fragmented, the clean point flag is set for all fragments of that object.

An explanation is given to what the Block Position and Index Entry Count fields refer in the Index Object of Section
7. Aninvalid offset value is defined for sparse indexes. Also, made explicit that the Entry offsets are ordered
according to the ordering specified by the Index Parameters Object, thereby permitting the same stream to be
potentially indexed by multiple Index Types (e.g., Nearest Clean Point, Nearest Object, Nearest Data Unit).

Clarified that the Seek to Marker command (of Section 8.8) was in reference to indices to the Markers field of the
Marker Object defined in Section 5.6.

Corrected the typographical error within Section 8.8 that gave the same definition for , vertical resolution* as was
previoudly given for ,horizontal resolution”. Also, an editorial comment referring to earlier versions of the
specification was removed from the Command Entry Structure Notes.

Open issues:
* When the size of a Data Unit is computed, does that size include the Data Unit’s header? Currently the answer
is,yes".

» Do we need a Data Unit Count field within the SPO?

» How should we word a statement that the decision whether or not the Data Unit Header information is sent
across the wire or not is a data communications protocol decision and is therefore outside of the scope of this
specification?

The following changes have been made to the September 30, 1997 version of this specification:

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 4 of 56

It should be explicitly noted that length fields of Unicode Strings indicate the number of Unicode , characters"
within the field, while length fields of ASCII or character strings indicate the number of bytes within the field.

In Section 5.4 (Content Description Object):
* Added Field Type values for recording RTP and RTCP information (in other words, see RFC 1889).

In Section 6.1 (ASF Data Unit):

» Renamed the Object ID to Object Number to avoid confusion arising from the fact that all other Object ID
instances refer to GUID values.

« Madeexplicit our original intention that fragmentation and grouping could not coexist in the same ASF Data
Unit instance.

» Made explicit that if objects containing clean points were grouped, then the clean point flag would only refer to
the first object in the grouping.

» Explicitly noted that grouped objects may have different send times and that the difference isindicated in the
16-bit Delta Time.

« Explicitly noted that if an object containing a clean point was fragmented, the clean point flag would only be set
for the first fragment.

In Appendix A (GUID values):

» Added inthe GUID for the Extension Object.

e Added inthe GUID for the ,, RTP Extension Data“ Extension Object.
e Added in the GUID for the ASF Placehol der Object.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 5 of 56

1 Introduction

1.1 Disclaimer

This document presumes a basic level of multimedia and networking knowledge on the part of the reader. Anyone
not familiar with basic multimedia concepts such as audio and video compression, multimedia synchronization, and
so on. may misunderstand some of the terminology or arguments presented in this document.

1.2 Whatis ASF?

Advanced Streaming Format (ASF) is an extensible file format designed to store synchronized multimedia data. It
supports data delivery over awide variety of networks and protocols while still proving suitable for local playback.
The explicit goal of ASFisto provide abasis for industry-wide multimediainteroperability, with ASF being
adopted by all major streaming solution providers and multimedia authoring tool vendors.

Each ASF fileis composed of one or more media streams. The file header specifies the properties of the entirefile,
along with stream-specific properties. Multimedia data, stored after the file header, references a particular media
stream number to indicate its type and purpose. The delivery and presentation of all media stream datais
synchronized to a common timeline.

The ASF file definition includes the specification of some commonly used media types (see Section 8). The explicit
intention is that if an implementation supports media types from within this set of standard media types (in other
words, audio, video, image, timecode, text, MIDI, command, or media object), then that media type must be
supported in the manner described in Section 8 if the resulting content is to be considered to be ,, content compliant*
with the ASF specification. Implementations are free to support other media types (in addition to the currently
defined standard media types) in any way they see fit.

Finally, ASF is said to support the transmission of ,live content” over a network. This refers to multimedia content
which may or may not ever become recorded upon a persistent media source (for example, adisk, CD-ROM, DVD,
etc). Thisuse explicitly and solely means that information describing the multimedia content must have been
received before the multimedia dataitself is received (in order to interpret the multimedia data), and that this
information must convey the semantics of the ASF Header Object. Similarly, the received data must conform to the
format of the ASF data units. No additional information should be conveyed by this term. Specifically, this use
explicitly does not refer to (or contain) any information about network control protocols or network transmission
protocols. It refers solely to the order of information arrival (header semantics before data) and the data format .

1.3 Design Goals

ASF was designed with the following goals:

* Tosupport efficient playback from media servers, HTTP servers, and local storage devices.

* To support scalable media types such as audio and video.

» To permit asingle multimedia composition to be presented over a wide range of bandwidths.

» Toalow authoring control over media stream relationships, especially in constrained-bandwidth scenarios.

* To beindependent of any particular multimedia composition system, computer operating system, or data
communications protocol.

1.4 Scope

ASF isamultimedia presentation file format. It supports live and on-demand multimedia content. It can be used as a
vehicleto record or play back H.32X (for example, H.323 and H.324) or MBONE conferences. ASF files may be
edited. ASF datais specifically designed for streaming and/or local playback.

ASFisnot:

e ASFisnot awireformat. Rather, ASF is data communications ,agnostic.“ Theoretically, ASF data units may
be carried by any conceivable underlying data communications transport. ASF is similarly agnostic about how
the datais packetized by network protocols (for example, whether the multimedia datais sent in an interleaved
or non-interleaved fashion).

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 6 of 56

ASF is not anetwork control protocol. However, ASF files contain information that should prove useful to
control protocols.

ASF is not areplacement for MPEG. Rather, encoded MPEG content can be contained within ASF files and
optionally synchronized with other media.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 7 of 56

2 ASF Features

2.1 Extensible Media Types

ASF files permit authors to easily define new mediatypes. The ASF format provides sufficient flexibility to allow
the definition of new media stream types that conform to the file format definition. Each stored mediastreamis
logically independent from all others unless a relationship to another media stream has been explicitly established in
the file header.

2.2 Component Download

Stream-specific information about playback components (for example, decompressors and renderers) can be stored
in the file header. Thisinformation enables each client implementation to retrieve the appropriate version of the
required playback component if it is not already present on the client machine.

2.3 Scalable Media Types

ASF is designed to express the dependency relationships between logical ,,bands* of scalable mediatypes. It stores
each band as a distinct media stream. Dependency information among these media streamsis stored in the file
header, providing sufficient information for clients to interpret scalability options (such as spatial, temporal, or
quality scaling for video) in a compression-independent manner.

2.4 Author-specified Stream Prioritization

Modern multimedia delivery systems can dynamically adjust to changing constraints (for example, available
bandwidth). Authors of multimedia content must be able to express their preferences in terms of relative stream
priorities as well as a minimum set of streams to deliver. Stream prioritization is complicated by the presence of
scalable mediatypes, sinceit is not always possible to determine the order of stream application at authoring time.
ASF allows content authors to effectively communicate their preferences, even when scalable media streams are
present.

2.5 Multiple Languages

ASF is designed to support multiple languages. Media streams can optionally indicate the language of the contained
media. Thisfeatureistypically used for audio or text streams. A multilingual ASF fileindicates that a set of media
streams contains different language versions of the same content, allowing an implementation to choose the most
appropriate version for a given client.

2.6 Bibliographic Information

ASF provides the capability to maintain extensive bibliographic information in a manner that is highly flexible and
very extensible. All bibliographic information is stored in the file header in Unicode and is designed for multiple
language support, if needed. Bibliographic fields can either be predefined (for example, author and title) or author-
defined (for example, search terms). Bibliographic entries can apply to either the whole file or a single media
stream.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 8 of 56

3 File Format Organization

3.1 ASF Object definition

The base unit of organization for ASF filesis called the ASF Object. It consists of a 128-bit globally unique
identifier (GUID) for the object, a 64-bit integer object size, and variable length object data. The value of the object
sizefield isthe sum of 24 bytes plus the size of the object datain bytes.

16BYteS | opject ID

8 Bytes Object Size

Object Data

7?Bytes ==

Figurel ASF Object

This unit of file organization is similar to the Resource Interchange File Format (RIFF) chunk, which isthe basis for
AVI and WAV files. The ASF object enhances the design of the RIFF chunk in two ways. Firgt, thereisno need
for a central authority to manage the object identifier system, since any computer with a network card can generate
valid, unique GUIDs (see Appendix C). Second, the object size has been chosen to be large enough to handle the
very large files needed for high-bandwidth multimedia content.

All ASF objects and structures (including data unit headers) are stored in little-endian byte order (the inverse of
network byte order). However, ASF files can contain media stream data in either byte order within the data unit.

3.2 High-level File Structure

ASF files are logically composed of three top-level objects: the Header Object, the Data Object, and the Index
Object. The Header Object is mandatory and must be placed at the very beginning of every ASF file. The Data
Object is also mandatory, and should normally follow the Header Object. The Index Object is optional, but it is
strongly recommended that it be used.

Implementations will support files containing out-of-order objects, but in certain cases the resulting ASF files will
not be usable from certain sources such asHTTP servers. Also, additional top-level objects may be defined by
implementations and inserted into ASF files. It isrecommended that they follow the Index Object (in object
placement order).

A requirement of ASF isthat the Header Object must have been received for the contents of the Data Object to be
interpreted. ASF does not address how thisinformation arrives at the client. Rather, ,arrival mechanisms* are
deemed to be a,,local implementation issue,” whichis explicitly out of the scope of the file specification. It is
similarly aloca implementation issue whether or not the Header Object istransferred ,,in band“ or ,,out of band*
(vis-arvis the Data Object’s data units) or whether the Header Object is sent once or is repeatedly sent.

I mplementations may choose to meet this order requirement (in other words, the Header Object must arrive before
ASF data units can be interpreted) in many possible ways including: (A) include the Header Object information as
part of the , session announcement”; (B) send the Header Object in a different ,channel” (for example, link) than the
data object; (C) send the Header Object immediately before the ASF data units; and so on.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 9 of 56

File Properties Object
Stream Properties Object 1

Stream Properties Object N
<Other Header Objects>

Data Unit

Data Unit

<Other Objects>
Figure2. High-level ASF File Structure

3.3 ASF Header Object

Of the three top-level ASF objects, the Header Object isthe only one that contains other ASF objects. The header
object may include many objects including the following:

» FileProperties Object — global file attributes

» Stream Properties Object — defines a media stream and its characteristics

» Content Description Object — contains all bibliographic information

» Component Download Object — provides playback component information

» Stream Groups Object —logically groups media streams together

e Scalable Object — defines scalahility relationships among media streams containing bands

» Prioritization Object — defines relative stream prioritization

» Mutual Exclusion Object — defines exclusion relationships such as language selection

» Inter-Media Dependency Object — defines dependency relationships among mixed media streams

* Rating Object — defines the Rating of the file in terms of W3C PICS

* Index Parameters Object — supplies the information necessary to regenerate the index of an ASF file

The role of the Header Object is to provide a well-known byte sequence at the beginning of ASF files (its GUID)
and to contain al other header information. This information provides global information about the file as a whole
as well as specific information about the multimedia data stored within the Data Object.

3.4 ASF Data Object

The Data Object contains al the multimedia data of an ASF file. Thisdatais stored in the form of ASF data units.
Each ASF Data Unit is of variable length, and contains data for only one media stream. Data units are sorted within
the Data Object based on the time at which they should be delivered (send time). This sorting resultsin an
interleaved data format.

3.5 ASF Index Object

The Index Object contains atime-based index into the multimedia data of an ASF file. The time interval that each
index entry representsis set at authoring time and stored in the Index Object. Since it is hot required to index into
every media stream in afile, alist of the media streams that are indexed follows the time interval value.

Each index entry consists of one data unit offset per media stream being indexed. Thisinformation allows stream-
specific index operations to occur.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 10 of 56

3.6 Minimal Implementation

A minima ASF implementation consists of a Header Object containing only a File Properties Object, one Stream
Properties object, and one Language List Object, as well as a Data Object containing only a single ASF data unit.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 11 of 56

4 Additional Considerations

4.1 Time Units

All time fieldsin ASF objects and ASF data units use the same timeline, which begins at time zero. Send Times (see
Section 4.2) are expressed in granularities of milliseconds. Presentation Times (see Section 4.2) are expressed in
Rational Time units. Other timecode systems (such as SMPTE) are supported through the use of atimecode media
stream that binds alternate timecode val ues to each data unit (see Section 8.4). This stream binding is achieved
using the Inter-Media Dependency Object. This allows authoring and editing tools to keep alternate timestamps
while permitting client/server implementations to ignore them. In all cases, al time references are to the same
timeline.

4.2 Send Time vs. Presentation Time

ASF Data Units all contain a millisecond timestamp, which is called the data unit’s send time. Thisisthe time on
the ASF timeline at which this data unit should be delivered to the client. Sometimes, the media stream can
explicitly store the fixed delta between send time and presentation time in the Stream Properties Object. If so, every
data unit for that stream is presented at exactly the same amount of time after being sent. If this deltais zero, then
the send time is equivalent to the presentation time. Otherwise, the data unit stores the presentation time in the data
unit itself as either a delta value from the send time or as an explicit presentation timestamp. Using data unit-specific
presentation times provides increased flexibility to authoring tools to reduce a stream’ s maximum bandwidth
requirement by sending data before it is needed.

Unlike Send Time, Presentation Timeis specified in Rational Time units, thereby permitting finer time granularities
than is possible for millisecond units. The numerator and denominator values by which the specific Rational Time
units are computed for each media stream are established in that media stream’ s Stream Properties Object.

4.3 Scalable Media Types

Information about each scal able media source (for example, audio or video) is stored in a Scalable Object in the
header. If multiple types of scalable media are present in one ASF file, the header will contain multiple Scalable
Objects.

Each Scalable Object contains the dependency information for all media streams that comprise bands of the same
media source. Also included within the Scalable Object is an author-specified default sequence in which the media
stream bands should be applied. Thisinformationis useful if aclient isunable or unwilling to resolve the user’s
scalability preferences. The sequence also specifies the enhancement type of each media stream band. For scalable
video, there are three common enhancement types:. spatial (increasing frame size), temporal (increasing frame rate),
and quality (increasing image quality without resizing). Similarly, scalable audio has number of channels (for
example, stereo), frequency response, and quality. Additional user-defined enhancement types may also be defined.

