

© SMPTE 2003-2006 – All rights reserved Approved 24-February-2006 i

SMPTE 421M-2006

SMPTE STANDARD

VC-1 Compressed Video
Bitstream Format and
Decoding Process

Intellectual property notice

Copyright 2003-2006 THE SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS

3 Barker Ave.
White Plains, NY 10601
+1 914 761 1100
Fax +1 914 761-3115
E-mail eng@smpte.org
Web http://www.smpte.org

The user’s attention is called to the possibility that compliance with this document may require
use of inventions covered by patent rights. By publication of this document, no position is taken
with respect to the validity of these claims or of any patent rights in connection therewith. The
patent holders have, however, filed statements of willingness to grant a license under these
rights on fair, reasonable and nondiscriminatory terms and conditions to applicants desiring to
obtain such a license. Contact information may be obtained from the SMPTE. No representation
or warranty is made or implied that these are the only licenses that may be required to avoid
infringement in the use of this document.

ii © SMPTE 2003-2006 – All rights reserved

Foreword

SMPTE (the Society of Motion Picture and Television Engineers) is an internationally-recognized standards
developing organization. Headquartered and incorporated in the United States of America, SMPTE has
members in over 80 countries on six continents. SMPTE’s Engineering Documents, including Standards,
Recommended Practices and Engineering Guidelines, are prepared by SMPTE’s Technology Committees.
Participation in these Committees is open to all with a bona fide interest in their work. SMPTE cooperates
closely with other standards-developing organizations, including ISO, IEC and ITU.

SMPTE Engineering Documents are drafted in accordance with the rules given in Part XIII of its
Administrative practices.

This Standard 421M was prepared by Technology Committee C24.

© SMPTE 2003-2006 – All rights reserved Approved 24-February-2006 iii

Introduction

This document was prepared for the primary purpose of documenting the bitstream format and decoding
process used in the VC-1 video decoder. It defines the bitstream syntax, semantics and constraints for
compressed video bitstreams and describes the complete process required to decode them.

VC-1, as defined in this document, consists of three profiles: Simple, Main, and Advanced. Simple and Main
profile were originally developed for use in lower-bit-rate networked computing environments. As such,
certain assumptions were made regarding the display environment (e.g. square pixel aspect ratio) to improve
compression efficiency. The Advanced Profile adds extensive in-band metadata support to allow for
optimized experience on a wide range of display devices.

SMPTE 421M

© 2006 SMPTE iv

SMPTE Standard: VC-1 Compressed Video Bitstream Format
and Decoding Process

Table of Contents
TABLE OF CONTENTS IV

TABLE OF FIGURES X

TABLE OF TABLES XV

1 SCOPE 1

2 NORMATIVE REFERENCES 1

3 OVERVIEW 1
3.1 SYNTAX OVERVIEW (INFORMATIVE) 2
3.2 DECODING PROCESS OVERVIEW 4
3.3 ENCODING PROCESS OVERVIEW (INFORMATIVE) 6
3.4 DOCUMENT STRUCTURE (INFORMATIVE) 7

4 NOTATION 8
4.1 CONFORMANCE NOTATION 8
4.2 ARITHMETIC OPERATORS 9
4.3 LOGICAL OPERATORS 10
4.4 RELATIONAL OPERATORS 10
4.5 BITWISE OPERATORS 10
4.6 ASSIGNMENT 11
4.7 PRECEDENCE ORDER OF OPERATORS 11
4.8 MNEMONICS 11
4.9 PSEUDO-CODE OPERATIONS 11
4.10 BITSTREAM PARSING OPERATIONS 12
4.11 FUNCTION DEFINITIONS 13
4.12 DEFINITION OF TERMINOLOGY 14
4.13 INTERMEDIATE VARIABLES 20
4.14 ACRONYM DEFINITIONS 21
4.15 GUIDE TO INTERPRETING SYNTAX DIAGRAMS AND SYNTAX ELEMENTS 21

5 PICTURE SAMPLING AND OVERALL BITSTREAM STRUCTURE 22
5.1 INTRODUCTION 22
5.2 PROGRESSIVE CODING MODE 22

5.2.1 Input/output Format 22
5.2.2 Hierarchical Elements 22

5.3 INTERLACE CODING MODE 23
5.3.1 Input/Output Format for 4:2:0 Interlace 23

5.4 FRAME ORDERING 24
5.5 CONSTRAINTS 25

5.5.1 Minimum and maximum frame sizes 25
5.5.2 Maximum size of compressed bits 25

SMPTE 421M

© 2006 SMPTE v

5.5.3 Bitstream Construction Constraints 26
6 SEQUENCE AND ENTRY-POINT BITSTREAM SYNTAX AND SEMANTICS 26

6.1 SEQUENCE-LEVEL SYNTAX AND SEMANTICS 26
6.1.1 Profile (PROFILE)(2 bits) 30
6.1.2 Level (LEVEL)(3 bits) 30
6.1.3 Color-Difference Format (COLORDIFF_FORMAT) (2 bits) 30
6.1.4 Post processing Indicators 30
6.1.5 Post processing Flag (POSTPROCFLAG) (1 bit) 32
6.1.6 Maximum Horizontal Size of Picture (MAX_CODED_WIDTH)(12 bits) 32
6.1.7 Maximum Vertical Size of Picture (MAX_CODED_HEIGHT)(12 bits) 32
6.1.8 Pull down Flag (PULLDOWN) (1 bit) 32
6.1.9 Interlace Content (INTERLACE) (1 bit) 32
6.1.10 Frame Counter Flag (TFCNTRFLAG) (1 bit) 32
6.1.11 Frame Interpolation Flag (FINTERPFLAG)(1 bit) 32
6.1.12 Reserved Advanced Profile Flag (RESERVED)(1 bit) 32
6.1.13 Progressive Segmented Frame (PSF)(1 bit) 32
6.1.14 Display Extension Flag (DISPLAY_EXT) (1 bit) 32
6.1.15 Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit) 39

6.2 ENTRY-POINT HEADER SYNTAX AND SEMANTICS 40
6.2.1 Broken Link Flag (BROKEN_LINK) (1 bit) 43
6.2.2 Closed Entry Point (CLOSED_ENTRY) (1 bit) 43
6.2.3 Pan Scan Present Flag (PANSCAN_FLAG) (1 bit) 43
6.2.4 Reference Frame Distance Flag (REFDIST_FLAG) (1 bit) 43
6.2.5 Loop Filter Flag (LOOPFILTER) (1 bit) 43
6.2.6 Fast UV Motion Compensation Flag (FASTUVMC) (1 bit) 43
6.2.7 Extended Motion Vector Flag (EXTENDED_MV)(1 bit) 43
6.2.8 Macroblock Quantization Flag (DQUANT)(2 bit) 43
6.2.9 Variable Sized Transform Flag (VSTRANSFORM)(1 bit) 43
6.2.10 Overlapped Transform Flag (OVERLAP) (1 bit) 44
6.2.11 Quantizer Specifier (QUANTIZER) (2 bits) 44
6.2.12 HRD Buffer Fullness (HRD_FULLNESS)(Variable Size) 44
6.2.13 Coded Size Flag (CODED_SIZE_FLAG) (1 bit) 44
6.2.14 Extended Differential Motion Vector Range Flag (EXTENDED_DMV)(1 bit) 45
6.2.15 Range Mapping Luma Flag (RANGE_MAPY_FLAG)(1 bit) 45
6.2.16 Range Mapping Color-Difference Flag (RANGE_MAPUV_FLAG)(1 bit) 45

7 PROGRESSIVE BITSTREAM SYNTAX AND SEMANTICS 46
7.1 PICTURE-LEVEL SYNTAX AND SEMANTICS 46

7.1.1 Picture layer 93
7.1.2 Slice Layer 105
7.1.3 Macroblock Layer 106
7.1.4 Block Layer 111

7.2 BITPLANE CODING SYNTAX 119
7.2.1 Invert Flag (INVERT) (1-bit) 119
7.2.2 Coding Mode (IMODE) (variable) 119
7.2.3 Bitplane Coding Bits (DATABITS) (variable) 120

8 PROGRESSIVE DECODING PROCESS 120
8.1 PROGRESSIVE I FRAME PICTURE DECODING 120

8.1.1 Progressive I Frame Picture Layer Decode 120
8.1.2 Macroblock Layer Decode 122
8.1.3 Block Layer Decode 123

8.2 PROGRESSIVE BI FRAME PICTURE DECODING 136
8.2.1 BFRACTION following picture type (main profile only) 136
8.2.2 No picture resolution index (RESPIC) 136

8.3 PROGRESSIVE P FRAME PICTURE DECODING 136
8.3.1 Skipped Frame Pictures 136

SMPTE 421M

© 2006 SMPTE vi

8.3.2 Out-of-bounds Reference Pixels 137
8.3.3 P Picture Types 137
8.3.4 P Picture Layer Decode 138
8.3.5 Macroblock Layer Decoding 140
8.3.6 Block Layer Decode 153
8.3.7 Rounding Control (RND) 164
8.3.8 Intensity Compensation 165

8.4 PROGRESSIVE B FRAME PICTURE DECODING 166
8.4.1 Skipped Anchor Frames 166
8.4.2 Out-of-bounds Reference Pixels 166
8.4.3 Progressive B Frame Picture Types 166
8.4.4 Progressive B Frame Picture Layer Decode 166
8.4.5 B Frame Macroblock Layer Decode 168
8.4.6 B Block Layer Decode 174

8.5 OVERLAPPED TRANSFORM 175
8.5.1 Overlap Smoothing in Main and Simple Profiles 176
8.5.2 Overlap Smoothing in Advanced Profile 177

8.6 IN-LOOP DEBLOCK FILTERING 178
8.6.1 I Picture In-loop Deblocking 178
8.6.2 P Picture In-loop Deblocking 179
8.6.3 B Picture In-loop Deblocking 181
8.6.4 Filter Operation 181