4.4 Multimedia Composition

One of ASF'sdesign goalsisto be independent of any particular multimedia composition system. No information is
provided in the ASF format concerning three-dimensional positions of streams or relative positioning information
between streams. Using the Stream Group Object, ASF provides a general mechanism to group logically related
media streams. | mplementations will then determine how to render these streams (for example, the relative
positioning of the grouped streams, stream mixing, Z-ordering and all other compositional issues, etc) by a
mechanism that is outside scope of this file specification. This determination may be based on ,, out-of-band*
techniques such as end user input, the client environment itself, or information contained within the media streams
themselves (for example, MPEG-4, streaming Dynamic HTML content, and so on.).

It isanticipated that several different composition approaches can coexist and leverage the same piece of ASF
content. AnexampleisaTV scenario in which two video streams are grouped separately. One contains alarge
image of the anchorperson against a backdrop, and the other contains smaller footage of a news story. While the
size of each rendering site could be cal culated based on the natural size of each video stream in the group, the fact

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 12 of 56

that the news story should be overlaid on the top right corner of the anchorperson video can not be determined
without external composition information.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 13 of 56

5 ASF Header Object
This section defines the various objects that comprise the ASF Header Object.

5.1 Header Object

Mandatory: Yes

Quantity: 1lonly

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Notes:

The Header Object isa container that can hold any combination of the following standard objects. Only the File
Properties Object and the Stream Properties Object are required to be present. In addition, (non-standard) header
objects that conform to the ASF Object Structure (see Section 3.1) may also be optionally defined and used as
extension mechanisms for local implementations. Unlike the standard header objects defined below, thereis no
guarantee that the non-standard objects will be interpretable across vendor i mplementations. | mplementations should
ignore any non-standard object that they do not understand.

5.2 File Properties Object

Mandatory: Yes
Quantity: 1only

This object defines the global characteristics of the combined media streams found within the Data Object.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
FilelD GUID 128
Creation Date FILETIME 64
Content Expiration Date FILETIME 64
Last Send Time UINT 64
Play Duration UINT 64
Flags UINT 32

Live Flag 1 (LSB)

Huge Data Units Flag 1

Reserved 30
Minimum Bit Rate UINT 32
Maximum Bit Rate UINT 32
Average Data Unit Size UINT 32
Maximum Data Unit Size UINT 32
Total Data Units UINT 32
Stream Count UINT 16
Notes:

The Object ID field isthe GUID for the File Properties Object (see Appendix A). The Object Sizefield isthe size
(in bytes) of the File Properties Object.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 14 of 56

The value of the File ID field should be regenerated every time the file is edited. It provides a unique identification
for this ASFfile.

The Creation Date contains the date and time of the initial creation of thefile.

Content Expiration Date indicates the date after which the author doesn’t want the file to be used. Thistime can be
»hever" (value of zero).

Both the Last Send Time (formerly known as Send Duration) and the Play Duration fields have millisecond
granularities. Both of thesefields areinvalid if the live Flag bit is set. Last Send Time is the send time of the last
data unit within the file. Play Duration is the maximum End Time (of any of the SPOs) minus the minimum Start
Time (of any of the SPOs).

The following are the meanings of the Flags:

» ThelLiveFlag, if set, indicates that afileisin the process of being written (for example, for recording
applications), and therefore various values stored in the header objects are invalid. It is highly recommended
that post-processing be performed to remove this condition at the earliest opportunity.

* The Huge Data Units Flag determines whether the Data Unit Length field in the ASF Data Unit (Section 6.1) is
16 or 32 bitslong (in other words, 0 signifies 16 bits, and 1 signifies 32 hits). The 32-bit Data Unit Length field
should be used exclusively for local recording/editing at extremely high data rates. Any other useis strongly
discouraged, since most networks will not be able to support such huge data units. Therefore, it is strongly
recommended that the 16-bit Data Unit Length field alternative be used in the general case.

Minimum Bit Rateisin bits per second and indicates the total of the average bandwidth of all the mandatory
streams.

Maximum Bit Rateis in bits per second and indicates the total of the maximum bandwidth of all of the non-
excluded streams.

The Average Data Unit Sizeisin bytes. Thisfieldisinvalid if the Live Flag is set.

The Maximum Data Unit Sizeisin bytes. Thisindicates the longest ASF Data Unit within the Data Object. This
fieldisinvalidif the Live Flag is set.

The Total Data Units field contains the number of ASF Data Unit entries that exist within the Data Object. Thisfield
isinvalid if the Live Flag is set.

Stream Count field indicates the number of Stream Properties Objects (SPOs) that exist in thisfile. Each media
stream isrequired to have its own SPO.

Invalid fields should have a value of zero for writing and should be ignored when reading.

5.3 Stream Properties Object

Mandatory: Yes
Quantity: 1 per media stream

This object defines the specific properties and characteristics of a media stream. It defines how a multimedia stream
within the Data Object isto be interpreted as well as the specific format (of elements) of the ASF Data Unit itself
(see Section 6.1) for that media stream. One instance of this object is required for each media stream in thefile,
including each of the separate streams formed by a scalable media type.

Unlike most other ASF objects, the Stream Properties Object (SPO) is a"container object": it can optionally include

additional ASF Objects (see Section 3.1) within itself in a manner similar to the Header Object. The size of these
objectsisincluded within the Object Size field and contained objects, if any, are appended after the Type-Specific

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 15 of 56

Datafield within the object structure below. This provision dramatically enhances the scalability and expandability
capabilities of ASF, since it permits the rapid introduction of innovations and support for technology evolution.
Currently, only one ASF Object targeted to be optionally contained within the SPO has been defined within this
specification: the Data Unit Extension Object (See Section 5.3.1). Other ASF objects (for example, aternative
approaches to scalable media, a QoS (RSVP) information object, extra RTP information, or MPEG-4 enhancements)
may subsequently be defined and included within the SPO as needed. In this way the SPO can be enhanced over
time to embrace new technol ogies and innovations.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Stream Type GUID 128
Start Time UINT 64
End Time UINT 64
Average Bit Rate UINT 32
Maximum Bit Rate UINT 32
Average Data Unit Size UINT 32
Maximum Data Unit Size UINT 32
Preroll UINT 32
Flags UINT 32
Reliable Flag 1(LSB)
Recordable Flag 1
Seekable Flag 1
Presentation Time Flags 2
Reserved 27
Presentation Time Delta UINT Oor32
Presentation Time Numerator UINT Oor32
Presentation Time Denominator | UINT Oor32
Stream Number UINT 16
Stream Language |D Index UINT 16
Stream Name Count UINT 16
Stream Names See below ?
MIME Type Length UINT 8
MIME Type ASCII (UINT8) ?
Type-Specific Data Length UINT 16
Type-Specific Data UINT8 ?
Stream Name:
Field Name Field Type Size (bits)
Language ID Index UINT 16
Stream Name Length UINT 16
Stream Name Unicode (UINT16) ?
Notes:

The Object ID field isthe GUID for the Stream Properties Object (see Appendix A). The Object Sizefield isthe size
(in bytes) of this Stream Properties Object instance (including the sizes of all contained objects).

Start Time and End Time are presentation timesin millisecond granularities. Both fields areinvalid if the Live Flag
of the File Properties Object has been set. The Start Time is the presentation time of the first object. The End Time
is the presentation time of the last object plus the duration of play. The time reference in both casesis relative to the
the ASF file’ stimeline. These fields exist, therefore, to indicate where this media stream is located within the
context of the timeline of the file asawhole.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 16 of 56

Invalid fields should have a value of 0 (zero) for writing and should be ignored when reading.

The Average Bit Rate and the Maximum Bit Rates are in bits per second. Both fields solely refer to this media
stream’s Bit Rates. The Maximum Bit Rate is computed by identifying the maximum rate in any one-second period.
The Maximum Bit Rate means that the Bit Rate for this stream must not ever exceed this value. This may be thought
of as running a one second ,,dliding window* over this media stream’ s contents and noting the specific one second
interval in which the greatest number of bits-per-second occurred. This value must be non-zero. The Average Bit
Rate is the approximation one would obtain by dividing the total bits sent within this media stream by the time (in
seconds) during which those bits are being sent (i.e., one plus the send time of the last Data Unit of that stream
minus the send time of first data unit of that stream).

The Average Data Unit Size and the Maximum Data Unit Size are in bytes and refer to the ASF Data Units for this
media’ s data types within the Data Object. The Average Data Unit Size is computed by dividing the total size of all
of the ASF Data Units of that stream by the number of ASF Data Units of that stream. The Maximum Data Unit Size
isthe sizein bytes of the largest ASF-DU for this media stream. A value of zero means ,,unknown”“. These values
are aids to the server for making network fragmentation and packetization decisions.

Preroll is the minimum delay factor in milliseconds that a client should use between starting a particular stream and
starting the clock for the client’ stimeline. It is used to compute the buffering requirements at the client in order to
mitigate against network jitter. Specifically, when a data unit is received whose send time value is greater than the
preroll value for that stream, the client’stimeline clock is started. Rendering is subsequently determined by the Data
Unit's presentation time for that (i.e., the client’s) timeline. The default preroll valueis zero.

The following is the significance of the various flags in the Flags field:

» Setting the Reliable Flag signifies that this media stream, if sent over a network, must be carried over areliable
data communications transport mechanism.

» Setting the Recordable Flag signifies that the content author has given permission for this media stream to be
recorded. ,,Recorded,” in this context, means that the client system can preserve the content for later end-user
use by writing that content to a place (for example, a disk, CD-ROM, and DV D) where the end user can later
access it. The Recordable Flag should be set unless the author explicitly does not want the material to be
recorded.

e Setting the Seekable Flag means that this media stream may be presented starting at a non-zero time offset. This
implies that this stream is a potential candidate to be included within an index since the media stream may be
correctly understood — and potentially played -- from additional locations other than only the stream’s
beginning.

* ThePresentation Time Flags are 2 bits long, signifying the following:

Vaue | Meaning Explanation:

00 Not Used The Presentation Time field is not used within the ASF Data Unit (see
Section 6.1) for this media stream. The Presentation Time Delta,
Presentation Time Numerator, and the Presentation Time
Denominator fields are also not used within this object.

01 Fixed Delta The Presentation Time field is not used within the ASF Data Unit (see
Section 6.1) for this media stream. However, the presentation timeis
known to be afixed delta (in Rational Units) off of the send time.
This deltais established by the Presentation Time Delta field within
this object (in other words, thisis the only case in which the
Presentation time Delta field is used within this object).

10 Deltain Data A 16-bit Presentation Time field (in Rational Units) is used within the
Units ASF Data Unit (see Section 6.1) for this media stream. That field
identifies the presentation time as a delta off of the send time. The
Presentation Time Deltafield is not used within this object.

11 Full DataUnit | A 32-bit Presentation Time field (in Rational Units) is used within
Presentation ASF Data Unit (see Section 6.1) for this media stream. That field
Time identifies the actual presentation time for that data unit. The
Presentation Time Deltafield is not used within this object.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 17 of 56

The Presentation Time Delta, Presentation Time Numerator, and Presentation Time Denominator fields do not exist
if the Presentation Time Flags have a zero value. The Presentation Time Delta field also does not exist if the
Presentation Time Flags have 10 or 11 values (in other words, it only existsif the flags have an 01 value; see above).
Otherwise these fields are 32 bits long.

Presentation Time Deltaisin Rational Time Units. It indicates that afixed time delta (in Rational Units) between the
presentation time and the send time should be applied to the entirety of this stream’ s data units (see the ASF Data
Unit definition in Section 6.1). The Presentation Time flags determine whether or not thisfield is used.

Rational Time Units signify a media-stream specific time unit within the ASF file’ sintrinsic timeline. Rational Time
Units are for Presentation Times only. They are determined by dividing the Presentation Time Numerator by the
Presentation Time Denominator. The default Presentation Time Numerator valueis 1 and the default Presentation
Time Denominator value is 1000. Therefore, the default Rational Time Units are in milliseconds.

The Stream Number provides a reference to identify which media streams (in the ASF Data Unit’s Stream Number
field) are defined by a given Stream Properties Object instance. Zero is an invalid stream number (i.e., other Header
Objects use stream number zero to refer to the entire file as a whol e rather than to a specific media stream within the
file).

The Stream Language 1D Index field refersto the contents of the stream itself (in other words, the language, if any,
which the stream uses/assumes).

Please see the Language List Object (Section 5.16) for the details concerning how the Stream Language |D Index
and Language ID Index fields should be used.

The Stream Name Count field tells how many Stream Names are present. Each stream name instance is potentially a
localization into a specific language. The Language ID Index field indicates the language in which the Stream Name
has been written in Unicode values.

The Stream Name Length field indicates the number of Unicode ,,characters® that are found within the Stream Name
field. The MIME Type Length field indicates the number of bytes found within the MIME Type field.

The Stream Name, MIME Type, and Stream Type are each mechanisms to identify the Media Stream (in Unicode,
MIME type, and GUID, respectively).

The structure for the Type Specific Datafield varies by mediatype. The structure for thisfield for the Standard ASF
Media Typesisdetailed in Section 8.

5.3.1 Data Unit Extension Object

Mandatory: No
Quantity: 0-n

The Data Unit Extension Object is an optional provision to include application (or implementation)-specific data
within each ASF Data Unit (see Section 6.1) instance of this media stream.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Extension System GUID 128

Data Unit Extension Size UINT 16
Extension System Info Size UINT 32
Extension System Info UINT8 ?

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 18 of 56

Notes:
Extension System is a GUID identifier of the type of information being stored within the Extension Data field of the
ASF Data Unit (see Section 6.1).

The Data Unit Extension Size field indicates the number of bytes of extension information that are present within
the Extension Data field of the ASF Data Unit (see Section 6.1) for this media stream. If the Data Unit Extension
Size field has a value of OxFFFF (65535 decimal), then the Extension Data field is variable length and the first byte
of the Extension Data field gives the length of the (following) extension data for that particular ASF Data Unit
instance. For example, if the first byte of avariable sized entry has the value of 2, then two additional extension
data bytes will be present in that instance of the Extension Datafield.

The number, order, and size of the data elements within the ASF Data Unit's Extension Datafield directly
correspond to the order in which the Data Unit Extension Objects occur within the SPO for this media stream. For
example, assume that three Data Unit Extension Objects are included within a stream’'s SPO. Assume that the first
specifies afixed length of 4 bytes, the second specifies a variable length field, and the third specifies a fixed length
of 2 bytes. Therefore, the Extension Data field of each ASF Data Unit for this stream will consist of 4 bytes
(extension #1), followed by 1 length byte plus up to 255 data bytes (extension #2), and finally 2 bytes (extension
#3).

The Extension System Information field is an optional field providing additional definitions or parameters (if any) of
the Extension System.

5.4 Content Description Object

Mandatory: No
Quantity: Oorl

This object permits authors to record human-readable, pertinent data about the file and its contents. This content is
readily expandable to satisfy varying bibliographic needs. Authors can supplement (or ignore) the , standard*
bibliographic information (for example, title, author, copyright, and description) with content designations of their
own choosing. Each individual field name and value can be stored in as many different languages as are preferred
by the author, and can be stream-specific or pertinent to the whole file.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Description Record Count UINT 16
Description Records See below ?
Description Record:

Field Name Field Type Size (bits)
Field Type UINT 8
Language ID Index UINT (see S5.16) 16

Stream Number UINT 16

Name Length UINT 16

Vaue Length UINT 16

Name Unicode (UINT16) ?

Vaue Unicode (UINT16) ?

Notes:

The Object ID field contains the GUID for the Stream Properties Object (see Appendix A). The Object Sizeisthe
length in bytes of this object.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 19 of 56

Description Record Count indicates the number of Description Records.

The Field Type field contains unsigned integer values.

* ISRCisthe International Standard Recording Code as described in SO 3901.

* |ISWCistheInternational Standard Work code.

* UPC/EAN isthe Universal Product Code/European Article Number (in other words, the ,Bar code").

» Values 13 through 49 of the Field Types were derived from Reference [5]. The number in parenthesesis the

MARC tag value for that item.

Values 50 through 60 of the Field Types were derived from Reference [6] for those elements that were not
already obviously included within 8 through 45.
Values 61 through 68 are RTCP SDES values and value 69 is the RTCP APP value. RTCP is defined within
Reference [7]. Values 70 through 73 are RTP header information that is also defined within Reference [7].

Please consult references [5], [6], and [7] for an interpretation of the meanings of their field types.
The values of the Field Type field are:

1= Author 2=Title 3 = Copyright 4 = Description 5=Tool Name
6 =Tool Version 7 =Tool GUID 8 = Date of Last 9=0riginal Date = 10=1ISRC
Modification Created
11=1SWC 12 = UPC/EAN 13=LCCN (10) 14 = ISBN (20) 15=1SSN (22)
16 = Cataloging 17=Main Entry -- 18 =MainEntry— 19 = Edition 20 =Main
Source, Leader Personal Name Corporate Name Statement (250) Uniform Title
(40) (100) (110) (130)
21 =Uniform Title 22 =Title 23 =Varying Form 24 = Publication, 25 = Physical
(240) Statement (245) Title (246) Distribution, and Description (300)
S0 on (260)
26 = Added Entry 27 = Series 28 = General Note 29 = Bibliography 30 = Contents
Title (440) Statement (490) (500) Note (504) Note (505)
31 = Creation 32 = Citation (510) 33 = Participant 34 = Summary 35 = Target
Credit (508) (511) (520) Audience (521)
36 = Added Form 37 = System 38 =Awards(586) 39=Added Entry 40 = Added Entry
Available (530) Details (538) Personal Name Topical Term
(600) (650)
41 = Added Entry 42 =Index Term, 43 = Tag Index 44 = Added Entry 45 = Added Entry
Geographic (651) Genre (655) Term, Curriculum Uniform Title Related (740)
(658) (730)
46 = Series 47 = Series 48 = Electronic 49 = Added Entry 50 = Coverage
Statement Personal Statement Uniform Location and — Personal Name
Name (800) Title (830) Access (856) (700)
51 = Date 52 = Resource 53 = Format 54 = Resource 55 = Source
Type Identifier
56 = Language 57 = Relation 58 = Coverage 59 = Subject 60 = Contributor
61 = CNAME 62 = NAME 63 = EMAIL 64 = PHONE 65=L0OC
66 = TOOL 67 =NOTE 68 = PRIV 69 = APP 70 = SSRC
71 =Initid RTP 72 = Initid RTP 73=RTPVersion Vauesbetween 74 and 99 (inclusive) are
Timestamp value Sequence Number Number reserved.

Values >= 100 are user-defined.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 20 of 56

The Stream Number indicates whether the entry applies to a specific media stream or whether it applies to the whole
file. A value of zero in thisfield indicates that it applies to the whole file; otherwise, the entry applies only to the
indicated stream number.

Nameisin Unicode. Thisfield may be blank if the Field Type valueis less than 100, unless the author explicitly
wants to localize the name of the field type.

The Name Length field indicates the number of Unicode ,,characters* that are found within Name field. The Value
Length field indicates the number of Unicode ,characters* that are found within VValue field.

As a space optimization, a 16-bit Language ID Index field has been used. See the Language List Object (Section
5.16) for more details.

5.5 Script Command Object

Mandatory: No
Quantity: Oorl

This object provides alist of Type/Parameter pairs of Unicode strings that are synchronized to the ASF file's
timeline. Typescan include ,,URL" or ,FILENAME." These semantics and use of types are identical to the
Command Media Type (see Section 8.7). Other Type values may also be freely defined and used. The semantics and
treatment of this latter set of Types are defined by the local implementations. The Parameter value (referred to as
»Commands" below) is specific to the type field. This Type/Parameter pairing can be used for many purposes,
including sending URL s to be "launched" by aclient into an HTML frame (in other words, the ,URL" type) or
launching another ASF file for chained ,,continuous play” audio or video presentations (in other words, the
»FILENAME" type). This object can also be used as an alternative method to stream text (in addition to the Text
Media Type) as well asto provide,, script commands* that can be used to control elements within the client
environment.

Object Structure;

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Type Count UINT 16
Command Count UINT 16

Types See below ?
Commands See below ?

Type:

Field Name Field Type Size (bits)
Type Name Length UINT 16

Type Name Unicode (UINT16) ?
Command:

Field Name Field Type Size (bits)
Presentation Time UINT 32

Type Index UINT 16
Command Name Length UINT 16
Command Name Unicode (UINT16) ?

Notes:

Presentation Timeis given in millisecond granularities.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 21 of 56

Types are stored as an array of Unicode strings, since they will typically be reused. Commands specify their type
using a zero-based index into the array of Types.

The Type Name Length field indicates the number of Unicode ,,characters’ that are found within the Type Name
field. The Command Name Length field indicates the number of Unicode ,,characters* that are found within the
Command Name field.

5.6 Marker Object

Mandatory: No
Quantity: Oorl

This object contains a small, specialized index which is used to provide named ,,jump points* within afile. This
allows a content author to divide a piece of content into logical sections such as song boundariesin an entire CD or
topic changes during along presentation, and to assign a human-readable name to each section of afile. Thisindex
information is then available to the client to permit the user to ,,jump” directly to those points within the
presentation.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Index Specifier Count UINT 16
Marker Count UINT 16

Index Specifiers See Section 5.14 ?

Markers See below ?

Marker:

Field Name Field Type Size (bits)
Presentation Time UINT 32
Offsets UINT64 ?

Marker Name Count UINT 16
Marker Names See below ?

Marker Name:

Field Name Field Type Size (bits)
Language ID Index UINT 16
Marker Name Length UINT 16
Marker Name Unicode (UINT16) ?

Notes:

The Index Specifiers are defined within the Index Parameters Object (Section 5.14).

The Presentation Timeisin millisecond granularities. This value does not wrap around, which means that markers
can only refer to the first 49.7 days of information contained within an ASF file.

Potentially multiple Offsets entries are listed within the Marker structure. The number is determined by the
requirement that there must be one Offsets entry in each Marker structure for each Index Specifier entry. Thus, the
total sizein bits of the Marker’'s Offsets field is 64 bits times the value of the Index Specifier Count field. An offset
value of OxFFFFFFFFFFFFFFFF signifies that the entry contains an invalid offset value.

As a space optimization, a 16-bit Language ID Index field has been used. See the Language List Object (Section
5.16) for more details.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 22 of 56

The Marker Name Length field indicates the number of Unicode ,,characters* which are found within Marker Name
field.

5.7 Component Download Object

Mandatory: No
Quantity: Oorl

This object provides alist of components (including version information) required for the proper rendering of each
stream in the file. Each listed component has a human-readable name, a category identifying the component type
(which isusually either ,,codec” or , renderer*), a component ID used to uniquely identify a specific component, and
version information for that component.

This object presupposes that the Component ID will be the primary mechanism used to find the proper component to

download. This abject purposefully does not use URL s to find these objects, for the following reasons:

1. Embedded URLSs become stale very quickly, and end up being just wasted header space.

2. Legacy filesand current components such as codecs have no knowledge of source URLS. Either
authoring/conversion tools need to have elaborate |ookup tables so that they can embed the proper source
URLSs, or else the source URLSs quickly become optional and, therefore, frequently omitted.

3. Embedded source URLs would quickly become implementation-specific. Product A's authoring tools would
embed pointers to product A's playback components. When a Product B client got the source URL, it would
have no way of knowing if it was talking to a general "component server" or a product-specific self-extracting
download module.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Component Count UINT 32
Component Records See below ?

Component Record:

Field Name Field Type Size (bits)
Category GUID 128
Component ID GUID 128
Version UINT 64

Stream Number UINT 16
Component Name Length UINT 16
Component Name Unicode (UINT16) ?

Notes:

The Component ID isa GUID that can use mappings for ACM and VCM codecs, for example.

The Version field stores a ,,dotted quad” version stamp using the highest 16 bits for the product version, the next 16
bits for the incremental version, the next 16 bits for the revision, and the lowest 16 bits for the build number. The
value 0.0.0.0 should be used for the versions of ACM and VCM codecs. This value means ,any version“ and is
needed because there are no valid versioning numbers for ACM/VCM codecs, since the ,versioning information” is
actually contained within the Component ID’s GUID value itself for these codec types. Other entities that do not
have valid version numbers should also use 0.0.0.0 in thisfield.

Stream Number identifies the multimedia stream associated with this component. A 0 (zero) value means ,,al
streams.”

The Component Name is a human-readable display name for this component.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 23 of 56

5.8 Stream Group Object

Mandatory: No
Quantity: Oorl

This object provides lists of ,,associated” streams that are grouped into related presentation contexts. Each of these
contexts contains a Group Name by which these contexts may be referenced. This permits the client to make
implementati on-specific composition and rendering decisions affecting those streams. For associated image/video
streams, these decisions can include the number, size, and location of image/video rendering windows, and their
relative positions in three-dimensional space. For audio streams, these decisions will impact the potential mixing of
associated audio streams that occur simultaneoudly (stream start & end time can be determined using the Stream
Properties Object).

The following are additional examples of potential uses of this object:

1. A filecontaining two video streams (such asa TV newscast with alarge image of the anchorperson and a
smaller image of the news story) would have each video stream in a separate group. A client implementation
could then use external compositional information to decide that the video stream containing the news story
(whose natural size is known in the Stream Properties Object's type-specific data field) should be superimposed
in the top-right corner of the larger anchorperson video stream.

2. A file containing multi-track audio would group all of those audio streams together (perhaps along with
associated video and lyrics for a karaoke effect). This might tell the client implementation that these streams
should be mixed.

3. A file containing two separate image streams (for example, JPEGs, and GIFs) could group the streams together.
This might tell the client to "mix" them, by logically rendering them into the same window. Another approach
would be to make two different groups, which would imply that images from the two streams could be visible at
the sametime.

The default behavior if no Stream Group Object is present within the File Header (and therefore no stream groups
are defined) isto assume that all streams are grouped together.

Object Structure;

List of stream groupings, each of which contains alist of stream numbers for that grouping. Each stream grouping is
optionally assigned a Group Name that can serve as a,,handle" by which the group as a whole may be referenced.
This name may be localized into different languages.

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Stream Group Count UINT 16

Stream Groups See below ?

Stream Group:

Field Name Field Type Size (bits)
Group Name Count UINT 16

Group Names See below ?

Stream Count UINT 16

Stream Numbers UINT16 ?

Group Name:

Field Name Field Type Size (bits)
Language ID Index UINT 16

Group Name Length UINT 16

Group Name Unicode (UINT16) ?

Notes:

See the Language List Object (Section 5.16) for more details concerning how to use the Language ID Index field.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 24 of 56

Media streams, which have been grouped into Group Names-named logical units, are grouped by enumerating their
stream numbersin the Stream Numbers field. The Stream Count field identifies how many media streams are
enumerated within the Stream Numbers field.

The Group Name Length field indicates the number of Unicode ,,characters* that are found within Group Name
field.

5.9 Scalable Object

Mandatory: No
Quantity: 0-n

This object stores the dependency relationships between all of the media streams that comprise logical bands of the
same scalable media. 1t can be used for scalable audio and video, as well as other types of scalable streams. Along
with the dependency relationships among the streams, this object stores a default sequence in which the streams
should be used when implementations are doing dynamic bandwidth scaling.

Object Structure;
The object consists of alist of Dependency Info ,structures' for each stream that comprises alogical band of the
same scalable stream.

A Dependency Info , structure” (in other words, the Dependency Record) contains:
1. Stream Number.
2. List of stream numbers upon which this stream depends.