8.7 BITPLANE CODING 189
8.7.1 INVERT 190
8.7.2 IMODE 190
8.7.3 DATABITS 190

8.8 SYNC MARKERS (SIMPLE AND MAIN PROFILES ONLY) 195
8.9 PAN SCAN 197

8.9.1 Number of Pan Scan Windows 197
8.9.2 Pan Scan Parameters 198
8.9.3 Pan Scan Restrictions 198

9 INTERLACE BITSTREAM SYNTAX AND SEMANTICS 199
9.1 PICTURE-LEVEL SYNTAX AND SEMANTICS 199

9.1.1 Picture layer 240
9.1.2 Slice Layer 249
9.1.3 Macroblock Layer 249
9.1.4 Block Layer Syntax Elements 252

10 INTERLACE DECODING PROCESS 253
10.1 INTERLACE FIELD I PICTURE DECODING 253

10.1.1 Macroblock Layer Decode 253
10.1.2 Block Layer Decode 253

10.2 INTERLACE BI FIELD DECODING 254
10.3 INTERLACE FIELD P PICTURE DECODING 254

10.3.1 Handling of Top-Field First (TFF) 254
10.3.2 Out-of-bounds Reference Pixels 254
10.3.3 Reference Pictures 255
10.3.4 P Picture Types 258
10.3.5 Macroblock Layer Decode 258
10.3.6 Block Layer Decode 283
10.3.7 Rounding Control 284
10.3.8 Intensity Compensation 284

10.4 INTERLACE FIELD B PICTURE DECODING 285
10.4.1 Handling of TFF 286
10.4.2 Out-of-bounds Reference Pixels 286
10.4.3 Reference Pictures 287

SMPTE 421M

© 2006 SMPTE vii

10.4.4 B Picture Types 287
10.4.5 B Macroblock Layer Decode 287
10.4.6 MV Prediction in B fields 291
10.4.7 Block Layer Decode 295

10.5 INTERLACE FRAME I PICTURE DECODING 295
10.5.1 Macroblock Layer Decode 295
10.5.2 Block Decode 295

10.6 INTERLACE BI FRAME DECODING 296
10.7 INTERLACE FRAME P PICTURE DECODING 296

10.7.1 Skipped Frames 296
10.7.2 Out-of-bounds Reference Pixels 297
10.7.3 Macroblock Layer Decode 297
10.7.4 Block Layer Decode 316

10.8 INTERLACE FRAME B PICTURE DECODING 316
10.8.1 Skipped Anchor Frames 317
10.8.2 Out-of-bounds Reference Pixels 317
10.8.3 BFRACTION 317
10.8.4 Bitplane coding of direct mode 317
10.8.5 4MVSWITCH and 4MVBPTAB 317
10.8.6 B Macroblock Layer Decode 317
10.8.7 B Block Layer Decode 321

10.9 OVERLAPPED TRANSFORM 322
10.9.1 Overlap Smoothing for Interlace Field Pictures 322
10.9.2 Overlap Smoothing for Interlace Frame Pictures 322

10.10 IN-LOOP DEBLOCK FILTERING 322
10.10.1 I Interlace Field Picture In-loop Deblocking 322
10.10.2 P Interlace Field Picture In-loop Deblocking 322
10.10.3 B Interlace Field Picture In-loop Deblocking 323
10.10.4 Interlace Frame Pictures In-loop Deblocking 323

11 TABLES 329
11.1 INTERLACE PICTURES MV BLOCK PATTERN VLC TABLES 329

11.1.1 4-MV Block Pattern Tables 329
11.1.2 2-MV Block Pattern Tables 331

11.2 INTERLACE CBPCY VLC TABLES 332
11.3 INTERLACE MV TABLES 338
11.4 INTERLACE PICTURES MB MODE TABLES 351

11.4.1 Interlace Field P / B Pictures Mixed MV MB Mode Tables 351
11.4.2 Interlace Field P / B Pictures 1-MV MB Mode Tables 354
11.4.3 Interlace Frame P Picture 4-MV MBMODE Tables 356
11.4.4 Interlace Frame P / B Pictures Non 4-MV MBMODE Tables 358

11.5 I-PICTURE CBPCY TABLES 360
11.6 P AND B-PICTURE CBPCY TABLES 361
11.7 DC DIFFERENTIAL TABLES 365

11.7.1 Low-motion Tables 365
11.7.2 High-motion Tables 367

11.8 TRANSFORM AC COEFFICIENT TABLES 370
11.8.1 High Motion Intra Tables 370
11.8.2 Low Motion Intra Tables 381
11.8.3 Low Motion Inter Tables 385
11.8.4 Mid Rate Intra Tables 390
11.8.5 Mid Rate Inter Tables 394
11.8.6 High Rate Intra Tables 398
11.8.7 High Rate Inter Tables 404

11.9 ZIGZAG TABLES 409
11.9.1 Intra zigzag tables 409
11.9.2 Inter zigzag tables 410

11.10 MOTION VECTOR DIFFERENTIAL TABLES 411

SMPTE 421M

© 2006 SMPTE viii

12 BIBLIOGRAPHY 416

ANNEX A TRANSFORM SPECIFICATION 417
A.1 INVERSE TRANSFORM 417
A.2 FORWARD TRANSFORM (INFORMATIVE) 418

ANNEX B SPATIAL ALIGNMENT OF VIDEO SAMPLES IN VARIABLE RESOLUTION CODING 419
B.1 SPATIAL ALIGNMENT OF SAMPLES IN DOWN-SAMPLED FRAME 419
B.2 DECODER UP-SAMPLING 419
B.3 ENCODER DOWN-SAMPLING (INFORMATIVE) 420
B.4 ANTI-ALIAS FILTERING (INFORMATIVE) 420

ANNEX C HYPOTHETICAL REFERENCE DECODER 421
C.1 LEAKY BUCKET MODEL 421

C.1.1 Leaky bucket algorithm 421
C.1.2 Constant delay mode constraints 423
C.1.3 CBR and VBR bitstreams 423

C.2 MULTIPLE LEAKY BUCKETS 423
C.3 BITSTREAM SYNTAX FOR THE HYPOTHETICAL REFERENCE DECODER 424

C.3.1 Constant-delay mode, Advanced profile constraints. 424
C.3.2 Encoder considerations (informative) 425

C.4 INTERPOLATING LEAKY BUCKETS (INFORMATIVE) 425
C.5 DISPLAY ISSUES (INFORMATIVE) 426
C.6 TIME-CONFORMANT DECODERS 426
C.7 VARIABLE-DELAY MODE 427
C.8 BENEFITS OF MULTIPLE LEAKY BUCKETS (INFORMATIVE) 427
C.9 DEFAULT BIT RATES 428

ANNEX D PROFILE AND LEVELS 429
D.1 OVERVIEW (INFORMATIVE) 429
D.2 PROFILES (INFORMATIVE) 430
D.3 LEVELS 431
D.4 SYNTAX (INFORMATIVE) 435

ANNEX E START CODES AND EMULATION PREVENTION 436
E.1 DETECTION OF START CODES AND EBDU 436
E.2 EXTRACTION OF RBDU FROM EBDU 437
E.3 START CODES AND ENCAPSULATION – AN ENCODER PERSPECTIVE (INFORMATIVE) 437
E.4 CONSTRAINTS ON BYTE STREAM DATA PATTERNS 438
E.5 START CODE SUFFIXES FOR BDU TYPES 438

ANNEX F USER DATA 440

ANNEX G BITSTREAM CONSTRUCTION CONSTRAINTS – ADVANCED PROFILE 441
G.1 SEQUENCE START CODE 442
G.2 END-OF-SEQUENCE START CODE 442
G.3 ENTRY POINT START CODE 442

G.3.1 Case of I frame in Progressive mode 442
G.3.2 Case of I/P frame in Field Interlace mode 443
G.3.3 Case of P/I frame in Field Interlace mode 444
G.3.4 Case of I/I frame in Field Interlace mode 445
G.3.5 Case of I frame in Frame Interlace mode 446

G.4 FRAME START CODE 446
G.5 FIELD START CODE 446
G.6 SLICE START CODE 446
G.7 USER DATA START CODES 447

G.7.1 Sequence-level user data 447

SMPTE 421M

© 2006 SMPTE ix

G.7.2 Entry-Point level user data 447
G.7.3 Frame-level User Data 448
G.7.4 Field-level user data 449
G.7.5 Slice-level user data 450

G.8 START CODE USAGE RULES 451
ANNEX H POST PROCESSING FOR CODING NOISE REDUCTION 452

H.1 DEBLOCKING FILTER 452
H.2 DE-RINGING FILTER 454

H.2.1 Threshold determination 454
H.2.2 Index acquisition 455
H.2.3 Adaptive smoothing 455

ANNEX I DISPLAY METADATA FOR THE ADVANCED PROFILE 457
I.1 OVERVIEW 457
I.2 FRAME RATE 457

I.2.1 Repeating Progressive Frames 457
I.2.2 Field Order 457
I.2.3 Repeating Fields 457
I.2.4 Frame Interpolation Flag 458

I.3 CODED PICTURE SIZE 458
I.4 DISPLAY GEOMETRY INFORMATION 458

I.4.1 Target Display Size 458
I.4.2 Sample Aspect Ratio 458
I.4.3 Relating Display Size to Coded Picture Size 459

I.5 PAN SCAN REGIONS 459
I.6 POST-PROCESSING INFORMATION 459

ANNEX J DECODER INITIALIZATION METADATA 461
J.1 INITIALIZATION METADATA ELEMENTS 461

J.1.1 Profile (PROFILE) 461
J.1.2 Level (LEVEL) 461
J.1.3 Horizontal Size of Picture (HORIZ_SIZE) 461
J.1.4 Vertical Size of Picture (VERT_SIZE) 461
J.1.5 HRD Rate (HRD_RATE) 461
J.1.6 HRD Buffer Size (HRD_BUFFER) 462
J.1.7 Quantized Frame Rate for Post processing Indicator (FRMRTQ_POSTPROC) 462
J.1.8 Quantized Bit Rate for Post processing Indicator (BITRTQ_POSTPROC) 462
J.1.9 Loop Filter Flag (LOOPFILTER) 462
J.1.10 Multi-resolution Coding (MULTIRES) 463
J.1.11 FAST UV Motion Compensation Flag (FASTUVMC) 463
J.1.12 Extended Motion Vector Flag (EXTENDED_MV) 463
J.1.13 Macroblock Quantization Flag (DQUANT) 463
J.1.14 Variable Sized Transform Flag (VSTRANSFORM) 463
J.1.15 Overlapped Transform Flag (OVERLAP) 463
J.1.16 Sync Marker Flag (SYNCMARKER) 463
J.1.17 Range Reduction Flag (RANGERED) 464
J.1.18 Maximum Number of consecutive B frames (MAXBFRAMES) 464
J.1.19 Quantizer Specifier (QUANTIZER) 464
J.1.20 Frame Interpolation Flag (FINTERPFLAG) 464