The object also contains an author-determined default sequence (in other words, the Default Sequence Record) that
indicates the preferential order in which the streams should be used (in other words, items listed first should, by
default, be used first). Each entry in thislist consists of the following two fields:

1. Stream Number

2. Enhancement GUID.

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Record Count UINT 16
Default Sequence Records | See below ?
Dependency Records See below ?

Default Sequence Record:

Field Name Field Type Size (bits)
Stream Number UINT 16
Enhancement Type GUID 128
Dependency Record:

Field Name Field Type Size (bits)
Stream Number UINT 16
Dependent Stream Count | UINT 16
Dependent Stream UINT16 ?
Numbers

Notes:

The Record Count field stores both the number of Default Sequence Records and the number of Dependency
Records (in other words, the same number of each). This number is equivalent to the number of streamsinvolved in
this scaleability relationship.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 25 of 56

Possible Enhancement GUID Values are None, Unknown, Temporal, Spatial, Quality, Stereo (Audio), and
Frequency Response (Audio).

5.10 Prioritization Object

Mandatory: No
Quantity: Oorl

This object indicates the author’ s intentions as to which streams should or should not be dropped in response to
varying network congestion situations. There may be special cases where this preferential order may be ignored (for
example, the user hitsthe ,mute" button). However, generally it is expected that implementations will try to honor
the author’ s preference.

Priority determinations are made solely with reference to base streams (in other words, thisincludes non-scalable
streams and the base layer only of scalable streams). The author can indicate their preference as to what should
happen to enhancement layer streams by means of the bandwidth restriction field.

The priority of each stream isindicated by how early in the list that stream’s stream number islisted (in other words,
thelist is ordered in terms of decreasing priority). Two additional fields provide associated information:

1) The,Mandatory/Optional” field identifies whether the author wants that stream kept ,,regardless* (in other
words, the Mandatory bit is set) or whether they are willing to have that stream dropped (in other words, an
optional stream that isindicated by the Mandatory bit being cleared). Optional streams must never be assigned a
higher priority than mandatory streams.

2) TheBandwidth Restriction field permits the author to indicate how much of the available bandwidth will be
used. For example, if the stream is a base layer of a scalable codec, the bandwidth will determine how many
enhancement layers may be selected. This number is determined by the dependency relationships and priority
ordering information found within the Scalable Object combined with the bandwidth information contained
within each stream’s Stream Properties Object.

Streams in a mutual exclusion relationship with each other (for example, languages) should al be listed in adjacent
order (in other words, priority n, n+1, n+2, and so on), sorted in decreasing order of maximum stream bandwidth.
When bandwidth calculations are made, only the bandwidth used by the selected stream in a mutual exclusion
relationship will be computed; each non-selected stream in such a relationship will be ignored. This combination of
prioritization and mutual exclusion can be used to create scalable content even though scalable codecs have not been
used by means of creating multiple distinct media stream instances of the ,, same content,” each at different
bandwidths.

Object Structure:

Field Name Field Type Size (bits)

Object ID GUID 128

Object Size UINT 64

Priority Record Count UINT 16

Priority Records See below ?

Priority Record:

Field Name Field Type Size (bits)

Stream Number UINT 16

Priority Flags UINT 16
Mandatory 1(LSB)
Reserved 15

| Bandwidth Restriction UINT 32

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 26 of 56

Notes:
Priority Records are listed in order of decreasing priority.

The Stream Number should only specify the base stream (if it is scalable).

Bandwidth Restriction isin bits per second. A value of O (zero) indicates ,,no restriction.”

5.11 Mutual Exclusion Object

Mandatory: No
Quantity: 0-n

This object identifies streams that have a mutual exclusion relationship to each other (in other words, only one of the
streams within such arelationship can be streamed — the rest are ignored). There should be one instance of this
object for each set of objectsthat contain a mutual exclusion relationship. The exclusion type is used so that
implementations can allow user selection of common choices, such as language.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Exclusion Type GUID 128
Stream Number Count UINT 16
Stream Numbers UINT16 ?

Notes:

The Exclusion Type identifies the nature of that mutual exclusion relationship (for example, language).

The Stream Number Count indicates how many Stream Numbers are in the Stream Numbers list. Each of the media
streamsin thislist isin a mutual exclusion relationship with the others.

5.12 Inter-Media Dependency Object

Mandatory: No
Quantity: Oorl

This object provides the capability for an author to identify dependencies between different mediatypes. An
example of such arelationship would be to specify that a video effects stream will be presented only if a certain
enhancement layer of avideo codec isalso currently being presented. Another example is binding atimecode media
stream to another media stream to provide alternate timecodes for that other stream’s data.

Object Structure:
List of Dependency Info , structures* for any stream involved in an inter-media dependency relationship.

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Dependency Record UINT 16

Count

Dependency Records See Section 5.9 ?

Notes:

The Dependency Record structure is given in Section 5.9.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 27 of 56

The Dependency Record Count indicates the number of Dependency Records present.

Should multiple dependencies be listed within the Dependent Stream Numbers fields of a single Dependency
Record, these dependencies are in a Boolean AND relationship to each other (in other words, the stream number is
dependent upon x AND y). Boolean OR relationships (in other words, the stream number is dependent upon x OR y)
are indicated by having multiple Dependency Record entries, each having the same Stream Number value in the
Stream Number field of the Dependency Record. Streams that are dependent upon either one stream or another, or
optionally both, are said to be in an OR dependency relationship.

5.13 Rating Object

Mandatory: No
Quantity: Oorl

This object contains W3C-defined Platform for Internet Content Selection (PICS) information (see references [1]
and [2]). PICS establishes Internet conventions for label formats. It thus provides a basis for specifying the rating of
the multimedia content within an ASF file. This object does not specify the specific rating service that is to be used.
The content creator is consequently able to use the rating service of their choice, aslong asit is specified according
to the PICS conventions.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

PICS Data UINT8 ?

Note:

PICSinformation is stored as opaque data in an RFC 822-conformant format (see reference [3]).

5.14 Index Parameters Object

Mandatory:
Quantity: Oorl

This object supplies a sufficient amount of information to regenerate the index for an ASF file should the original
index have been omitted or deleted. It includes only information about those streams that are actually indexed (there

must be at least one stream in an index).

Object Structure:

Yesif index is present in file; Otherwise no.

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Index Entry Time Interval | UINT 32

Index Specifier Count UINT 16

Index Specifiers See below ?

Index Specifier:

Field Name Field Type Size (bits)
Stream Number UINT 16

Index Type UINT 16

Notes:

The Index Entry Time Interval isin milliseconds.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 28 of 56

The Index Specifier Count field identifies how many Index Specifier entries exist within the Index Specifiersfield.

Every Index Type requires all index entry offsets to be to a data unit boundary of an ASF Data Unit containing data
for the specified Stream Number. Also, the send time of that data unit must not exceed the time of the index entry,
which is a presentation time.

Index Type values are as follows: 1 = Nearest Data Unit, 2 = Nearest Object, and 3 = Nearest Clean Point. The
Nearest Data Unit indexes point to the data unit whose presentation time is closest to the index entry time. The
Nearest Object indexes point to the closest data unit containing an entire object or first fragment of an object. The
Nearest Clean Point indexes point to the closest data unit containing an entire object (or first fragment of an object)
that has the Clean Point Flag set.

Sel’?d Time: 1000 | 2000 | 3000 |4000 |5000 6000
Object | D 1 1 2 2 3 3
Clean Point: Yes | Yes No No No No

Index Entry
Nearest Nearest .
Nearest Object Data Time 6750
Cl_ean Unit
Point

5.15 Color Table Object

Mandatory: No
Quantity: Oton

This object contains a color table that is used by one or more media streams. For purposes of reference, each color
tableis given a unique identifier for reference purposes.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Color TableID GUID 128

Color Table Record Count | UINT 16

Color Table Record See below ?

Color Table Record:

Field Name Field Type Size (bits)
Red UINT 8

Green UINT 8

Blue UINT 8

Note:

The structure consists of alist of Color Table Records, which contain RGB triplets.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 29 of 56

5.16 Language List Object

Mandatory: Yes
Quantity: 1

This object contains an array of ASClI-based Language IDs. All other header objects refer to languages through
zero-based positionsinto this array.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64
Language ID Count UINT 16
Language ID Records See below ?
Language ID Record:

Field Name Field Type Size (bits)
Language ID Length UINT 8
Language ID ASCII (UINT8) ?

Notes:

Other objectsrefer to the Language List Object by means of their own Language List ID Index fields. The value
within the Language ID Index field explicitly provides an index into the Language ID Record structure in order to
identify a specific language. The first entry into this structure has an index value of 0 (zero). Index values that are
greater than the number of entries within the Language ID Record structure are interpreted as signifying ,, American
English.”

The Language ID Length field indicates the size in bytes of the Language ID field.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 30 of 56

6 Data Object

Mandatory: Yes
Quantity: 1

This object contains all of the ASF Data Unitsfor afile. These data units are organized in terms of increasing send
times. An ASF Data Unit contains data from only one media stream. This data may consist of an entire object from
that stream. Alternatively, it can consist of a partial object of that stream (fragmentation) or several concatenated
objects from that stream (grouping).

The structure of the data object contains the following two fields, which are immediately followed by one or more
instances of ASF Data Units.

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

6.1 ASF Data Unit Definition

In general, ASF mediatypes logically consist of sub-elements that are referred to as objects. What an object happens
to be in agiven media stream is entirely media stream-dependent (for example, it is a specific image within an
image media stream, a frame within a (non-scalable) video stream, etc). It is efficient to try to fit amediastream’s
object into a single ASF Data Unit whenever possible. When that is not possible, we can fragment the object (if it is
too big) or group the object (if it istoo little) with other objects within that same media stream when forming a data
unit. In any case, each ASF Data Unit is a conveniently sized grouping of data from a single mediatype.

ASF data units have the following format:

Field Name Field Type Size (bits)

Data Unit Length UINT 16 or 32

Stream Number UINT 16

Send Time UINT 32

Data Unit Flags UINT 8or 32
Extended Flags 1(LSB)
Clean Point 1
Fragment 1
Fragment Size 1
Grouped Data 1
Reserved 3

Object Number UINT 8

Presentation Time UINT 0, 16, 32

Offset Into Object UINT 0, 16, 32

Object Size UINT 0, 16, 32

Extension Data UINTS8 ?

Data Unit Data UINT8 ?

Notes:

The Data Unit Length Field specifies the length in bytes of that ASF Data Unit. The Huge Data Units Flag (in the
Flagsfield of the File Properties Object) determines the size of the Data Unit Length field. In generd, it is strongly
recommended that the 16-bit size alternative of the Data Unit Length field should be used and that the maximum
size value for this field should not exceed 65,000. All ASF Data Units must be smaller (in bytes) than the value
indicated by the Maximum Data Unit Size field within the File Properties Object. Thus, the value of the Data Unit
Length field can never exceed the Maximum Data Unit Size value.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 31 of 56

The Stream Number identifies the media stream data of which is contained within the Data Unit Data field of this
ASF Data Unit. The value of the Stream Number field corresponds to the Stream Number val ue within this media
stream’ s Stream Properties Object.

The Send Timeisin milliseconds and refersto the intrinsic timeline of the ASF file (which begins at value 0). The
value of thisfield , wraps around” to zero every 2**32 milliseconds (which isroughly every 49.7 days).

The following give the significance of the Data Unit Flags:

» Thesizeof the Data Unit Flags field is determined by whether the Extended Flags flag is set or cleared. If it is
cleared, then there are only 8 bits of flags present. If it is set, then there are 32 bits of flags with the value of the
highest order 3 bytes being reserved.

» The Clean Point Flag identifies whether this data unit is a,, clean point“ (for example, video key frame) or not.

e The Fragment Flag indicates whether this data unit contains a fragment of an object or not. If the Fragment Flag
is set, then the Offset Into Object and Object Size fields exist within this ASF Data Unit instance. These fields
are used to indicate the breakup of large object across data unit boundaries. If thisflag is cleared, then these two
fields do not exist within this ASF Data Unit instance. If the Fragment Flag is set, then the Grouped Data Flag
must be cleared. If an object containing a clean point is fragmented, the Clean Point Flag is set all of the
fragments of that object.

» The Fragment Size flag isvalid only if the Fragment Flag has been set. If the Fragment Size Flag is cleared,
then the Offset Into Object and Object Size fields are 16 bitslong. If it is set, then these fields are 32-bits long.

» The Grouped Data Flag indicates whether or not multiple objects from the same stream are grouped together
into a single data unit. The Grouped Data flag must be cleared (in other words, indicating no grouped data) if
the Fragment Flag is set. Grouping consists of prefixing a 16-bit length field to the object data. A 16-bit delta
time (in milliseconds) is inserted between each length-object pairing. For example:

16-bit Length
Data
16-bit Delta Time
Repeat
16-bit Length 1-N
Times

Data

The 16-bit Delta Time field is always included within Grouped Data as shown above. Thisfield indicates a
presentation time for the following grouped object. If the Presentation Time flags within the Stream Properties
Object are configured to state that presentation times are not used (value of 00), then the value of the 16-hit
Delta Time field of the Grouped Data indicates the difference in send times between the two objects. Inthis
case, the delta time effectively indicates a presentation time difference for the grouped objects only.

Should an object containing a clean point be grouped, the object containing the clean point must be the first
object in the grouping. All other objects in agrouping are interpreted as not being clean points.

The Object Number field identifies which object within the data stream is being sent. (The first object is Object
Number 0.) The value of thisfield ,, wraps* around to O every 2**8 objects. It should be explicitly noted that the
term ,, object” within the context of ASF mediatypes (and hence the Object Number field of the ASF Data Unit) is
entirely unrelated to the ASF Object definition, which was given in Section 3.1.

The Presentation Time Flags within the Stream Properties Object determine whether the Presentation Time field

exists or not. Those flags also determine whether the Presentation timeis full presentation time (in other words, full
32-bit reference to the timeline) or whether the presentation time is a 16-bit delta off of the send time. All

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 32 of 56

presentation times are in terms of the Rational Unit values established for that media stream within the Stream
Properties Object.

The Offset Into Object and Object Size fields are used exclusively for fragmentation. The former identifies the offset
into the object (identified by the Object Number field) where the current fragment begins, and the Object Size
identifies the total size of that object. These fields provide the information needed to reconstruct the object when it is
received at the client.

The Extension Datafield is optional and its existence and size is determined by the optional presence of one or more
Data Unit Extension Object(s) (see Section 5.3.1) within the Stream Properties Object (see Section 5.3). The
Extension System (GUID) field within the Data Unit Extension Object(s) establishes the semantics of the Extension
Data.

6.2 ASF Data Unit Examples

The following examples are provided to help explain how the data unit format may appear in various usage
scenarios. In each case excerpts from the example Stream Properties Object must be included, since they determine
the actual data unit composition. Also, it isassumed in all examples that the Huge Data Units Flag within the File
Properties Object has been cleared.

6.2.1 Complete Key Frame Example:

The Presentation Time Flags in the Stream Properties Object specify that the Presentation Deltais in the data units
(in other words, value ,,10"). The Extension Data Size value (of the Data Unit Extension Object) is 2.

The following is an example data unit for the case where the Object Number is 5, the Send Time is 5000, and the
Presentation Time is 5750:

Field Name Field Size (bytes) Field Value
Data Unit Length 2 1014
Stream Number 2 1

Send Time 4 5000

Data Unit Flags 1 0x02

Object Number 1 5
Presentation Time 2 750
Extension Data 2 Opaque
Data Unit Data 1000 Opaque

6.2.2 Partial JPEG Example:

The Presentation Time Flagsin the Stream Properties Object specify that presentation times are not used (value
,00"). The Extension Data Size value (of the Data Unit Extension Object) isO.

The following is an example data unit for the case where bytes 1000 through 1799 are being sent for a 4000-byte-
long JPEG image at a Send Time of 7000. The Object Number of this JPEG image is 17.

Field Name Field Size (bytes) Field Value
Data Unit Length 2 814

Stream Number 2 2

Send Time 4 7000

Data Unit Flags 1 0x06

Object Number 1 17

Offset Into Object 2 1000
Object Size 2 4000

Data Unit Data 800 Opague

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 33 of 56

6.2.3 Three Delta Frames Example

The Presentation Time Flags in the Stream Properties Object specifies that the Presentation Time Deltaiscarried in
the data units (value , 10). The Extension Data Size value (of the Data Unit Extension Object) isO.

The following is an example of a data unit containing three delta video frames. Thefirst is 20 byteslong, and
presents at 8500, the second is 30 bytes long and presents at 8533, and the third is 40 bytes long and presents at

8575.

Field Name Field Size | Field Value
(bytes)
Data Unit Length 2 112
Stream Number 2 1
Send Time 4 8000
Data Unit Flags 1 0x10
Object Number 1 97
Presentation Time 2 500
Data Unit Data 100 See below
[Object Number | DataLength 2 20
#97] Data 20 Opague
[Object Number | Pres. Time Delta 2 33
#98] [in other
words,8533 —
8500]
Data Length 2 30
Data 30 Opague
[Object Number | Pres. Time Delta 2 42
#99] [in other words,
8575 —8533]
Data L ength 2 40
Data 40 Opague

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 34 of 56

7 Index Object

Mandatory: No, but strongly recommended
Quantity: Oorl

Thistop-level ASF object supplies the necessary indexing information for an ASF file. It includes stream-specific
indexing information based on an adjustable index entry timeinterval. The index is designed to be broken into
blocks to facilitate storage that is more space-efficient by using 32-bit offsets relative to a 64-bit base. That is, each
index block has afull 64-hit offset in the block header, which is added to the 32-bit offsets found in each index
entry. If afileislarger than 2*32 bytes, then multiple index blocks can be used to fully index the entire large file
while still keeping index entry offsets at 32 bits.

Indices into the Index Object arein terms of Presentation Times. The corresponding Offset field values (of the Index
Entry, see below) are byte offsets that, when combined with the Index Block's Block Position value, indicate the
starting location of an ASF Data Unit.

The Index Object is not recommended to be used for files where the Send Time of the first Data Unit within the
Data Object has a Send Time value significantly greater than zero (otherwise the index itself will be sparse and
inefficient). In such cases, an offset value of OXFFFFFFFF is used to indicate an invalid offset value. Invalid offsets
signify that this particular index entry does not identify avalid indexable point. Invalid offsets may occur for the
initial index entries of a media stream whose first ASF Data Unit has a non-zero send time.

Object Structure:

Field Name Field Type Size (bits)
Object ID GUID 128
Object Size UINT 64

Index Entry Time Interval | UINT 32

Index Specifier Count UINT 16

Index Specifiers See Section 5.14 ?

Index Block Count UINT 32

Index Blocks See below ?

Index Block:

Field Name Field Type Size (bits)
Block Position UINT 64

Index Entry Count UINT 32

Index Entries See below ?

Index Entry:

Field Name Field Type Size (bits)
Offsets UINT32 ?

Notes:

Block Position is the byte offset of the beginning of this block relative to the beginning of the first Data Unit (i.e.,
the beginning of the Data Object + 24 bytes).

Index Entry Count is the number of Index Entriesin the block.

The size of the Offsets field within each Index Entry structureis 32 bits multiplied by the value of the Index
Specifier Count field. For example, if the Index Specifier Count is 3, then there are three 32-bit offsetsin each Index
Entry. Index Entry offsets are ordered according to the ordering specified by the Index Parameters Object, thereby
permitting the same stream to be potentially indexed by multiple Index Types (e.g., Nearest Clean Point, Nearest
Object, Nearest Data Unit).

The Index Entry Time Interval has a millisecond granularity.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 35 of 56

8 Standard ASF Media Types

ASF files store a wide variety of multimedia content. It isnatural to expect implementations to make use of this
content to produce rich multimedia experiences. It is anticipated that implementations will flexibly produce unique
media types of their own creation. It ishighly desirable, however, that arich set of standard media types be
commonly supported to permit content compatibility between diverse implementations.

The purpose of this section isto define a set of Standard ASF M ediaTypes|EI The explicit intention of this sectionis
that if an implementation supports a media type defined within this section (in other words, audio, video, image,
timecode, text, MIDI, command, Media Object), that media type must be supported in the manner described within
this section if the implementation is to be considered to be ,, content-compliant” with the ASF specification. This
commonality will hopefully define a minimum subset of media within which multi-vendor interoperability will be
possible. This, in turn, will simplify media exchange between companies, developers, and individuals. No
restrictions are placed upon how implementations support non-standard media types (in other words, media types
other than those covered in this section).

There are two elements to each Media Type definition:

1. ldentification of the information that will populate the Type-Specific Data field of the Stream Properties Object.
This provides media-specific information needed to interpret the datain the media stream.

2. Description of the media stream dataitself.

Each of the following sub-sections will define the core media types in terms of these two elements.

8.1 Audio Media Type

Type-Specific Data:

Field Name Field Type Size (bits)
Codec ID GUID 128
Error Concealment Type GUID 128
Bits per Sample UINT 32
Samples per Second UINT 32
Average Frame Size UINT 32
Maximum Frame Size UINT 32
Samples per Frame UINT 32
Flags UNIT 16

| Reserved 16
Number of Channels UINT 16
Error Concealment Data Size UINT 16
Codec Specific Data Size UINT 16
Error Concealment Data UINTS8 ?
Codec Specific Data UINT8 ?

M edia Stream Format:
Output of a codec or sampling device.

Notes:
The Bits per Sample field should have avalue of 0 (zero) if avariable bit-rate compression scheme is used.

Theterm ,,frame" in this context refers to the compressed chunk of data produced by an audio codec.

1 Mediatypes*, as used in this document, is roughly equivalent to the IETF RFC 1590 term , content type.*

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 36 of 56

8.1.1 Scrambled Audio

One Error Concealment Typeis so-called ,, scrambled audio. Thisrefersto an error conceal ment approach that
mitigates the impact of lost audio data units by rearranging the order in which audio dataiis sent. The Scrambled
Audio concealment scheme stores audio data in a rearranged fashion on disk. This disk order is maintained asthe
datais streamed over a network. The client must correctly unscramble the audio data before submitting it to the
codec to decompress. This approach works well for fixed bit-rate audio codecs that have no inter-frame
dependencies.

The Error Concealment Data field has the following structure for this approach:

Field Name Field Type Size (bits)
Audio Object Size UINT 32
Rearranged Chunk Size UINT 32
Chunks per Data Unit UINT 32

Chunk Distance UINT 32

Notes:

The Audio Object Size refersto the sizein bytes of all rearranged audio objects in this stream. Other object sizes are
possible but will not use this conceal ment scheme.

Rearranged Chunk Size refers to the size in bytes of audio blocks that are rearranged within each object. Thisvalue
should be a multiple of the Average Frame Size.

Chunks per Data Unit refers to the number of Rearranged Chunk Size audio blocks that are contained in each ASF
data unit for this stream.

Chunk Distance refers to the number of audio chunks to skip when filling data units.

Every data unit except for the one containing the ,,end* of each audio object will always contain (Chunks per Data
Unit) * (Rearranged Chunk Size) bytes of audio.

The following diagram illustrates how audio scrambling will be done.
Original Audio Media“chunks’ before scrambling.

Each rectangle represents the Rearranged Chunk Size.

The size of al rectangles added together represents the Audio Object Size.

If the Chunk Distance = 3 and the Chunks per Packet = 2, the following

would be the resulting packet order stored on the disk (and streamed across the

network):
1 7 5 6
4 2 3

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 37 of 56

8.2 Video Media Type

Type-Specific Data:

Field Name Field Type Size (bits)
Codec ID GUID 128
Color Table 1D GUID 128
Average Frame Rate FLOAT 64
Average Key Frame Rate FLOAT 64
Maximum Key Frame Rate FLOAT 64
Average Frame Size UINT 32
Maximum Frame Size UINT 32
Flags UINT 16

| Reserved 16
Encoded Image Width UINT 16
Encoded Image Height UINT 16
Display Image Width UINT 16
Display Image Height UNIT 16
Color Depth UINT 16
Codec Specific Data Size UINT 16
Codec Specific Data UINTS8 ?

M edia Stream For mat:
Output of a codec or sampling device.

Notes:
The Encoded/Display |mage Width/Height isin pixels.

The Average Key Frame Rate and the Maximum Key Frame Rate are able to indicate very slow rates as a fractional
value. For example, aframe rate of one frame every 8 seconds would be shown as 0.125.

Key Frames are also known as Clean Points within the ASF Data Unit (see Section 6.1). Key Frames are known as
|-Framesin MPEG terminology.

8.3 Image Media Type

Type-Specific Data:

Field Name Field Type Size (bits)
Codec ID GUID 128
Color Table ID GUID 128
Maximum Image Size UINT 32
Encoded Image Width UINT 16
Encoded Image Height UINT 16
Display Image Width UINT 16
Display Image Height UINT 16
Flags UINT 16

| Reserved 16
Color Depth UINT 16
Codec Specific Data Size UINT 16
Codec Specific Data UINTS8 ?

M edia Stream For mat:
The data contents of one or more logical Image files.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 38 of 56

Notes:

The following Image Types must be supported on all ASF clients: Loss-Tolerant JPEG and JPEG. Other Image
Types may also be optionally supported. [Note: Loss-Tolerant JPEG is a Microsoft-defined JPEG variant that will
be described in a future version of this document.]

The Codec ID will include GUIDs for many image formats, including Loss-Tolerant JPEG, GIF, and JPEG.

The Color Table ID isused to indicate the palette when Color Depth is 8 bpp.

The Encoded/Display Image Width/Height isin pixels.

The Maximum Image Size is specified in bytes.

The existence, content, and size of Codec Specific Datais keyed off of the Codec ID.

8.4 Timecode Media Type

Type-Specific Data:

Field Name Field Type Size (bits)

Timecode ID GUID 128

M edia Stream Format:
Timecodes of the type indicated by the Timecode ID.

Notes:
The Timecode ID will contain GUIDs for SMPTE.

It is expected that a timecode media stream will be bound to specific other media streams by means of the Inter-
Media Dependency object. Thiswill provide a basis for establishing (non-mathematic) SMPTE timecode for that
media stream (in other words, Rational Presentation Times solely are able to establish mathematically based
timecodes). For example, if an SMPTE timecode is bound to a video stream, entries with the same send times in the
two streams are paired, thereby permitting SMPTE timecodes to be given to that video stream.

8.5 Text Media Type

Type-Specific Data:

Field Name Field Type Size (bits)
Text Encoding System GUID 128
Encoding Specific Data 7 7

M edia Stream For mat:
Text Media shall be streamed as NUL L-terminated streams.

Notes:
The following Text Types must be supported on all ASF clients: ASCII, Unicode, and HTML. Other Text Types
may also be optionally supported.

The Encoding Specific Data field will have a different meaning depending on the Text type identified within the
Text ID field:
e If ASCII or Unicode is the Text Encoding System, then the Encoding Specific Data field will not exist.
» |f HTML, then this may optionally contain a Cascading Style Sheet (CSS) that will be in common across
each of the HTML objects within this media stream.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 39 of 56

All ASF implementations are required to support ASCII and are strongly encouraged to support Unicode and
HTML.

Asisthe case with the other mediatypes, al rendering and composition decisions for Text Media (for example,
overlays, Z-ordering, positioning, marquis, and so on) are made by out-of-band techniques alluded to in Section 5.8.

Should ,text files* be streamed, each ,file" is considered to be an object within this data stream (in other words, it
will have adistinct Object ID value within the ASF Data Unit (see Section 6.1)).

8.6 MIDI Media Type

The goals for the definition of the MIDI mediatype were to incur minimal overhead for MIDI data while
maintaining extensibility for future enhancements. Also, it was desirable to enable reasonable granularity seeking
operations within MIDI streams. We believe that this proposal meets the stated objectives.

Minimal overhead is present in the definition of the MIDI event structure (see the Media Stream Format section
below). Usually, only two bytes more than MIDI’ s standard overhead is required, while maintaining a more
accurate timing model.