J.2 INITIALIZATION INTERFACE DATA STRUCTURE 464
J.2.1 Constant Bitrate Sequence (CBR) 465
J.2.3 Integer Frame Rate (FRAMERATE) 465

ANNEX K ENCODER OVERVIEW AND INTERNAL REPRESENTATION (INFORMATIVE) 468
K.1 CODING DESCRIPTION 468
K.2 INTERNAL REPRESENTATION OF A FRAME 470

SMPTE 421M

© 2006 SMPTE x

ANNEX L BITSTREAM METADATA SERIALIZATION 471
L.1 GENERAL LAYOUT 471
L.2 SEQUENCE LAYER 471

Number of Compressed Frames (NUMFRAMES) 472
L.3 FRAME LAYER 472

Key Frame Indicator (KEY) 472
Reserved (RES) 472
Compressed Frame Size (FRAMESIZE) 472
Time stamp in ms (TIMESTAMP) 472
Compressed Frame Data (FRAMEDATA) 472

Table of Figures
FIGURE 1: BITSTREAM SYNTAX OVERVIEW (ENTRY_POINT_LAYER IS PRESENT ONLY IN ADVANCED PROFILE) 2
FIGURE 2: PICTURE LAYER SYNTAX OVERVIEW 3
FIGURE 3: DECODING PROCESS BLOCK DIAGRAM FOR SIMPLE AND MAIN PROFILE 4
FIGURE 4: DECODING PROCESS BLOCK DIAGRAM FOR ADVANCED PROFILE 5
FIGURE 5: OVERVIEW OF THE DECODING PROCESS AND META-DATA 6
FIGURE 6: OVERVIEW BLOCK DIAGRAM OF THE ENCODING PROCESS (INFORMATIVE) 7
FIGURE 7: 4:2:0 LUMA AND COLOR-DIFFERENCE SAMPLE HORIZONTAL AND VERTICAL POSITIONS 22
FIGURE 8: CODING HIERARCHY SHOWING PICTURE, SLICE, MACROBLOCK AND BLOCK LAYERS 23
FIGURE 9: 4:2:0 LUMA AND COLOR-DIFFERENCE TEMPORAL AND VERTICAL SAMPLE POSITIONS SHOWN RELATIVE TO

SAMPLING TIME INSTANT (WHERE FROM LEFT TO RIGHT IS SHOWN A TOP FIELD, BOTTOM FIELD, TOP FIELD, AND
BOTTOM FIELD) 24

FIGURE 10: SYNTAX DIAGRAM FOR THE SEQUENCE LAYER BITSTREAM FOR THE ADVANCED PROFILE 27
FIGURE 11: SYNTAX DIAGRAM FOR THE ENTRY-POINT LAYER BITSTREAM FOR THE ADVANCED PROFILE 41
FIGURE 12: CALCULATION OF FRAME WIDTH AND HEIGHT 45
FIGURE 13: SYNTAX DIAGRAM FOR THE PROGRESSIVE I PICTURE LAYER BITSTREAM IN SIMPLE/MAIN PROFILE 47
FIGURE 14: SYNTAX DIAGRAM FOR THE PROGRESSIVE BI PICTURE LAYER BITSTREAM IN MAIN PROFILE 50
FIGURE 15: SYNTAX DIAGRAM FOR THE PROGRESSIVE I AND BI PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 53
FIGURE 16: SYNTAX DIAGRAM FOR THE PROGRESSIVE P PICTURE LAYER BITSTREAM IN SIMPLE/MAIN PROFILE. 57
FIGURE 17: SYNTAX DIAGRAM FOR THE PROGRESSIVE P PICTURE LAYER BITSTREAM IN ADVANCED PROFILE 60
FIGURE 18: SYNTAX DIAGRAM FOR THE PROGRESSIVE B PICTURE LAYER BITSTREAM IN MAIN PROFILE. 64
FIGURE 19: SYNTAX DIAGRAM FOR THE PROGRESSIVE B PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 67
FIGURE 20: SYNTAX DIAGRAM FOR THE PROGRESSIVE SKIPPED PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 70
FIGURE 21: SYNTAX DIAGRAM FOR VOPDQUANT IN PICTURE HEADER 72
FIGURE 22: SYNTAX DIAGRAM FOR THE SLICE-LAYER BITSTREAM IN THE ADVANCED PROFILE 74
FIGURE 23: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I AND BI PICTURE FOR

SIMPLE/MAIN PROFILE 76
FIGURE 24: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I PICTURE FOR ADVANCED

PROFILE 77
FIGURE 25: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE-P PICTURE FOR

SIMPLE/MAIN/ADVANCED PROFILES 79
FIGURE 26: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE B PICTURE FOR

MAIN/ADVANCED PROFILES 84
FIGURE 27: SYNTAX DIAGRAM FOR THE INTRA-CODED BLOCK LAYER BITSTREAM. 88
FIGURE 28: SYNTAX DIAGRAM FOR THE INTER-CODED BLOCK LAYER BITSTREAM. 91
FIGURE 29: CALCULATION OF MQUANT WHEN DQPROFILE == ‘ALL MACROBLOCKS’ 107
FIGURE 30: 4X4 SUBBLOCKS 117
FIGURE 31: 8X4 AND 4X8 SUBBLOCKS 118
FIGURE 32: SYNTAX DIAGRAM FOR THE BITPLANE CODING 119
FIGURE 33: CALCULATION OF FRAME DIMENSIONS IN MULTIRES DOWN-SAMPLING PSEUDO-CODE 121
FIGURE 34: CALCULATION OF CBPCY 122
FIGURE 35: CBP ENCODING USING NEIGHBORING BLOCKS 123
FIGURE 36: INTRA BLOCK RECONSTRUCTION 124
FIGURE 37: DC DIFFERENTIAL DECODING PSEUDO-CODE 125

SMPTE 421M

© 2006 SMPTE xi

FIGURE 38: DC PREDICTOR CANDIDATES 125
FIGURE 39: CALCULATION OF DC PREDICTOR AND PREDICTION DIRECTION FOR SIMPLE/MAIN PROFILE I AND BI

PICTURES: PSEUDO-CODE 126
FIGURE 40: CALCULATING OF DC PREDICTOR AND PREDICTION DIRECTION FOR ALL OTHER CASES: PSEUDO-CODE 127
FIGURE 41: COEFFICIENT DECODE PSEUDO-CODE 129
FIGURE 42: RUN-LEVEL DECODE PSEUDO-CODE 130
FIGURE 43: ZIGZAG SCAN PSEUDO-CODE FOR NXM BLOCK 131
FIGURE 44: 8X8 ARRAY WITH POSITIONS LABELED 131
FIGURE 45: EXAMPLE ZIGZAG SCANNING PATTERN 131
FIGURE 46: ZIGZAG SCAN MAPPING ARRAY 131
FIGURE 47: AC PREDICTION CANDIDATES 132
FIGURE 48: AC PREDICTION PSEUDO-CODE 133
FIGURE 49: HORIZONTAL AND VERTICAL PIXEL REPLICATION FOR OUT-OF-BOUNDS REFERENCE 137
FIGURE 50: DECODING MV DIFFERENTIAL IN PROGRESSIVE PICTURES: PSEUDO-CODE 143
FIGURE 51: CANDIDATE MOTION VECTOR PREDICTORS IN 1-MV P PICTURES 143
FIGURE 52: CANDIDATE MOTION VECTORS FOR 1-MV MACROBLOCKS IN MIXED-MV P PICTURES 144
FIGURE 53: CANDIDATE MOTION VECTORS FOR 4-MV MACROBLOCKS IN MIXED-MV P PICTURES 145
FIGURE 54: CALCULATING PRELIMINARY MV PREDICTOR: PSEUDO-CODE 146
FIGURE 55: HYBRID MOTION VECTOR: PRELIMINARY PREDICTION 148
FIGURE 56: FLOWCHART DEPICTING LUMA MOTION VECTOR RECONSTRUCTION 149
FIGURE 57: COLOR-DIFFERENCE MV RECONSTRUCTION FOR PROGRESSIVE: PSEUDO-CODE 151
FIGURE 58: CALCULATING DC PREDICTOR DIRECTION: PSEUDO-CODE 154
FIGURE 59: INTER BLOCK RECONSTRUCTION 156
FIGURE 60: TRANSFORM TYPES 157
FIGURE 61: ADJUSTING RECONSTRUCTED LUMA MOTION VECTOR IN SIMPLE/MAIN PROFILE 159
FIGURE 62: ADJUSTING RECONSTRUCTED COLOR-DIFFERENCE MOTION VECTOR IN SIMPLE/MAIN PROFILE 160
FIGURE 63: BILINEAR FILTER CASES 161
FIGURE 64: BICUBIC FILTER CASES 162
FIGURE 65: PIXEL SHIFTS 163
FIGURE 66: INTER BLOCK RECONSTRUCTION PSEUDO-CODE 164
FIGURE 67: INTENSITY COMPENSATION PSEUDO-CODE 166
FIGURE 68: PSEUDO-CODE FOR PULLBACK OF DIRECT MODE MVS IN MAIN PROFILE 169
FIGURE 69: PSEUDO-CODE FOR COMPUTATION OF DIRECT MODE MVS 171
FIGURE 70: PSEUDO-CODE FOR COMPUTATION OF SCALEFACTOR IN DIRECT MODE 171
FIGURE 71: ILLUSTRATION OF DIRECT MODE PREDICTION 171
FIGURE 72: COLOR-DIFFERENCE MV RECONSTRUCTION IN B PICTURES 174
FIGURE 73: PULLBACK OF RECONSTRUCTED MVS IN B PICTURES 175
FIGURE 74: EXAMPLE SHOWING OVERLAP SMOOTHING 176
FIGURE 75: FILTERED HORIZONTAL BLOCK BOUNDARY PIXELS IN I PICTURE 178
FIGURE 76: FILTERED VERTICAL BLOCK BOUNDARY PIXELS IN I PICTURE 179
FIGURE 77: EXAMPLE FILTERED BLOCK BOUNDARIES IN P FRAMES 180
FIGURE 78: HORIZONTAL BLOCK BOUNDARY PIXELS IN P PICTURE 180
FIGURE 79: VERTICAL BLOCK BOUNDARY PIXELS IN P PICTURE 181
FIGURE 80: FOUR-PIXEL SEGMENTS USED IN LOOP FILTERING 182
FIGURE 81: PIXELS USED IN FILTERING OPERATION 182
FIGURE 82: PSEUDO-CODE ILLUSTRATING FILTERING OF 3RD PIXEL PAIR IN SEGMENT 183
FIGURE 83: PSEUDO-CODE ILLUSTRATING FILTERING OF 1ST, 2ND AND 4TH PIXEL PAIR IN SEGMENT 184
FIGURE 84: OVERVIEW FIGURE A TO ILLUSTRATE EXCEPTION 2 185
FIGURE 85: OVERVIEW FIGURE B TO ILLUSTRATE EXCEPTION 2 186
FIGURE 86: OVERVIEW FIGURE A TO ILLUSTRATE EXCEPTION 3 187
FIGURE 87: OVERVIEW FIGURE B TO ILLUSTRATE EXCEPTION 3 188
FIGURE 88: OVERVIEW FIGURE C TO ILLUSTRATE EXCEPTION 3 189
FIGURE 89: AN EXAMPLE OF 2X3 “VERTICAL” TILES (A) AND TWO EXAMPLES OF 3X2 “HORIZONTAL” TILES (B) – THE