Extensibility is built in through an event class system, which permits the mapping and assignment of globally unique
identifiers (GUIDs) to the integer-based event classes contained in aMIDI stream.

Seeking operations are supported through an expanded use of the Clean Point concept. On someinterval throughout
a seekable MIDI stream, objects will need to begin with what istermed ,,Clean Point Info" events. These events
will serveto re-establish the state of patch changes and controllers at that point in the MIDI stream. Those objects
that contain this Clean Point Info can then be marked using the Clean Point Flag in the ASF data unit definition, and
indexed using the normal ASF Index. During the course of normal streaming playback, these redundant Clean Point
Info events areignored. When seeking, the client uses these events to re-establish the current state of patches and
controllers. An exact list of which controllers’ state should be preserved is TBD.

Type-Specific Data:

Field Name Field Type Size (bits)

Flags UINT 16
Extended Classes 1(LSB)
Extended Channels 1
Reserved 14

Event Class Count UINT 16

Event Classes GUID ?

Notes:

The Extended Classes Flag means that every MIDI event in this stream uses the 8 bit Extended Event Class field
(see below) to extend the number of possible event classes from 63 to 16383 (by extending the event class space
from 6 bitsto 14 bits).

The Extended Channels Flag means that every MIDI event in this stream is followed by a byte that contains an
additional 8 bits of MIDI channel information, permitting the use of 4096 channelsinstead of just the traditional 16
channels.

The Event Classes list of GUIDs contains the mapping used for this particular stream from the GUID identifiers for
MIDI event classes to the integers used in this stream. Thefirst entry in thislist is given the integer value 1 (one),
since O (zero) isreserved to indicate a standard MIDI event.

It is expected that MIDI streams will have the Reliable Flag set in their Stream Properties Object, as the loss of
MIDI data generally leads to undesirable and unpredictable results.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 40 of 56

M edia Stream Format:
Each object within aMIDI stream will contain an array of the following MIDI Event structures:

Field Name Field Type Size (bits)
Presentation Time Delta UINT 16
UINT 8

Event Size Present 1(LSB)

Clean Point Event 1

Event Class 6
Extended Event Class UINT Oor8
Event Size UINT Oor32
MIDI Event UINTS8 ?
Extended Channel Info UINT Oor8

Notes:

The Presentation Time Delta field is stored in units of 100 microseconds (tenths of milliseconds). The 16-bit size of
the field, when combined with the chosen time units, permits ASF MIDI objects to contain up to 6.5535 seconds
worth of MIDI datain asingle object. The deltais based on the explicit or implicit Presentation Time value of the
object inthe ASF MIDI stream. Each event stores an individual time delta from the base presentation time of the
object (for ease of manipulation), so the resulting presentation time for every single MIDI event in the same object
can be computed as object presentation time + presentation time delta. All MIDI eventsin a single object must be
stored in sorted order of increasing presentation time deltas.

The Event Size Present field is used to indicate that an explicit 32-bit event size field is being used in this particular
event. Thiswill typically be useful for SY SEX events whose lengths can not be predicted. If not present, the size of
the MIDI Event field must be implicitly determined based on the event’s contents. In the case of a standard MIDI
event (with Event Class == 0), asimple table can be used to map from MIDI status byte valuesto the overall size of
the MIDI event data. Recall that if the stream’ s Extended Channelsflag is set, then an Extended Channel Info byte
follows the standard MIDI event.

The Clean Point Event field indicates that this particular MIDI event should only be processed if received
immediately following a seek operation. Otherwise, client implementations should skip this event.

The Event Class field is used as a 1-based index into the Event Classes list of GUIDs stored in the stream header.
Event Class O (zero) isreserved to indicate a Standard MIDI event. The Extended Event Class field is used to
expand the number of simultaneously permissible event classes for a particular stream from 63 to 16383 by
extending the number of event class bits from 6 to 14. It occurs only if the Extended Classes flag is set in the stream
header.

The Event Size field is used only if the Event Size Present field is set, as was previously mentioned.
MIDI running status can be used between the events contained within one individual ASF object (or buffer), but

should not cross object boundaries. This recommendation is designed to ssimplify client playback resource
requirements and implementations.

8.7 Command Media Type
Type-Specific Data:

Field Name Field Type Size (bits)

Command Type GUID 128

M edia Stream For mat:

The data of URL Command Types complies with the URL format strings as defined in RFC 1738 and RFC 2017.
These strings shall be NULL terminated ASCII strings. Frame values are indicated by a,,&" delimiter according to
the following syntax: ,,& frame & URL \0“.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 41 of 56

The data of the FILENAME Command Type either complies with the URL Command Type format or else the
format used on the local operating system to indicate ASCI| filenames.

Notes:

There are two standard Command Type GUIDs; URL and FILENAME. The URL command indicates that the URL
isto be ,launched” by aclient into an HTML window or frame. The FILENAME command indicates the ASF file
indicated is to be played immediately (for example, for ,,continuous play” environments).

It isrequired that all ASF implementations support fully specified URLs for both URL and FILENAME uses.
Relative path URLs may be optionally supported. The use of Local URLSs (in other words, those containing O/S
dependent references such as drive letters) is discouraged but not prohibited.

8.8 Media-Objects (Hotspot) Media Type

The goal of the Media-Objects stream is to encode an object representation of arelated visual media stream (for
example, video, image, slideshow, animation, and so on) and the interactive features associated with these objects.
Thisisaccomplished by ,,binding” the media object stream to the related visual media stream by means of the Inter-
Media Dependency Object.

Theoretically, the Media Object stream will enable elements within the visual media stream to be referred to in an
obj ect-oriented fashion (in addition to the traditional image-oriented fashion). This approach enhances the
information level embedded in a visual media stream, providing both the devel oper and the viewer with a new, more
natural method of referencing the logical objectsin the media. For example, derived applications may include
object-based interactivity, object-based storage and retrieval and object-based statistics.

Type-Specific Data:
Field Name Field Type Size (bits) Description
Horizontal Resolution UINT 16 The horizonta resolution of frame. This

parameter is used to interpret the objects
geometry parameters.

Vertical Resolution UINT 16 The vertical resolution of frame. This
parameter is used to interpret the objects
geometry parameters.

Number of Commands UINT 16 Total number of Command Entries.
Command Entry Array Command ”
Entry Structure

Command Entry Structure:

Field Name Field Type Size (bits) | Description

Link Type OBLinkType 8 The command type that will be activated
when actuating the object.

Link Command:

For URL command:
URL ASCII String 7 The full URL address. Identical to the
URL Command type (see Section 8.7).

Seek to Time command:
Time Timestamp 32 The point in time within the stream to seek
to. Thisvalueisin millisecond granularity.

Seek to Marker command:
Marker UINT 32 The point in the stream to seek to (in
reference to locations indicated by an
index value into the Markers field of the
Marker Object (see Section 5.6)). Values
exceeding the number of Markersfield
entries will be ignored.

For Filename commands:
Filename | ASCIl String | 22 | Identical to the Filename Command type

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 42 of 56

| | | (see Section 8.7).

For Script command:

Type Field Size UINT 8 Number of Unicode charactersin the Type
Field.

VaueField Size UINT 16 Number of Unicode charactersin the
Value Field.

Type Field Unicode 7 The Typefield (for example, Script
Name).

Value Field Unicode 7 The Value field (for example, Script
contents).

For Pause, Resume, Exit, and Same-Value commands, no Link Command field is present

Notes:

The Horizontal and Vertical Resolution parameters determine the units by which the objects’ geometry will be
defined. These parameters describe the number of "logical units' in each frame width and height. Thisrelative
representation provides easy interface for objects re-sizing and media scaling.

The Link Type defines the command that is linked to the object. This command is activated by a mouse-click upon
the object. OBLinkType defines one of the following commands:

0=NO_LINK (nothing happens upon mouse click)

1=URL (flipaURL page)

2 = SeekToTime

3 = SeekToMarker

4 = Filename (jump to another ASF file)

5 = Script (Type/Value pair whose actual meaning (semantics) islocally defined. For example, the Type may
indicate a script name and the Value may indicate the contents of the script body.)

6 = Pause

7 = Resume (ignore if pause had not previously been hit)

8 = Exit

9 = Same-Value: Continue to use the command which had been previously specified for this Object ID. [Note: if
there was not a previously specified command for this Object ID, then the command for this Object ID will default
to NO_LINK. This command type should not be used for instances in which the Command Entry Structure has been
appended to the Object Structure of the Media Object Stream.]

Values greater than 9 are Reserved

M edia Stream For mat:

Following is the structure of each object instance. M ultiple object instances can optionally be directly concatenated
together as an array of structuresin one ASF Data Unit. Every instance encodes the object description and/or
interactive features for a given duration. Each description isvalid from its Start Time until its End Time.

Field Name Field Type Size (bits) Description
Object ID UINT 16 A unique identifier of the object.
Start Time UINT 32 The starting time of this instance of the
object (presentation time value).
End Time UINT 32 The ending time of thisinstance of the
object (presentation time value).
Object Shape OB Shape 4 The primitive shape of the hot spot.
Object Flags OBFlags 4 (low-order | Different flags assigned to the object.
nibble) (could be used by any external
application).
Object Geometry (4*16) or
(N*2*16)
For primitive shape objects (Rectangle, Triangle, Ellipse, and so on.)
Left UINT 16 X coordinate of the top-left corner of the
bounding rectangle.
Top UINT 16 Y coordinate of the top-left corner of the

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 43 of 56

bounding rectangle.

Right UINT 16 X coordinate of the bottom-right corner of
the bounding rectangle.

Bottom UINT 16 Y coordinate of the bottom-right corner of
the bounding rectangle.

For Polygon shape object

X1 UINT 16 X coordinate of the first vertex of the
polygon.

Y1 UINT 16 Y coordinate of the first vertex of the
polygon.

Xn... UINT 16 X coordinate of the nth vertex of the
polygon.

Yn... UINT 16 Y coordinate of the nth vertex of the
polygon.

XN UINT 16 X coordinate of the last vertex of the
polygon.

YN UINT 16 Y coordinate of the last vertex of the
polygon.

| EffectsField UINT 8 Cursor and visual effects.
Cursor Type OBCursor 4 Cursor effects.
Marking Type OBMark 4 (low- Marking effects.
order
nibble)
Index UINT 16 The command that will be activated when

actuating this object.

Notes:
Object ID isaunique identifier of the object, throughout its life span.

The Start Time and End Time parameters are interpreted according the presentation time granularities of the visual
media stream to which this particular Media Object stream was bound by means of the | nter-media Dependency
Object.

Object Shape selects one of the pre-defined shapes: 0 = Rectangle, 1 = Triangle, 2 = Ellipse, and 4 = Polygon.

Object Flags field is defined in an implementation-specific manner. The default value of thisfield is zero. Clients
may optionally ignore this field.

The object geometry parameters are all represented in the Horizontal/Vertical Resolution units, which are defined in
the stream header.

For all primitive shapes (in other words Rectangle, Ellipse, Triangle), defining the bounding rectangle of the shape
is sufficient to fully describe the shape. (That isaso true, for an isosceles triangle with a horizontal base. For any
other type of triangle, the polygon shape can be used.)

The Cursor Type specifies the author’ s preference for cursor shape. OBCursor values are:

0 =arrow

1=hand

2 = hide cursor

3 — 10 Implementation Specific

11-15 Reserved

I mplementations may use the Implementation specific valuesin an implementation-specific manner. Clients may
aso optionally ignore interpreting the Cursor Type field altogether at their own discretion.

The Marker Type visual effects associated with a hot spot. OBMark values are:
0 =none

1=invert

2 = darken

3 =outline

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 44 of 56

4 — 10 Implementation Specific

11 - 15 Reserved

I mplementations may use the |mplementation specific values in an implementation-specific manner. Clients may
also optionally ignore interpreting the Cursor Type field altogether at their own discretion.

The Index value refersto which entry in the Command List Array (within the Stream Properties Object) is being
activated. Index values exceeding the number of entries within the Command List Array will beignored unlessit is
OxFFFF (in other words, 65535 decimal). A value of OXFFFF signifies that a Command Entry Structure is appended
to this object structure instance (for example, to support Real-Time Editing).

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 45 of 56

9 Bibliography

[1] T. Krauskopf, J. Miller, P. Resnick, and G. W. Treese, , Label Syntax and Communication Protocols,”
World Wide Web Consortium|http://www.w3.org/Pl CS/labels.html| May 5 1996.

[2] J. Miller, P. Resnick, and D. Singer, ,, Rating Services and Rating Systems (and Their Machine Readable
Descriptions),” World Wide Web Consortium jitp://www.w3.org/PICS/services.html} May 5 1996.

[3] D. Crocker, ,RFC 822: Standard for the Format of ARPA Internet Text Messages,”
ftp:/ds.internic.net/rfc/rfc822.txt} August 1982.

[4] H. Alvestrand, , RFC 1766: Tags for the Identification of Languages,” {tp:/ds.internic.net/rfc/rfc1766.txt]
March 2, 1995.

[5] ~MARC Bibliographic Formats,” http://www.fsc.follett.com/data/marctags/|

6] ,Dublin Core Elements,” ftp://ds.internic.net/internet-drafts/draft-kunze-dc-01.txt{ or
http://purl .org/metadata/dublin core elements/]

[7] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, , RFC 1889: RTP: A Transport Protocol for Real-

Time Applications,” January 1996; ftp.//ds.internic.net/rfc/rfc1889.txt|

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 46 of 56

http://www.w3.org/PICS/labels.html
http://www.w3.org/PICS/services.html
http://ds.internic.net/rfc/rfc822.txt
http://ds.internic.net/rfc/rfc1766.txt
http://www.fsc.follett.com/data/marctags/
ftp://ds.internic.net/internet-drafts/draft-kunze-dc-01.txt
http://www.fsc.follett.com/data/marctags/
ftp://ds.internic.net/rfc/rfc1889.txt

Appendix A: ASF GUIDs

Use of GUIDswithin ASF

GUIDs are used to uniquely identify all objects and entities within ASF files. This provides the foundation for the
extensibility and flexibility that characterizes ASF. For example, versioning is transparently supported within ASF
by this mechanism. That is, since each version of an ASF object has its own unique GUID, the ASF library knows
how to interpret the semantics and syntax of any given version of that object based upon the GUID that is used.