ELONGATED DARK RECTANGLES ARE 1 PIXEL WIDE AND ENCODED USING ROW-SKIP AND COLUMN-SKIP CODING.
 191

FIGURE 90: DECODING NORM-6 BITPLANE: PSEUDO-CODE 192
FIGURE 91: SYNTAX DIAGRAM OF ROW-SKIP CODING 195

SMPTE 421M

© 2006 SMPTE xii

FIGURE 92: SYNC MARKERS– (A) SHOWS SEQUENCE OF ENTROPY CODED DATA WITH SYNCMARKER SET TO ZERO,
(B) SYNCMARKER IS 1 BUT NO SYNC MARKERS ARE ACTUALLY SENT AND (C) SYNCMARKER IS 1, A LONG
AND A SHORT SYNC MARKER ARE SENT, SOME SLICES DO NOT HAVE SYNC MARKERS 197

FIGURE 93: PSEUDO-CODE FOR COMPUTING NUMBER OF PAN SCAN WINDOWS 198
FIGURE 94: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME I AND BI PICTURE 200
FIGURE 95: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME P PICTURE 203
FIGURE 96: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME B PICTURE 206
FIGURE 97: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FIELD PICTURES FOR FIELD1 210
FIGURE 98: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE I AND BI FIELD PICTURES 213
FIGURE 99: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE P FIELD PICTURES 215
FIGURE 100: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE B FIELD PICTURES 218
FIGURE 101: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME I PICTURE 220
FIGURE 102: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME P PICTURE 222
FIGURE 103: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME B PICTURE 226
FIGURE 104: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FIELD I PICTURE 230
FIGURE 105: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN P FIELD PICTURE 232
FIGURE 106: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN FIELD B PICTURE 236
FIGURE 107: HORIZONTAL AND VERTICAL PIXEL REPLICATION FOR OUT-OF-BOUNDS REFERENCES IN INTERLACE FIELD

PICTURES FOR THE CASE WHERE THE SECOND FIELD USES THE FIRST FIELD AS REFERENCE 255
FIGURE 108: EXAMPLE OF TWO REFERENCE INTERLACE FIELD PICTURES (NUMREF == 1) 256
FIGURE 109: EXAMPLE OF ONE REFERENCE INTERLACE FIELD PICTURE (NUMREF == 0) USING TEMPORALLY MOST

RECENT REFERENCE (REFFIELD == 0) 257
FIGURE 110: EXAMPLE OF ONE REFERENCE INTERLACE FIELD PICTURE (NUMREF == 0) USING TEMPORALLY SECOND-

MOST RECENT REFERENCE (REFFIELD == 1) 258
FIGURE 111: ASSOCIATION OF BITS IN 4MVBP TO LUMA BLOCKS 259
FIGURE 112: VERTICAL RELATIONSHIP BETWEEN MOTION VECTORS FOR CURRENT AND REFERENCE FIELDS 262
FIGURE 113: PSEUDO-CODE FOR DECODING MV DIFFERENTIALS IN ONE REFERENCE INTERLACE FIELD PICTURES 263
FIGURE 114: PSEUDO-CODE FOR DECODING MV DIFFERENTIALS IN TWO REFERENCE INTERLACE FIELD PICTURES 265
FIGURE 115: CANDIDATE MOTION VECTORS FOR 1-MV MACROBLOCKS IN MIXED-MV INTERLACE FIELD PICTURES

 266
FIGURE 116: CANDIDATE MOTION VECTORS FOR 4-MV MACROBLOCKS IN MIXED-MV INTERLACE FIELD PICTURES

 267
FIGURE 117: MV PREDICTOR IN ONE REFERENCE INTERLACE FIELD PICTURES 271
FIGURE 118: MV PREDICTOR IN TWO REFERENCE INTERLACE FIELD PICTURES 276
FIGURE 119: SCALING OPERATION FOR MV PREDICTION IN TWO REFERENCE INTERLACE FIELD PICTURES 277
FIGURE 120: HYBRID MV PREDICTION IN INTERLACE FIELD PICTURES 280
FIGURE 121: PSEUDO-CODE FOR DETERMINING REFERENCE FIELD IN TWO REFERENCE INTERLACE FIELD PICTURES281
FIGURE 122: COLOR-DIFFERENCE MV DERIVATION IN ONE REFERENCE INTERLACE FIELD PICTURES 282
FIGURE 123: COLOR-DIFFERENCE MV DERIVATION IN TWO REFERENCE INTERLACE FIELD PICTURES 283
FIGURE 124: B FIELD REFERENCES 286
FIGURE 125: SELECTION OF DIRECT MODE MVS IN INTERLACE FIELD PICTURES 290
FIGURE 126: SCALING OF DIRECT MODE MVS IN INTERLACE FIELD PICTURES 291
FIGURE 127: BACKWARD MV PREDICTOR SCALING FOR THE FIRST FIELD IN INTERLACE FIELD B PICTURES 294
FIGURE 128: INTRA BLOCK DECODE 295
FIGURE 129: TWO FIELD MV MACROBLOCK 298
FIGURE 130: 4 FRAME MV MACROBLOCK 298
FIGURE 131: 4 FIELD MV MACROBLOCK – LUMA BLOCK 299
FIGURE 132: 4 FIELD MV MACROBLOCK – COLOR-DIFFERENCE BLOCK 299
FIGURE 133: CANDIDATE (SPATIAL) NEIGHBORING MACROBLOCKS FOR INTERLACE FRAME PICTURE 301
FIGURE 134: CANDIDATE MOTION VECTOR DERIVATION FOR ‘1-MV’ IN INTERLACE FRAME 302
FIGURE 135: CANDIDATE MV DERIVATION FOR TOP LEFT BLOCK IN ‘4 FRAME MV’ IN INTERLACE FRAME 304
FIGURE 136: CANDIDATE MV DERIVATION FOR TOP RIGHT BLOCK IN ‘4 FRAME MV’ IN INTERLACE FRAME 305
FIGURE 137: CANDIDATE MV DERIVATION FOR BOTTOM LEFT BLOCK IN ‘4 FRAME MV’ IN INTERLACE FRAME 305
FIGURE 138: CANDIDATE MV DERIVATION FOR BOTTOM LEFT BLOCK IN ‘4 FRAME MV’ IN INTERLACE FRAME

 306
FIGURE 139: CANDIDATE MV DERIVATION FOR TOP FIELD MV IN ‘2 FIELD MV’ IN INTERLACE FRAME 307
FIGURE 140: CANDIDATE MV DERIVATION FOR BOTTOM FIELD MV IN ‘2 FIELD MV’ IN INTERLACE FRAME 308

SMPTE 421M

© 2006 SMPTE xiii

FIGURE 141: CANDIDATE MV DERIVATION FOR TOP LEFT MV IN ‘4 FIELD MV’ IN INTERLACE FRAME 310
FIGURE 142: CANDIDATE MV DERIVATION FOR TOP RIGHT MV IN ‘4 FIELD MV’ IN INTERLACE FRAME 311
FIGURE 143: CANDIDATE MV DERIVATION FOR BOTTOM LEFT MV IN ‘4 FIELD MV’ IN INTERLACE FRAME 312
FIGURE 144: CANDIDATE MV DERIVATION FOR BOTTOM LEFT MV IN ‘4 FIELD MV’ IN INTERLACE FRAME 313
FIGURE 145: COMPUTATION OF FRAME MV PREDICTORS FROM CANDIDATE MOTION VECTORS 314
FIGURE 146: CLASSIFYING CANDIDATE MOTION VECTORS AS SAME FIELD OR OPPOSITE FIELD 314
FIGURE 147: COMPUTATION OF FIELD MV PREDICTORS FROM CANDIDATE MOTION VECTORS 315
FIGURE 148: RECONSTRUCTION OF MV IN INTERLACE FRAME PICTURE 316
FIGURE 149: BUFFERING P FRAME MVS TO USE IN B’S DIRECT MODE: MOTION VECTORS (MV1, MV2, MV3 AND

MV4) CORRESPONDING TO BLOCKS IN THE CO-LOCATED MB OF THE ANCHOR FRAME ARE SHOWN ON LEFT;
BUFFERED MVS (MVT AND MVB) ARE SHOWN ON RIGHT. IN GENERAL, MVT == MV1 AND MVB == MV3. 320

FIGURE 150: DERIVING DIRECT MODE MVS IN INTERLACE B FRAMES 320
FIGURE 151: FIELD BASED HORIZONTAL / VERTICAL BLOCK BOUNDARIES FILTERING 323
FIGURE 152: EDGE ORDERING FOR IN-LOOP DEBLOCKING IN INTERLACE FRAME 324
FIGURE 153: PSEUDO-CODE FOR HORIZONTAL FILTERING IN INTERLACE FRAME I PICTURE 324
FIGURE 154: PSEUDO-CODE FOR VERTICAL FILTERING IN INTERLACE FRAME I PICTURE 325
FIGURE 155: PSEUDO-CODE FOR HORIZONTAL FILTERING IN INTERLACE FRAME P/B PICTURE 327
FIGURE 156: PSEUDO-CODE FOR VERTICAL FILTERING IN INTERLACE FRAME P/B PICTURE 329
FIGURE 157: MATRIX FOR 1-D 8-POINT INVERSE TRANSFORM 417
FIGURE 158: MATRIX FOR 1-D 4-POINT INVERSE TRANSFORM 417
FIGURE 159: DEFINITION OF INVERSE TRANSFORM 418
FIGURE 160: RELATIVE SPATIAL ALIGNMENT OF THE VIDEO SAMPLES OF THE DOWN-SAMPLED FRAME, AND VIDEO

SAMPLES OF THE ORIGINAL FRAME. 419
FIGURE 161: EXAMPLE OF DOWN-SAMPLING ONE DIMENSIONAL LINE FOR LUMA AND COLOR-DIFFERENCE. 419
FIGURE 162: COMPONENTS OF AN HRD: DECODER BUFFER, DECODER AND DISPLAY UNIT 421
FIGURE 163: DECODER BUFFER FULLNESS - CONTAINED 422
FIGURE 164: DECODER BUFFER FULLNESS – MAXIMUM 423
FIGURE 165: ILLUSTRATION OF PEAK BIT RATE RMIN AND BUFFER SIZE BMIN VALUES FOR A GIVEN VIDEO BITSTREAM.