Similarly, each ASF multimedia object type is uniquely identified by a GUID. New media types can be created,
identified by their own GUID, and inserted into ASF data streams.

Similarly, new codec types, hew error correction approaches, and novel innovations of all types can be readily
invented, identified by GUIDs and used within ASF.

New ASF object types (for example, see Other Objects asis shown in Figure 2 of Section 3.2 as well as explicit text
within Sections 5.1 and 5.3) may be defined. Thisforms a chief ,, extensibility feature” of ASF to support new
innovations and inventions as they arise. Each new ASF object type needs its own unique GUID identification.

ASF GUIDs

The following are standard GUIDs that have been defined for all ASF objects and GUID-based fields within this
specification. Thislist is not exhaustive. Implementations may supplement this list with additional GUIDs when
necessary to identify entities/elements/ideas that have not yet been enumerated by this appendix.

Microsoft will endeavor to maintain alist of the additional GUID definitions (about which it has been informed) at a
public Web site. Theinitial location of this web site will benttp://www.microsoft.com/asf/|Companies desiring to
register additional GUID definitions should send an email message to A SF@microsoft.com.

Standard Base ASF Objects GUIDs

ASF Header Object {D6E229D1-35DA-11d1-9034-00A0C90349BE}

ASF Data Object {D6E229D2-35DA-11d1-9034-00A0C90349BE}

ASF Index Object {D6E229D3-35DA-11d1-9034-00A0C90349BE}
Standard ASF Header Object GUIDs

File Properties Object {D6E229D0-35DA-11d1-9034-00A0C90349BE}
Stream Properties Object {D6E229D4-35DA-11d1-9034-00A0C90349BE}
Data Unit Extension Object {D6E22A0F-35DA-11d1-9034-00A0C90349BE}
Content Description Object {D6E229D5-35DA-11d1-9034-00A0C90349BE}
Script Command Object {D6E229D6-35DA-11d1-9034-00A0C90349BE}
Marker Object {D6E229D7-35DA-11d1-9034-00A0C90349BE}
Component Download Object {D6E229D8-35DA-11d1-9034-00A0C90349BE}
Stream Group Object { D6E229D9-35DA-11d1-9034-00A0C90349BE}
Scalable Object {D6E229DA-35DA-11d1-9034-00A0C90349BE}
Prioritization Object { D6E229DB-35DA-11d1-9034-00A0C90349BE}
Mutual Exclusion Object {D6E229DC-35DA-11d1-9034-00A0C90349BE}
Inter-Media Dependency Object { D6E229DD-35DA-11d1-9034-00A0C90349BE}
Rating Object {D6E229DE-35DA-11d1-9034-00A0C90349BE}
Index Parameters Object {D6E229DF-35DA-11d1-9034-00A0C90349BE}
Color Table Object {D6E229E0-35DA-11d1-9034-00A0C90349BE}
Language List Object {D6E229E1-35DA-11d1-9034-00A0C90349BE}

Other ASF Header Object GUIDs
ASF Placehol der Object { DBE22A0E-35DA-11d1-9034-00A0C90349BE}

Standard GUIDsfor the Stream Type Field of the Stream Properties Object
Audio Media { DBE229E2-35DA-11d1-9034-00A0C90349BE}

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 47 of 56

http://www.microsoft.com/asf/

Video Media { D6E229E3-35DA-11d1-9034-00A0C90349BE}

Image Media { D6E229E4-35DA-11d1-9034-00A0C9I0349BE}
Timecode Media { D6E229E5-35DA-11d1-9034-00A0C90349BE}
Text Media { DBE229E6-35DA-11d1-9034-00A0C90349BE}
MIDI Media { DBE229E7-35DA-11d1-9034-00A0C90349BE}
Command Media { DBE229E8-35DA-11d1-9034-00A0C90349BE}
Media-Object (Hotspot) { DBE229FF-35DA-11d1-9034-00A0C90349BE}

Codecsfor Audio and Video Media Types

A GUID isneeded for each version of a codec implementation that produces dissimilar encodings of the same input.
Microsoft will maintain alist of GUIDs according to their Codec/version number at a Microsoft Web site. Theinitial
location of this site ishttp://www.microsoft.com/ast/|Companies that want to register the GUIDs of additional
Codec/version numbers should send their registrations to ASF@microsoft.com|

GUIDsfor the Error Concealment Type Field of the Audio Media Type

No Error Conceal ment {D6E229EA-35DA-11d1-9034-00A0C90349BE}
Scrambled Audio (see Section 8.1.1) { D6E229EB-35DA-11d1-9034-00A0C90349BE}
GUIDsfor the Color TablelD field of the Video and Image M edia Types

No Color Table { D6E229EC-35DA-11d1-9034-00A0C90349BE}
GUIDsfor the Timecode I D of the Timecode Media Type

SMPTE Time { D6E229ED-35DA-11d1-9034-00A0C90349BE}
GUIDsfor the Text Encoding System Field of the Text Media Type

ASCII Text { D6E229EE-35DA-11d1-9034-00A0C90349BE}
Unicode Text { D6E229EF-35DA-11d1-9034-00A0C90349BE}

HTML Text { D6E229F0-35DA-1101-9034-00A0C90349BE}
GUIDsfor the Extension System Field of the Data Unit Extension Object

RTP Extension Data {96800c63-4¢94-11d1-837b-0080c7a37f95}

GUIDsfor the Command Type Field of the Command Media Type

URL Command { D6E229F1-35DA-11d1-9034-00A0C90349BE}
Filename Command { D6E229F2-35DA-11d1-9034-00A0C90349BE}
GUIDsfor the Category Field of the Component Download Object

ACM Codec { D6E229F3-35DA-11d1-9034-00A0C90349BE}

VCM Codec { D6E229F4-35DA-11d1-9034-00A0C90349BE}
QuickTime Codec { D6E229F5-35DA-11d1-9034-00A0C90349BE}
DirectShow Transform Filter { D6E229F6-35DA-11d1-9034-00A0C90349BE}
DirectShow Rendering Filter {D6E229F7-35DA-11d1-9034-00A0C90349BE}
Enhancement GUIDsfor the Scalable Object

No Enhancement { D6E229F8-35DA-11d1-9034-00A0C90349BE}
Unknown Enhancement Type { D6E229F9-35DA-11d1-9034-00A0C90349BE}
Tempora Enhancement { D6E229FA-35DA-11d1-9034-00A0C90349BE}
Spatial Enhancement { D6E229FB-35DA-11d1-9034-00A0C90349BE}
Quality Enhancement { D6E229FC-35DA-11d1-9034-00A0C90349BE}
Number of Channels Enhancement (for example, Stereo) { D6E229FD-35DA-11d1-9034-00A0C90349BE}
Frequency Response Enhancement { D6E229FE-35DA-11d1-9034-00A0C90349BE}
GUIDsfor the Exclusion Type Field of the Mutual Exclusion Object

Language { D6E22A00-35DA-11d1-9034-00A0C90349BE}

Same Content at Different Bit Rates {D6E22A01-35DA-11d1-9034-00A0C90349BE}
Unknown Reason { D6E22A02-35DA-11d1-9034-00A0C90349BE}

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 48 of 56

http://www.microsoft.com/asf/
mailto:ASF@microsoft.com

Appendix B: Bit Stream Types

The bit stream type describes the target data type and the order of transmission of bitsin the coded bit stream. The
bit stream types are ASCII, GUID, FILETIME, UINT, and Unicode.

ASCII
A UINT8 (see UINT below) value containing ASCII data. ASCI| datais defined in RFC 1766.

FILETIME

A 64-bit integer that contains a time stamp corresponding to the number of 100 nanosecond ticks since January 1,
1601. The following diagram demonstrates the filetime format:

(MSB) (LSB)

+ + + + + + + + +
|byte O |byte 1 [byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
+ + + + + + + + +
< 64 bits >

The GMT time zone is used for al filetime entries.

GUID

Theterms GUID (globally unique identifier) and UUID (universally unique identifier) are identical. GUIDs are a
128-bit (16 octet) data structure composed of a 32-bit unsigned integer, two 16-bit unsigned integers, and an array of
eight octets. The constituent parts are shown in the following diagrams:

(MSB) (LSB)
Fomm o Fomm e Fomm e m Fomm e - +
| byte O |byte 1 |byte 2 |byte 3 |
Fom e e o - Fommm oo - [S, B R, +
oo 32 bits------------ >
UNSI GNED | NTEGER
(MSB) (LSB)
[g [g +
| byte O | byte 1 |
Fomm o Fome o +

<----16 bits---->
UNSI GNED | NTEGER

(MSB) (LSB)
Fomm o Fome o +
| byte O |byte 1 |
[[+

<----16 bits---->
UNSI GNED | NTEGER

(VvBB) (LSB)
[g [SR +, L - - S R +
| byte O |byte 1 |...|byte 7 |byte 8 |
Fommannn Femmannn I S R +
R LR LT 64 bits------------- >|

FI XED- LENGTH ARRAY

These conponents are concatenated to formthe UU D

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 49 of 56

Fommem - Fomm e e - Fomm e e - Fomm e e S R R R S Fomm e oo +
| byte O |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |...|byte 14| byte 15|
S S S S S R R R S +
O R 128 bitsS---------mmim o - >

UNI VERSALLY UNI QUE | DENTI FI ER (UUI D)

UINT

Unsigned integer in Little-Endian byte and Little-Endian bit order. When a number is appended to UINT, the
number refersto the number of bits contained within this unsigned integer value. For example:

* UINT64 isan unsigned integer value that is 64 bitslong

e UINT32isan unsigned integer value that is 32 bits long

e UINT16 isan unsigned integer value that is 16 bitslong

 UINT8isan unsigned integer value that is 8 bits long.

UNICODE
A UINT16 (see UINT above) value containing Unicode data.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 50 of 56

Appendix C: GUIDs and UUIDs

ABSTRACT

This appendix describes the format of UUIDs (Universally Unique I Dentifier), which are also known as GUIDs
(Globally Unigue I Dentifier). A GUID is 128 bits long, and if generated according to the one of the mechanismsin
this document, is either guaranteed to be different from all other UUIDs/GUIDs generated until 3400 A.D. or
extremely likely to be different (depending on the mechanism chosen). GUIDs were originally used in the Network
Computing System (NCS) [1] and later in the Open Software Foundation’s (OSF) Distributed Computing
Environment [2].

This specification is derived from the latter specification with the kind permission of the OSF.

Introduction

This specification defines the format of UUIDs (Universally Unique I Dentifiers), also known as GUIDs (Globally
Unique IDentifiers). A GUID is 128 bitslong, and if generated according to the one of the mechanismsin this
document, is either guaranteed to be different from all other UUIDS/GUIDs generated until 3400 A.D. or extremely
likely to be different (depending on the mechanism chosen).

Motivation

One of the main reasons for using GUIDs is that no centralized authority is required to administer them (beyond the
one that allocates | EEE 802.1 node identifiers). As aresult, generation on demand can be completely automated, and
they can be used for awide variety of purposes. The GUID generation al gorithm described here supports very high
allocation rates: 10 million per second per machine if you need it, so that they could even be used as transaction I1Ds.
GUIDs are fixed-size (128 bits), which is reasonably small relative to other alternatives. This fixed, relatively small
sizelendsitself well to sorting, ordering, hashing of all sorts, storing in databases, simple allocation, and ease of
programming in general.

Specification

A GUID isanidentifier that is unique across both space and time, with respect to the space of all GUIDs. To be
precise, the GUID consists of afinite bit space. Thus the time value used for constructing a GUID islimited and will
roll over in the future (at approximately A.D. 3400, based on the specified algorithm). A GUID can be used for
multiple purposes, from tagging objects with an extremely short lifetime, to reliably identifying very persistent
objects across a hetwork.

The generation of GUIDs does not require that a registration authority be contacted for each identifier. Instead, it
requires a unique value over space for each GUID generator. This spatially unique value is specified as an | EEE 802
address, which is usually already available to network-connected systems. This 48-bit address can be assigned based
on an address block obtained through the |EEE registration authority. This section of the GUID specification
assumes the availability of an IEEE 802 address to a system desiring to generate a GUID, but if one is not available,
Section 4 specifies away to generate a probabilistically unique one that can not conflict with any properly assigned

| EEE 802 address.

C.l1 Format
The following table gives the format of a GUID.
Field Data Type Octet # Note
time_low unsigned 32-hit integer 0-3 The low field of the timestamp.
time_mid unsigned 16-bit integer 4-5 Themiddle field of the timestamp.
time_hi_and_version unsigned 16-bit integer 6-7 The high field of the timestamp multiplexed
with the version number.
clock_seq hi_and_reserved unsigned 8-hit integer 8 The high field of the clock sequence
multiplexed with the variant.
clock_seq low unsigned 8-bit integer 9 The low field of the clock sequence.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 51 of 56

node character 10-15 The spatialy unique node identifier.
The GUID consists of arecord of 16 octets and must not contain padding between fields. The total sizeis 128 bits.
To minimize confusion about bit assignments within octets, the GUID record definition is defined only in terms of
fieldsthat are integral numbers of octets. The version number is multiplexed with the timestamp (time_high), and
the variant field is multiplexed with the clock sequence (clock_seq_high).
The timestamp is a 60-bit value. For GUID version 1, thisis represented by Coordinated Universal Time (UTC) asa
count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of Gregorian reform to the
Christian calendar).

The version number is multiplexed in the 4 most significant bits of thetime_hi_and_version field.

The following table lists currently defined versions of the GUID.

msbl msb2 msb3 msb4 Version Description
0 0 0 1 1 DCE version, as specified herein.
0 0 1 0 2 DCE Security version, with embedded POSI X UIDs.