THIS CURVE INDICATES THAT IN ORDER TO TRANSMIT THE STREAM AT A PEAK BIT RATE R, THE DECODER NEEDS
TO BUFFER AT LEAST BMIN(R) BITS. OBSERVE THAT HIGHER PEAK RATES REQUIRE SMALLER BUFFER SIZES.
ALTERNATIVELY, IF THE SIZE OF THE DECODER BUFFER IS B, THE MINIMUM PEAK RATE REQUIRED FOR
TRANSMITTING THE BITSTREAM IS THE ASSOCIATED RMIN(B). 424

FIGURE 166: EXAMPLE OF (R, B) VALUES AVAILABLE FOR THE GENERALIZED HYPOTHETICAL REFERENCE
DECODER (GHRD), ALL OF WHICH ARE GUARANTEED TO CONTAIN THE BITSTREAM. T IS THE TIME LENGTH
OR DURATION OF THE ENCODED VIDEO SEQUENCE. 426

FIGURE 167: ENTRY POINT SIGNALED BEFORE AN I FRAME (PROGRESSIVE PICTURE CODING) 443
FIGURE 168: ENTRY POINT SIGNALED BEFORE AN I/P FRAME (FIELD INTERLACE PICTURE CODING) 444
FIGURE 169: ENTRY POINT SIGNALED BEFORE A P/I FRAME (FIELD INTERLACE PICTURE CODING) 445
FIGURE 170: ENTRY POINT SIGNALED BEFORE AN I/I FRAME (FIELD INTERLACE PICTURE CODING) 445
FIGURE 171: ENTRY POINT SIGNALED BEFORE AN I FRAME (FRAME INTERLACE CODING) 446
FIGURE 172: SEQUENCE LEVEL USER DATA 447
FIGURE 173: ENTRY-POINT LEVEL USER DATA 448
FIGURE 174: FRAME-LEVEL USER DATA 449
FIGURE 175: FIELD-LEVEL USER DATA 450
FIGURE 176: SLICE-LEVEL USER DATA 451
FIGURE 177: BOUNDARY AREA AROUND BLOCK OF INTEREST FOR DEBLOCKING 452
FIGURE 178: PSEUDO-CODE FOR DETERMING DEBLOCKING FILTER MODE 453
FIGURE 179: PSEUDO-CODE FOR DC OFFSET MODE 454
FIGURE 180: PSEUDO-CODE FOR THRESHOLD REARRANGMENT IN LUMA BLOCKS FOR DERINGING 455
FIGURE 181: EXAMPLE OF ADAPTIVE FILTERING AND BINARY INDEX 455
FIGURE 182: FILTER MASK FOR ADAPTIVE SMOOTHING 456
FIGURE 183: PSEUDO-CODE FOR CLIPPING IN DERINGING 456
FIGURE 184: EXAMPLE PSEUDO-CODE TO SHOW HOW POST-PROCESSING FIELDS CAN BE USED TO CONTROL DE-RINGING

AND DEBLOCKING OPERATIONS 460
FIGURE 185: CODING OF INTRA BLOCKS 469
FIGURE 186: CODING OF INTER BLOCKS 470

SMPTE 421M

© 2006 SMPTE xiv

SMPTE 421M

© 2006 SMPTE xv

Table of Tables
TABLE 1: FUNCTIONAL ELEMENTS IN VC-1 AND THEIR SECTION NUMBERS 7
TABLE 2: FRAME ORDERING RULES FOR BITSTREAMS CONTAINING B-PICTURES 25
TABLE 3: SEQUENCE LAYER BITSTREAM FOR ADVANCED PROFILE 28
TABLE 4: MEANING OF LEVEL SYNTAX ELEMENT 30
TABLE 5: MEANING OF COLORDIFF_FORMAT SYNTAX ELEMENT 30
TABLE 6: DECODING PROCEDURE FOR POST-PROCESSING INDICATORS IN ADVANCED PROFILE 31
TABLE 7: MEANING OF ASPECT_RATIO SYNTAX ELEMENT 34
TABLE 8: MEANING OF FRAMERATENR SYNTAX ELEMENT 35
TABLE 9: MEANING OF FRAMERATEDR SYNTAX ELEMENT 36
TABLE 10: MEANING OF COLOR_PRIM SYNTAX ELEMENT 37
TABLE 11: MEANING OF TRANSFER_CHAR SYNTAX ELEMENT 38
TABLE 12: MEANING OF MATRIX_COEF SYNTAX ELEMENT 39
TABLE 13: SYNTAX ELEMENTS FOR HRD_PARAM STRUCTURE 40
TABLE 14: ENTRY-POINT LAYER BITSTREAM FOR ADVANCED PROFILE 42
TABLE 15: SYNTAX ELEMENTS FOR HRD_FULLNESS STRUCTURE 44
TABLE 16: PROGRESSIVE I PICTURE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILE 48
TABLE 17: PROGRESSIVE BI PICTURE LAYER BITSTREAM FOR MAIN PROFILE 51
TABLE 18: PROGRESSIVE I AND BI PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 54
TABLE 19: PROGRESSIVE P PICTURE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILE 58
TABLE 20: PROGRESSIVE P PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 61
TABLE 21: PROGRESSIVE B PICTURE LAYER BITSTREAM FOR MAIN PROFILE 65
TABLE 22: PROGRESSIVE B PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 68
TABLE 23: PROGRESSIVE SKIPPED PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 71
TABLE 24: VOPDQUANT IN PICTURE HEADER (REFER TO 7.1.1.31) 72
TABLE 25: BITPLANE CODING (REFER TO 7.2) 74
TABLE 26: SLICE-LAYER BITSTREAM IN ADVANCED PROFILE 75
TABLE 27: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I AND BI PICTURE FOR SIMPLE/MAIN PROFILE 76
TABLE 28: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I AND BI PICTURE FOR ADVANCED PROFILE 78
TABLE 29: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE P PICTURE FOR SIMPLE/MAIN/ADVANCED PROFILE 79
TABLE 30: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE B PICTURE FOR MAIN/ADVANCED PROFILE 84
TABLE 31: INTRA BLOCK LAYER BITSTREAM 88
TABLE 32: INTER BLOCK LAYER BITSTREAM 91
TABLE 33: SIMPLE/MAIN PROFILE PICTURE TYPE FLC IF MAXBFRAMES == 0 94
TABLE 34: MAIN PROFILE PICTURE TYPE VLC IF MAXBFRAMES > 0 94
TABLE 35: ADVANCED PROFILE PICTURE TYPE VLC 94
TABLE 36: PQINDEX TO PQUANT/QUANTIZER TRANSLATION (IMPLICIT QUANTIZER) 95
TABLE 37: MOTION VECTOR RANGE SIGNALED BY MVRANGE 96
TABLE 38: PROGRESSIVE PICTURE RESOLUTION CODE-TABLE 96
TABLE 39: TRANSFORM AC CODING SET INDEX CODE-TABLE 97
TABLE 40: BFRACTION VLC TABLE 97
TABLE 41: FRAME CODING MODE VLC 98
TABLE 42: POSTPROC CODE TABLE 99
TABLE 43: MACROBLOCK QUANTIZATION PROFILE (DQPROFILE) CODE TABLE 101
TABLE 44: SINGLE BOUNDARY EDGE SELECTION (DQSBEDGE) CODE TABLE 101
TABLE 45: DOUBLE BOUNDARY EDGES SELECTION (DQDBEDGE) CODE TABLE 101
TABLE 46: P PICTURE LOW RATE (PQUANT > 12) MVMODE CODE TABLE 102
TABLE 47: P PICTURE HIGH RATE (PQUANT <= 12) MVMODE CODE TABLE 102
TABLE 48: B PICTURE MVMODE CODE TABLE 103
TABLE 49: P PICTURE LOW RATE (PQUANT > 12) MVMODE2 CODE TABLE 103
TABLE 50: P PICTURE HIGH RATE (PQUANT <= 12) MVMODE2 CODE TABLE 103
TABLE 51: MVTAB CODE-TABLE 104
TABLE 52: CBPTAB TABLE 104
TABLE 53: TRANSFORM TYPE SELECT CODE-TABLE 105
TABLE 54: HIGH RATE (PQUANT < 5) TTMB VLC TABLE 108

SMPTE 421M

© 2006 SMPTE xvi

TABLE 55: MEDIUM RATE (5 <= PQUANT < 13) TTMB VLC TABLE 109
TABLE 56: LOW RATE (PQUANT >= 13) TTMB VLC TABLE 110
TABLE 57: B FRAME MOTION PREDICTION TYPE 111
TABLE 58: AC ESCAPE DECODING MODE CODE-TABLE 112
TABLE 59: ESCAPE MODE 3 LEVEL CODEWORD SIZE CONSERVATIVE CODE-TABLE (USED FOR 1 <= PQUANT <= 7 OR IF

VOPDQUANT IS PRESENT AND QUANTIZER CAN VARY IN PICTURE) 113
TABLE 60: ESCAPE MODE 3 LEVEL CODEWORD SIZE EFFICIENT CODE-TABLE (USED FOR 8 <= PQUANT <= 31, AND IF

VOPDQUANT IS ABSENT OR IF THE SAME QUANTIZER IS USED IN THE PICTURE) 114
TABLE 61: ESCAPE MODE 3 RUN CODEWORD SIZE CODE-TABLE 114
TABLE 62: HIGH RATE (PQUANT < 5) TTBLK VLC TABLE 115
TABLE 63: MEDIUM RATE (5 =< PQUANT < 13) TTBLK VLC TABLE 116
TABLE 64: LOW RATE (PQUANT >= 13) TTBLK VLC TABLE 116
TABLE 65: HIGH RATE (PQUANT < 5) SUBBLKPAT VLC TABLE 117
TABLE 66: MEDIUM RATE (5 =< PQUANT < 13) SUBBLKPAT VLC TABLE 118
TABLE 67: LOW RATE (PQUANT >= 13) SUBBLKPAT VLC TABLE 118
TABLE 68: 8X4 AND 4X8 TRANSFORM SUB-BLOCK PATTERN CODE-TABLE FOR PROGRESSIVE PICTURES 119
TABLE 69: IMODE VLC CODE TABLE 120
TABLE 70: CODED BLOCK PATTERN BIT POSITION 123
TABLE 71: CODING SET CORRESPONDENCE FOR PQINDEX <= 8 129
TABLE 72: CODING SET CORRESPONDENCE FOR PQINDEX > 8 130
TABLE 73: SCAN ARRAY SELECTION 132
TABLE 74: DQSCALE 134
TABLE 75: K_X AND K_Y SPECIFIED BY MVRANGE 141
TABLE 76: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX <= 8 155
TABLE 77: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX > 8 155
TABLE 78: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX <= 8 157
TABLE 79: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX > 8 158
TABLE 80: NORM-2/DIFF-2 CODE TABLE 191
TABLE 81: CODE TABLE FOR 3X2 AND 2X3 TILES 192
TABLE 82: INTERLACED FRAME I AND BI PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 201
TABLE 83: INTERLACED FRAME P PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 203
TABLE 84: INTERLACED FRAME B PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 207
TABLE 85: PICTURE LAYER BITSTREAM FOR FIELD 1 OF INTERLACE FIELD PICTURE FOR ADVANCED PROFILE 211
TABLE 86: PICTURE LAYER BITSTREAM FOR FIELD 2 OF INTERLACE FIELD PICTURE FOR ADVANCED PROFILE 212
TABLE 87: FIELD INTERLACE I AND BI FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 213
TABLE 88: FIELD INTERLACE P FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 215
TABLE 89: FIELD INTERLACE B FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 218
TABLE 90: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME I PICTURE 221
TABLE 91: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME P PICTURE 223
TABLE 92: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME B PICTURE 227
TABLE 93: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD I PICTURE 230
TABLE 94: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD P PICTURE 233
TABLE 95: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD B PICTURE 237
TABLE 96: MVRANGE – MOTION VECTOR RANGE FOR INTERLACE FIELD PICTURES USING HALF-PEL MODES 242
TABLE 97: DMVRANGE VLC TABLE 242
TABLE 98: MBMODETAB CODE-TABLE FOR INTERLACE FIELD P, B PICTURES 243
TABLE 99: MBMODETAB CODE-TABLE FOR INTERLACE FRAME P, B PICTURES 244
TABLE 100: IMVTAB CODE-TABLE FOR P INTERLACE FIELD PICTURE WITH NUMREF == 0, AND FOR P/B INTERLACE

FRAME PICTURES 244
TABLE 101: IMVTAB CODE-TABLE FOR P INTERLACE FIELD PICTURES WITH NUMREF == 1, AND FOR B INTERLACE

FIELD PICTURES 244
TABLE 102: ICBPTAB CODE-TABLE 245
TABLE 103: 2MVBP CODE-TABLE 245
TABLE 104: 4MVBP CODE-TABLE 246
TABLE 105: FIELD PICTURE TYPE FLC 246
TABLE 106: REFDIST VLC TABLE 247
TABLE 107: B PICTURE LOW RATE (PQUANT > 12) MVMODE CODE TABLE 248

SMPTE 421M

© 2006 SMPTE xvii

TABLE 108: B PICTURE HIGH RATE (PQUANT <= 12) MVMODE CODE TABLE 248
TABLE 109: INTCOMPFIELD VLC TABLE 248
TABLE 110: BMVTYPE VLC TABLE FOR INTERLACE FIELD B MACROBLOCK NOT ENCODED IN FORWARD MODE 251
TABLE 111: MACROBLOCK MODE IN 1-MV PICTURES 260
TABLE 112: MACROBLOCK MODE IN MIXED-MV PICTURES 260
TABLE 113: P INTERLACE FIELD PICTURE MV PREDICTOR SCALING VALUES WHEN CURRENT FIELD IS FIRST 277
TABLE 114: P INTERLACE FIELD PICTURE MV PREDICTOR SCALING VALUES WHEN CURRENT FIELD IS SECOND 277
TABLE 115: B INTERLACE FIELD PICTURE BACKWARD MV PREDICTOR SCALING VALUES FOR WHEN CURRENT FIELD

IS FIRST 294
TABLE 116: 4-MV BLOCK PATTERN TABLE 0 329
TABLE 117: 4-MV BLOCK PATTERN TABLE 1 329
TABLE 118: 4-MV BLOCK PATTERN TABLE 2 330
TABLE 119: 4-MV BLOCK PATTERN TABLE 3 330
TABLE 120: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 0 331
TABLE 121: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 1 331
TABLE 122: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 2 331
TABLE 123: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 3 331
TABLE 124: INTERLACED CBPCY TABLE 0 332
TABLE 125: INTERLACED CBPCY TABLE 1 333
TABLE 126: INTERLACED CBPCY TABLE 2 333
TABLE 127: INTERLACED CBPCY TABLE 3 334
TABLE 128: INTERLACED CBPCY TABLE 4 335
TABLE 129: INTERLACED CBPCY TABLE 5 336
TABLE 130: INTERLACED CBPCY TABLE 6 336
TABLE 131: INTERLACED CBPCY TABLE 7 337
TABLE 132: 2-FIELD REFERENCE INTERLACE MV TABLE 0 338
TABLE 133: 2-FIELD REFERENCE INTERLACE MV TABLE 1 339
TABLE 134: 2-FIELD REFERENCE INTERLACE MV TABLE 2 340
TABLE 135: 2-FIELD REFERENCE INTERLACE MV TABLE 3 342
TABLE 136: 2-FIELD REFERENCE INTERLACE MV TABLE 4 343
TABLE 137: 2-FIELD REFERENCE INTERLACE MV TABLE 5 344
TABLE 138: 2-FIELD REFERENCE INTERLACE MV TABLE 6 346
TABLE 139: 2-FIELD REFERENCE INTERLACE MV TABLE 7 347
TABLE 140: 1-FIELD REFERENCE INTERLACE MV TABLE 0 348
TABLE 141: 1-FIELD REFERENCE INTERLACE MV TABLE 1 349
TABLE 142: 1-FIELD REFERENCE INTERLACE MV TABLE 2 350
TABLE 143: 1-FIELD REFERENCE INTERLACE MV TABLE 3 351
TABLE 144: MIXED MV MB MODE TABLE 0 351
TABLE 145: MIXED MV MB MODE TABLE 1 352
TABLE 146: MIXED MV MB MODE TABLE 2 352
TABLE 147: MIXED MV MB MODE TABLE 3 352
TABLE 148: MIXED MV MB MODE TABLE 4 353
TABLE 149: MIXED MV MB MODE TABLE 5 353
TABLE 150: MIXED MV MB MODE TABLE 6 353
TABLE 151: MIXED MV MB MODE TABLE 7 353
TABLE 152: 1-MV MB MODE TABLE 0 354
TABLE 153: 1-MV MB MODE TABLE 1 354
TABLE 154: 1-MV MB MODE TABLE 2 354
TABLE 155: 1-MV MB MODE TABLE 3 354
TABLE 156: 1-MV MB MODE TABLE 4 355
TABLE 157: 1-MV MB MODE TABLE 5 355
TABLE 158: 1-MV MB MODE TABLE 6 355
TABLE 159: 1-MV MB MODE TABLE 7 355
TABLE 160: INTERLACE FRAME 4-MV MB MODE TABLE 0 356
TABLE 161: INTERLACE FRAME 4-MV MB MODE TABLE 1 356
TABLE 162: INTERLACE FRAME 4-MV MB MODE TABLE 2 357
TABLE 163: INTERLACE FRAME 4-MV MB MODE TABLE 3 357
TABLE 164: INTERLACE FRAME NON 4-MV MB MODE TABLE 0 358

SMPTE 421M

© 2006 SMPTE xviii

TABLE 165: INTERLACE FRAME NON 4-MV MB MODE TABLE 1 358
TABLE 166: INTERLACE FRAME NON 4-MV MB MODE TABLE 2 359
TABLE 167: INTERLACE FRAME NON 4-MV MB MODE TABLE 3 359
TABLE 168: I-PICTURE CBPCY VLC TABLE 360
TABLE 169: P AND B-PICTURE CBPCY VLC TABLE 0 361
TABLE 170: P AND B-PICTURE CBPCY VLC TABLE 1 362
TABLE 171: P AND B-PICTURE CBPCY VLC TABLE 2 363
TABLE 172: P AND B-PICTURE CBPCY VLC TABLE 3 364
TABLE 173: LOW-MOTION LUMA DC DIFFERENTIAL VLC TABLE 365
TABLE 174: LOW-MOTION COLOR-DIFFERENCE DC DIFFERENTIAL VLC TABLE 366
TABLE 175: HIGH-MOTION LUMA DC DIFFERENTIAL VLC TABLE 367
TABLE 176: HIGH-MOTION COLOR-DIFFERENCE DC DIFFERENTIAL VLC TABLE 369
TABLE 177: HIGH MOTION INTRA VLC TABLE 370
TABLE 178: HIGH MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST == 0) 372
TABLE 179: HIGH MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST == 1) 373
TABLE 180: HIGH MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 374
TABLE 181: HIGH MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 374
TABLE 182: HIGH MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 375
TABLE 183: HIGH MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 375
TABLE 184: HIGH MOTION INTER VLC TABLE 376
TABLE 185: HIGH MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST == 0) 377
TABLE 186: HIGH MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST == 1) 378
TABLE 187: HIGH MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 379
TABLE 188: HIGH MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 380
TABLE 189: HIGH MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 380
TABLE 190: HIGH MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 381
TABLE 191: LOW MOTION INTRA VLC TABLE 381
TABLE 192: LOW MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST == 0) 382
TABLE 193: LOW MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST == 1) 383
TABLE 194: LOW MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 384
TABLE 195: LOW MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 384
TABLE 196: LOW MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 385
TABLE 197: LOW MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 385
TABLE 198: LOW MOTION INTER VLC TABLE 385
TABLE 199: LOW MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST == 0) 387
TABLE 200: LOW MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST == 1) 388
TABLE 201: LOW MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 389
TABLE 202: LOW MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 389
TABLE 203: LOW MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 390
TABLE 204: LOW MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 390
TABLE 205: MID RATE INTRA VLC TABLE 390
TABLE 206: MID RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST == 0) 392
TABLE 207: MID RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST == 1) 392
TABLE 208: MID RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 393
TABLE 209: MID RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 393
TABLE 210: MID RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 394
TABLE 211: MID RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 394
TABLE 212: MID RATE INTER VLC TABLE 394
TABLE 213: MID RATE INTER INDEXED RUN AND LEVEL TABLE (LAST == 0) 396
TABLE 214: MID RATE INTER INDEXED RUN AND LEVEL TABLE (LAST == 1) 396
TABLE 215: MID RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 397
TABLE 216: MID RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 397
TABLE 217: MID RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 398
TABLE 218: MID RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 398
TABLE 219: HIGH RATE INTRA VLC TABLE 398
TABLE 220: HIGH RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST == 0) 400
TABLE 221: HIGH RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST == 1) 401