The variant field determines the layout of the GUID. The structure of DCE GUIDs s fixed across different versions.
Other GUID variants may not interoperate with DCE GUIDs. Interoperability of GUIDs is defined as the
applicability of operations such as string conversion, comparison, and lexical ordering across different systems. The
variant field consists of a variable number of the MSBS of the clock_seq hi_and_reserved field.

The following table lists the contents of the DCE variant field.

msbl msb2 msb3 Description

0 - - Reserved, NCS backward compatibility.
1 0 - DCE variant.

1 1 0 Reserved, Microsoft Corporation GUID.
1 1 1 Reserved for future definition.

The clock sequence is required to detect potential |osses of monotonicity of the clock. Thus, this value marks
discontinuities and prevents duplicates. An algorithm for generating this value is outlined in the ,, Clock Sequence*
section below.

The clock sequence is encoded in the 6 least significant bits of the clock_seq hi_and_reserved field and in the
clock_seq low field.

The node field consists of the |EEE address, which is usually the host address. For systems with multiple IEEE 802
nodes, any available node address can be used. The lowest addressed octet (octet number 10) contains the
global/local bit and the unicast/multicast bit, and is the first octet of the address transmitted on an 802.3 LAN.

Depending on the network data representation, the multi-octet unsigned integer fields are subject to byte swapping
when communicated between different endian machines.

Thenil GUID is specia form of GUID that is specified to have all 128 bits set to 0 (zero).

C.2 Algorithms for Creating a GUID

Various aspects of the algorithm for creating a GUID are discussed in the following sections. GUID generation

requires a guarantee of uniqueness within the node ID for a given variant and version. Interoperability is provided by

complying with the specified data structure. To prevent possible GUID collisions, which could be caused by

different implementations on the same node, compliance with the algorithms specified here is required.

C.2.1 Clock Sequence

The clock sequence value must be changed whenever:

» The GUID generator detects that the local value of UTC has gone backward; this may be due to normal
functioning of the DCE Time Service.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 52 of 56

e The GUID generator has lost its state of the last value of UTC used, indicating that time \f2 may have gone
backward; thisistypically the case on reboot.

While anode is operational, the GUID service always saves the last UTC used to create a GUID. Each time a new
GUID iscreated, the current UTC is compared to the saved value and if either the current valueis less (the non-
monotonic clock case) or the saved value was logt, then the clock sequence is incremented modulo 16,384, thus
avoiding production of duplicate GUIDs.

The clock sequence must be initialized to a random number to minimize the correlation across systems. This
provides maximum protection against node identifiers that may move or switch from system to system rapidly. The
initial value MUST NOT be correlated to the node identifier.

The rule of initializing the clock sequence to arandom value is waived if, and only if, all of the following are true:

* Theclock sequence value is stored in aform of non-volatile storage.

* The system is manufactured such that the |EEE address ROM is designed to be inseparable from the system by
either the user or field service, so that it cannot be moved to another system.

» The manufacturing process guarantees that only new | EEE address ROMs are used.

* Any field service, remanufacturing or rebuilding process that could change the value of the clock sequence must
reinitialise it to arandom value.

In other words, the system constraints prevent duplicates caused by possible migration of the |EEE address, while

the operational system itself can protect against non-monotonic clocks, except in the case of field service

intervention. At manufacturing time, such a system may initialise the clock sequence to any convenient value.

C.2.2 System Reboot

There are two possibilities when rebooting a system:

* The GUID generator statesthat the last UTC, adjustment, and clock sequence of the GUID service has been
restored from non-volatile store.

» The state of the last UTC or adjustment has been lost.

If the state variables have been restored, the GUID generator just continues as normal. Alternatively, if the state
variables cannot be restored, they are reinitialized, and the clock sequence is changed.

If the clock sequence is stored in non-volatile store, it is incremented; otherwise, it isreinitialized to a new random
value.

C.2.3 Clock Adjustment

GUIDs may be created at arate greater than the system clock resolution. Therefore, the system must also maintain
an adjustment value to be added to the lower-order bits of the time. Logically, each time the system clock ticks, the
adjustment value is cleared. Every time a GUID is generated, the current adjustment value is read and incremented
atomically, and then added to the UTC time field of the GUID.

C.24 Clock Overrun

The 100-nanosecond granularity of time should prove sufficient even for bursts of GUID creation in the next
generation of high-performance multiprocessors. If a system overruns the clock adjustment by requesting too many
GUIDs within asingle system clock tick, the GUID service may raise an exception, handled in a system or process-
dependent manner either by:

* Terminating the requester.

* Reissuing the request until it succeeds.

« Staling the GUID generator until the system clock catches up.

If the processors overrun the GUID generation frequently, additional node identifiers and clocks may need to be

added.

C.25 GUID Generation

GUIDs are generated according to the following algorithm:

« Determine the values for the UTC-based timestamp and clock sequence to be used in the GUID.

e Sections format and clock_seq define how to determine these values. For the purposes of this agorithm,
consider the timestamp to be a 60-bit unsigned integer and the clock sequence to be a 14-bit unsigned integer.
Sequentially number the bitsin afield, starting from O (zero) for the least significant bit.

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 53 of 56

» Setthetime low field equal to the least significant 32 bits (bits numbered 0 to 31 inclusive) of the time stamp in
the same order of significance. If a DCE Security version GUID is being created, then replace the time_low
field with the local user security attribute as defined by the * (ZB.

* Setthetime mid field equal to the bits numbered 32 to 47 inclusive of the timestamp in the same order of
significance.

* Setthe 12 least significant bits (bits numbered O to 11 inclusive) of thetime_hi_and_version field equal to the
bits numbered 48 to 59 inclusive of the time stamp in the same order of significance.

* Setthe4 most significant bits (bits numbered 12 to 15 inclusive) of thetime_hi_and_version field to the 4-bit
version number corresponding to the GUID version being created, as shown in the table above.

» Settheclock seq lowfield to the 8 least significant bits (bits numbered 0 to 7 inclusive) of the clock sequence
in the same order of significance.

» Setthe 6 least significant bits (bits numbered 0 to 5 inclusive) of the clock seq hi_and reserved field to the 6
most significant bits (bits numbered 8 to 13 inclusive) of the clock sequence in the same order of significance.

e Setthe 2 most significant bits (bits numbered 6 and 7) of the clock_seq_hi_and reserved to 0 and 1,
respectively.

» Setthenodefield to the 48-bit IEEE addressin the same order of significance as the address.

C.3 String Representation of GUIDs

For use in human-readable text, a GUID string representation is specified as a sequence of fields, some of which are
separated by single dashes.

Each field istreated as an integer and has its value printed as a zero-filled hexadecimal digit string with the most
significant digit first. The hexadecimal values ato f inclusive are output as lowercase characters, and are case-
insensitive on input. The sequence is the same as the GUID constructed type.

The formal definition of the GUID string representation is provided by the following extended BNF:
QU D = <time_| ow> <hyphen> <tinme_m d> <hyphen>

<ti rre_hl gh_and_ver si on> <hyphen>

<cl ock_seq_and_r eserved>

<cl ock_seq_| ow> <hyphen> <node>

<hexQct et > <hexCct et > <hexCct et > <hexCct et >
<hexQct et > <hexCct et >

<hexQct et > <hexCct et >

time_| ow
time_md
ti me_hi gh_and_versi on

cl ock_seq_and_reserved <hexCct et >

cl ock_seq_I| ow <hexCct et >

node <hexCct et ><hexCct et ><hexCct et >
<hexCct et ><hexCct et ><hexCct et >

hexCct et = <hexDi gi t > <hexDi gi t>

hexDi gi t = <digit>]| <a>| | <c> | <d>| <e> | <f>

digit ="o" | "™a" | "2" | "3" | "4" | "5" | "6" | "7" |
ll8l| | llgll

hyphen ="

a ="a" | "A"

b ="pb" | "B"

c ="c" | "C

d ="d" | "D

e ="e" | "E

f ="f" | "F

Thefollowing is an example of the string representation of a GUID:
2facl1234- 31f 8- 11b4- a222- 08002b34c003

C.4 Comparing GUIDs

The following table lists the GUID fields in order of significance, from most significant to least significant, for
purposes of GUID comparison. The table also shows the data types applicable to the fields.

Field Type

time_low Unsigned 32-bit integer

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 54 of 56

time_mid Unsigned 16-bit integer

time_hi_and_version Unsigned 16-bit integer
clock seq hi_and_reserved Unsigned 8-hit integer
clock seq low Unsigned 8-hit integer
node Unsigned 48-bit integer

Consider each field to be an unsigned integer as shown above. Then, to compare a pair of GUIDs, arithmetically
compare the corresponding fields from each GUID in order of significance and according to their data type. Two
GUIDsare equal if and only if al the corresponding fields are equal. The first of two GUIDs follows the second if
the most significant field in which the GUIDs differ is greater for the first GUID. The first of apair of GUIDs
precedes the second if the most significant field in which the GUIDs differ is greater for the second GUID.

C.5 Node IDs when no IEEE 802 network card is available

If a system wants to generate GUIDs but has no |EE 802-compliant network card or other source of |EEE 802
addresses, then this section describes how to generate one.

Theideal solution isto obtain a 47-bit cryptographic quality random number, and use it as the low 47 bits of the
node ID, with the high-order bit of the node ID set to 1. (The high-order bit is the unicast/multicast bit, which will
never be set in |EEE 802 addresses obtained from network cards.)

If a system does not have a primitive to generate cryptographic quality random numbers, then in most systems there
are usualy afairly large number of sources of randomness available from which one can be generated. Such sources
are system-specific, but often include:

* the percent of memory in use

» thesize of main memory in bytes

e theamount of free main memory in bytes

» thesize of the paging or swap filein bytes

» freebytes of paging or swap file

* thetotal size of user virtual address space in bytes

* thetotal available user address space bytes

» thesize of boot disk drive in bytes

» thefreedisk space on boot drive in bytes

* thecurrent time

» theamount of time since the system booted

» theindividual sizes of filesin various system directories

» thecreation, last read, and modification times of filesin various system directories

« theutilization factors of various system resources (heap, and so on.)

e current mouse cursor position

e current caret position

e current number of running processes, threads

* handles or IDs of the desktop window and the active window

» thevalue of stack pointer of the caller

» the processand thread ID of caller

e various processor architecture specific performance counters (instructions executed, cache misses, TLB

mi Sses)

In addition, items such as the computer’ s name and the name of the operating system, while not strictly speaking
random, will differentiate the results from those obtained by other systems.

The exact algorithm to generate anode ID using this datais system-specific, because both the data available and the
functions to obtain them are often very system-specific. However, assuming that one can concatenate all the
values from the randomness sources into a buffer, and that a cryptographic hash function such asMD5 [3] is
available, the following code will compute anode ID:

#i ncl ude <md5. h>
#defi ne HASHLEN 16

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 55 of 56

voi d GenNodel X

unsi gned char * pDat aBuf, /1 concatenated "randomess val ues”
| ong cDat a, /1 size of randommess val ues
unsi gned char Nodel OO 6] /1 node ID
) |
int i, j, k;

unsi gned char Hash[HASHLEN] ;
MD_CTX cont ext ;

MDInit (&context);
MDUpdat e (&cont ext, pDataBuf, cData);
MDFi nal (Hash, &context);

for (i,j = 0; i < HASHLEN; i++) {
Nodel D j] "= Hash[i];
if (j ==6)] =0;
1
Nodel D[0] | = 0x80; /1 set the nulticast bit
1

Other hash functions, such as SHA-1 [4], can also be used (in which case HASHLEN will be 20). The only
requirement is that the result be suitably random — in the sense that the outputs from a set uniformly distributed
inputs are themselves uniformly distributed, and that a single bit change in the input can be expected to cause

half of the output bits to change.

C.6 References

[1] LisaZahn, et.al. Network Computing Architecture. Englewood Cliffs, NJ: Prentice Hall, 1990

[2] OSFDCE Spec
[3] R. Rivest, RFC 1321, "The MD5 Message-Digest Algorithm," 04/16/1992.
[4] SHA Spec

Advanced Streaming Format (ASF); © Microsoft Corporation, February 26, 1998; Page 56 of 56

	Errata
	Introduction
	Disclaimer
	What is ASF?
	Design Goals
	Scope

	ASF Features
	Extensible Media Types
	Component Download
	Scalable Media Types
	Author-specified Stream Prioritization
	Multiple Languages
	Bibliographic Information

	File Format Organization
	ASF Object definition
	High-level File Structure
	ASF Header Object
	ASF Data Object
	ASF Index Object
	Minimal Implementation

	Additional Considerations
	Time Units
	Send Time vs. Presentation Time
	Scalable Media Types
	Multimedia Composition

	ASF Header Object
	Header Object
	File Properties Object
	Stream Properties Object
	Data Unit Extension Object

	Content Description Object
	Script Command Object
	Marker Object
	Component Download Object
	Stream Group Object
	Scalable Object
	Prioritization Object
	Mutual Exclusion Object
	Inter-Media Dependency Object
	Rating Object
	Index Parameters Object
	Color Table Object
	Language List Object

	Data Object
	ASF Data Unit Definition
	ASF Data Unit Examples
	Complete Key Frame Example:
	Partial JPEG Example:
	Three Delta Frames Example

	Index Object
	Standard ASF Media Types
	8.1	Audio Media Type
	Scrambled Audio

	Video Media Type
	Image Media Type
	Timecode Media Type
	Text Media Type
	MIDI Media Type
	Command Media Type
	Media-Objects (Hotspot) Media Type

	Bibliography
	Appendix A: ASF GUIDs
	Appendix B: Bit Stream Types
	ASCII
	FILETIME
	GUID
	UINT
	UNICODE

	Appendix C: GUIDs and UUIDs
	Introduction
	Motivation
	Specification
	C.1	Format
	C.2	Algorithms for Creating a GUID
	C.2.1	Clock Sequence
	C.2.2	System Reboot
	C.2.3	Clock Adjustment
	C.2.4	Clock Overrun
	C.2.5	GUID Generation

	C.3	String Representation of GUIDs
	C.4	Comparing GUIDs
	C.5	Node IDs when no IEEE 802 network card is available
	C.6	References