SMPTE 421M

© 2006 SMPTE xix

TABLE 222: HIGH RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 402
TABLE 223: HIGH RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 402
TABLE 224: HIGH RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 402
TABLE 225: HIGH RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 403
TABLE 226: HIGH RATE INTER VLC TABLE 404
TABLE 227: HIGH RATE INTER INDEXED RUN AND LEVEL TABLE (LAST == 0) 405
TABLE 228: HIGH RATE INTER INDEXED RUN AND LEVEL TABLE (LAST == 1) 407
TABLE 229: HIGH RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 0) 407
TABLE 230: HIGH RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST == 1) 408
TABLE 231: HIGH RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 0) 408
TABLE 232: HIGH RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST == 1) 409
TABLE 233: INTRA NORMAL SCAN 409
TABLE 234: INTRA HORIZONTAL SCAN 409
TABLE 235: INTRA VERTICAL SCAN 410
TABLE 236: INTER 8X8 SCAN FOR SIMPLE AND MAIN PROFILES AND PROGRESSIVE MODE IN ADVANCED PROFILE 410
TABLE 237: INTER 8X4 SCAN FOR SIMPLE AND MAIN PROFILES 410
TABLE 238: INTER 4X8 SCAN FOR SIMPLE AND MAIN PROFILES 410
TABLE 239: INTER 4X4 SCAN FOR SIMPLE AND MAIN PROFILES AND PROGRESSIVE MODE IN ADVANCED PROFILE 410
TABLE 240: PROGRESSIVE MODE INTER 8X4 SCAN FOR ADVANCED PROFILE 410
TABLE 241: PROGRESSIVE MODE INTER 4X8 SCAN FOR ADVANCED PROFILE 410
TABLE 242: INTERLACE MODE INTER 8X8 SCAN FOR ADVANCED PROFILE (ALSO USED FOR INTRA MODE 8X8 SCAN

FOR INTERLACE FRAME PICTURES) 411
TABLE 243: INTERLACE MODE INTER 8X4 SCAN FOR ADVANCED PROFILE 411
TABLE 244: INTERLACE MODE INTER 4X8 SCAN FOR ADVANCED PROFILE 411
TABLE 245: INTERLACE MODE INTER 4X4 SCAN FOR ADVANCED PROFILE 411
TABLE 246: MOTION VECTOR DIFFERENTIAL VLC TABLE 0 411
TABLE 247: MOTION VECTOR DIFFERENTIAL VLC TABLE 1 412
TABLE 248: MOTION VECTOR DIFFERENTIAL VLC TABLE 2 413
TABLE 249: MOTION VECTOR DIFFERENTIAL VLC TABLE 3 414
TABLE 250: MAXIMUM BIT RATE AS A FUNCTION OF PROFILES AND LEVELS 428
TABLE 251: LIST OF PROFILES AND LEVELS DEFINED IN THIS STANDARD. 430
TABLE 252: CODEC OPTIONS IN THE SIMPLE, MAIN AND ADVANCED PROFILE. 431
TABLE 253: LIMITATIONS OF PROFILES AND LEVELS. COLUMN MARKED ‘B’ DENOTES B FRAMES AND LOOP FILTER

SUPPORT, AND ‘I’ DENOTES INTERLACE SUPPORT. FOR INTERLACE, PICTURE RATE IS DESCRIBED IN
FRAMES/SECOND. (FIELDS/SECOND IS TWICE THAT VALUE). 434

TABLE 254: DECODER REMOVAL OF EMULATION PREVENTION DATA 437
TABLE 255: EMULATION PREVENTION PATTERN REPLACEMENT 438
TABLE 256: START CODE SUFFIXES FOR VARIOUS BDU TYPES 438
TABLE 257: USER-DATA SYNTAX 440
TABLE 258: DECODING PROCEDURE FOR POST-PROCESSING INDICATORS IN SIMPLE/MAIN PROFILE 462
TABLE 259: QUANTIZER SPECIFICATION 464
TABLE 260: SEQUENCE HEADER DATA STRUCTURE STRUCT_A FOR SIMPLE AND MAIN PROFILES 464
TABLE 261: SEQUENCE HEADER DATA STRUCTURE STRUCT_B FOR SIMPLE AND MAIN PROFILES 465
TABLE 262: SEQUENCE HEADER DATA STRUCTURE STRUCT_B FOR ADVANCED PROFILE 465
TABLE 263: SEQUENCE HEADER DATA STRUCTURE STRUCT_C FOR SIMPLE AND MAIN PROFILES 466
TABLE 264: SEQUENCE HEADER DATA STRUCTURE STRUCT_C FOR ADVANCED PROFILE 466
TABLE 265: SEQUENCE LAYER DATA STRUCTURE 471
TABLE 266: FRAME LAYER DATA STRUCTURE 472

SMPTE 421M

© 2006 SMPTE 1

1 Scope
This document defines the bitstream syntax and semantics for compressed video data in VC-1 format, and specifies
constraints that are required for conformant bitstreams. It also describes the complete process required to decode the
bitstream. The compression algorithm is not specified in this standard. The video formats supported by VC-1 include
progressive and interlaced video sampled in the form of Y luma samples and Cb, Cr color-difference in 8-bit per
component sample values resulting from a 4:2:0 sampling grid. The decoding process outputs 8-bit per component
video samples corresponding to the original 4:2:0 sampling grid. The display rendering process by which decoded Y,
Cb, Cr samples are converted to a visible image or to a video output signal in a complete decoding system or device are
not specified in VC-1. A VC-1 bitstream may convey additional metadata and user data which shall be accounted for
in the buffer model. Metadata included in VC-1 streams is not used by the decoding process, but is passed to the
display rendering process for the identification and reconstruction of the sampled video format, sample aspect ratio,
color space, etc.

2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of this standard.
At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this standard are encouraged to investigate the possibility of applying the most recent edition of
the standards indicated below.

Recommendation ITU-R BT.17001, “Characteristics of video signals for conventional analogue television systems”,
2005.

Recommendation ITU-R BT.601-5, “Studio encoding parameters of digital television for standard 4:3 and wide-screen
16:9 aspect ratios”, 1995.

Recommendation ITU-R BT.709-5, “Parameter values for the HDTV standards for production and international
programme exchange”, 2002.

ISO/IEC 13818-1:2000, Information Technology – Generic Coding of Moving Pictures and Associated Audio
Information: Systems” (2nd Edition).

SMPTE 274M-2005, Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing
Reference Sequences for Multiple Picture Rates.

SMPTE 293M-2003, “Television – 720 x 483 Active Line at 59.94-Hz Progressive Scan Production – Digital
Representation”.

SMPTE 296M-2001, Television – 1280 x 720 Progressive Image Sample Structure – Analog and Digital
Representation and Analog Interface.

Recommendation ITU-R BT.1361, “Worldwide unified colorimetry and related characteristics of future television and
imaging systems”.

1 Note: Recommendation ITU-R BT.1700 Part A references SMPTE 170M. Recommendation ITU-R BT.1700 also
replaces Recommendation ITU-R BT. 470-6.

3 Overview
This section gives an overview of the syntax, transport requirements, and the organization of this document.

SMPTE 421M

© 2006 SMPTE 2

3.1 Syntax Overview (Informative)
The syntax of this standard consists of the hierarchical layers: sequence, entry-point, picture, slices, macroblocks (MB),
and blocks. In the simple and main profile, a sequence consists of a series of one or more coded pictures. In the
advanced profile, a sequence consists of a series of one or more entry-point segments, where each entry-point segment
consists of a series of one or more pictures, and where the first picture in each entry-point segment provides random
access. A picture is decomposed into macroblocks, each of which consists of four luma blocks, and two color-
difference blocks. A slice comprises one or more contiguous rows of macroblocks.

 An overview of the bitstream syntax for the sequence layer, entry-point layer and picture layer is shown in Figure 1.
The entry-point layer is present only in the advanced profile. An overview of the picture layer, slice layer and
macroblock layer is shown in Figure 2. The syntax of block layer is shown in Figure 27 and Figure 28. The bitstream
syntax and semantics of the sequence layer and the entry-point layer are described in Section 6.

Figure 1: Bitstream Syntax Overview (Entry_Point_Layer is present only in advanced profile)

SMPTE 421M

© 2006 SMPTE 3

Figure 2: Picture Layer Syntax Overview

Both progressive and interlace syntax are supported. Pictures which are coded using the interlace syntax can be coded
as a single frame, or as two fields. Pictures which are coded using the progressive syntax are coded as a single frame.
Pictures coded using the progressive and pictures coded using the interlace syntax can be mixed in the same sequence.
Each picture can be coded as an I-picture, P-picture, skipped picture, BI-picture, or as a B-picture as defined in section
4.12 and summarized below.

• An I-picture (intra-coded picture) is a picture that is coded using information only from itself, and does not
depend on information from any other picture. All the macroblocks in an I-picture are intra-coded.

• A P-picture is a picture that is coded using motion compensated prediction from past reference pictures. A P
picture can contain macroblocks that are inter-coded (i.e. coded using prediction) and macroblocks that are
intra-coded.

• A B-picture is a picture that is coded using motion compensated prediction from past and/or future reference
pictures. A B picture can contain macroblocks that are inter-coded, and macroblocks that are intra-coded.

• A BI-picture is a B picture that contains only intra-coded macroblocks.
• A skipped picture is a P-picture that is identical to its reference picture.

SMPTE 421M

© 2006 SMPTE 4

There are three profiles: simple, main and advanced. Simple and main profiles support only progressive pictures. Each
profile contains multiple levels. There are two levels in simple profile, three levels in main profile, and five levels in
advanced profile. For details on profiles and levels, and their relation to coding tools, see Annex D.

The bitstream syntax of the picture layer as well as the syntax of slice, macroblock and block layers are described in
Section 7 (for progressive pictures) and in Section 9 (for interlace frame and interlace field pictures).

3.2 Decoding Process Overview
An overview of the decoding process, as defined in this document, is shown in Figure 3 (for simple and main profiles),
and in Figure 4 (for advanced profile).

Note: Simple profile does not use all the processes illustrated in Figure 3.

Figure 3: Decoding Process Block Diagram for Simple and Main Profile

SMPTE 421M

© 2006 SMPTE 5

Figure 4: Decoding Process Block Diagram for Advanced Profile

The various decoding processes are described in Section 8 (for progressive picture), and in Section 10 (for interlace
frame and interlace field picture). Post-processing and display processing are assisted by information carried in the
compressed bitstream (e.g. sample aspect ratio). In addition to the output 4:2:0 samples, the decoding process produces
output metadata (which could be used in post-processing and during display processing). This is illustrated in Figure 5.
Note that range-reduction block present in simple/main profile is part of the prediction loop, while range map block
present in the advanced profile is outside the prediction loop.

SMPTE 421M

© 2006 SMPTE 6

Figure 5: Overview of the Decoding Process and Meta-Data

3.3 Encoding Process Overview (Informative)
An informative overview of the encoding process is shown in Figure 6 which depicts some of the major blocks in the
encoder. Annex K presents additional details on some of the encoding blocks.

SMPTE 421M

© 2006 SMPTE 7

Forward
Transform

Quanti-
zation

Entropy
Coding

Forward
Transform

Quanti-
zation

Entropy
Coding

Dequanti-
zation

Inverse
Transform

Motion
Comp/

Deblocking

Reconstruction Loop

Interframe Path

Intraframe Path

Encoder

Motion
Estimation

+
-

Recon
frame

Motion Vectors

Input

Figure 6: Overview Block Diagram of the Encoding Process (Informative)

3.4 Document structure (Informative)
Section 4 presents notation and definition of terms used in this document. Section 5 describes the input source format,
and the hierarchical elements of the syntax. Section 6 describes the syntax and semantics of the sequence and entry-
point layer. Section 7 describes the syntax and semantics of the picture, slice, macroblock, and block layers of a
progressive picture. Section 8 describes the decoding process of a progressive picture. Section 9 describes the syntax
and semantics of the picture, slice, macroblock and block layers of an interlace frame and interlace field picture. Section
10 describes the decoding process of an interlace frame and interlace field picture. Table 1 shows the sections where the
individual functional elements are described in detail.

Table 1: Functional Elements in VC-1 and their section numbers

Number Function Name Simple/Main Profile
(Progressive only) Advanced Profile, Progressive Advanced Profile, Interlace

1 Sequence level
Bitstream Parsing N/A 6.1 6.1

2 Entry Point
Bitstream Parsing N/A 6.2 6.2

3 Picture Level
Bitstream Parsing 7.1 7.1 9.1

4
VLC Decode
Coeffs (VLC
tables)

0,8.3.6.2,11 0,8.3.6.2,11 10.1.2.5,11

SMPTE 421M

© 2006 SMPTE 8

5
VLC Decode MV

(VLC tables)
8.3.5.2.1,11 8.3.5.2.1,11 10.3.5.4,10.7.3.6,11

6 MV PRED 8.3.5.3 8.3.5.3 10.3.5.4.3,10.7.3.5

7 Motion Comp (1-
MV/4-MV)

8.3.5.4,8.3.6.5(P)

8.4.5.11(B)

8.3.5.4,8.3.6.5(P)

8.4.5.11(B)

10.3.5.4.4 (Field P);
10.4.6.3.2 (Field B);
10.7.4.1 (Frame P)

10.8.6.9(Frame B)

8 DC Prediction 8.1.3.2 8.1.3.2
10.1.2.2 (Field)

10.5.2.1 (Frame)

9 AC Prediction 8.1.3.7 8.1.3.7
10.1.2.6(Field),

10.5.2.2(Frame)

10 Inverse
Quantization

8.3.6.3 (P pic)

8.1.3.3(I pic DC)

8.1.3.8 (I pic AC)

8.3.6.3 (P pic)

8.1.3.3 (I pic DC)

8.1.3.8 (I pic AC)

11 Inverse
Transform Annex A Annex A Annex A

12 Loop Filter 8.6 8.6 10.10

13 Intensity Comp 8.3.8 8.3.8 10.3.8

14 Range map N/A 6.2.15,6.2.16 6.2.15,6.2.16

15 Sync Markers 8.8 N/A N/A

16 Bitplane Coding 8.7 8.7 8.7

17 Pan Scan N/A 8.9 8.9

4 Notation
The following notation is used in this document.

4.1 Conformance Notation
Documents consist of normative text and optionally, informative text. Normative text is that text which describes
elements of the design that are indispensable or contains the conformance language keywords: "shall", "should" or
"may".

Informative text is text that is potentially helpful to the user, but not indispensable and can be removed, changed or
added editorially without affecting interoperability. Informative text does not contain any conformance keywords.

All text in the document is normative except: the Introduction, any section explicitly labeled as "Informative", or
individual paragraphs that start with "Note:".

Normative references are those external documents referenced in normative text and are indispensable to the user.
Bibliographic references are those references made from informative text or are otherwise not indispensable to the user.

SMPTE 421M

© 2006 SMPTE 9

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to conform to the document
and from which no deviation is permitted.

The keywords, "should" and "should not" indicate that among several possibilities one is recommended as particularly
suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate a course of action permissible within the limits of the document.

The keyword, "reserved" indicates a provision that is not defined at this time, shall not be used, and may be defined in
the future. The keyword, "forbidden" indicates "reserved" and in addition indicates that the provision shall never be
defined in the future.

A conformant implementation is one that includes all mandatory provisions ("shall") and, if implemented, all
recommended provisions ("should") as described. A conformant implementation need not implement optional
provisions ("may") and need not implement them as described.

4.2 Arithmetic Operators
+ Addition.

− Subtraction (as a binary operator) or negation (as a unary operator).

++ Increment.

− − Decrement.

+= a += b is defined as a = a + b

−= a −= b is defined as a = a − b

* Multiplication.

/ Integer division with truncation towards zero. For example, 7/4 and −7/−4 are truncated to 1 and −7/4
and 7/−4 are truncated to −1.

÷ Real division.

// Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero
unless otherwise specified. For example 3//2 is rounded to 2, and (-3)//2 is rounded to -2.

// is also used as a comment marker in pseudo-code and syntax tables.

Rest of the line is a comment.

| | Absolute value.

abs () Absolute value

 | x | = x , when x > 0

 | x | = 0, when x == 0

 | x | = −x, when x < 0

% x%a is defined as the modulus operator for x>= 0, a>0.

x%a = -((-x%a)) for x< 0, a>0.

x%a is defined only for positive values of a.

sign() Sign.

 sign(x) = 1, when x >= 0

 sign(x) = −1, when x < 0

int() Truncation to integer operator. Returns the integer part of the real-valued argument.

SMPTE 421M

© 2006 SMPTE 10

nint () Nearest integer operator. Returns the nearest integer value to the real-valued argument. Half-integer
values are rounded away from zero.

clip () clip(n) = 255 if n > 255, clip(n) = 0 if n < 0, clip(n) = n otherwise

ceil () Ceiling operator. Returns the smallest integer which is greater than or equal to the real-valued
argument. For example, ceil (1.5) returns 2 and ceil (3.0) returns 3.

max Maximum of the arguments.

min Minimum of the arguments.

√ Square root.

log2 Logarithm to base 2.

median3 () Median of 3 values (see section 4.11 for definition)

median4 () Median of 4 values (see section 4.11 for definition)

smod Signed modulus operator (see section 4.11 for definition)

4.3 Logical operators
|| Logical OR.

&& Logical AND.

! Logical NOT

 TRUE/FALSE Convention: The syntax uses the convention that a variable or expression evaluating to a non-
zero value is equivalent to a condition that is TRUE and a variable or expression evaluating to a zero value is
equivalent to a condition that is FALSE.

4.4 Relational operators
> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

== Equal to.

!= Not equal to.

4.5 Bitwise operators
A twos complement number representation is assumed where the bitwise operators are used.

& AND

| OR

^ XOR.

>> Shift right with sign extension.

<< Shift left with zero fill.

SMPTE 421M

© 2006 SMPTE 11

^= a ^= b is defined as a = a ^ b

4.6 Assignment
= Assignment operator.

4.7 Precedence Order of Operators

The precedence order of operators is defined as follows:

Operators Type of operation Associativity

() Expression Left to Right

++, −− Postfix operators Right to Left

−,! Unary

*, /, ÷,%, // Multiplicative Left to Right

+, − Additive and Subtractive Left to Right

<<, >> Shift Left to Right.

< , >, <=, >= Relational Left to Right

==, != Equality Left to Right

&, |, ^ Bitwise operator Left to Right

&&, ||, Logical operators Left to Right

=, +=, −=,^= Assignment operators Right to Left

Operators are listed in descending order of precedence. If several operators appear in the same line, they have equal
precedence. When several operators of equal precedence appear at the same level in an expression, evaluation proceeds
according to the associativity of the operator either from right to left or from left to right.

4.8 Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bitstream.

uimsbf Unsigned integer, most-significant bit first.

bslbf Bit String, left bit first.

vlclbf Variable length prefix code, left bit first, where "left" refers to the order in which
the VLC codes are written.

VLC Variable-length code

FLC Fixed-length code

4.9 Pseudo-code operations
The following operations are used in the pseudo-code to define the decoding process.

• // is a comment to the line end (note – not integer division)
• /* this is a comment start and end */
• A group of statements enclosed in curly brackets is a compound statement and is treated functionally as a

single statement.
• while (condition)

SMPTE 421M

© 2006 SMPTE 12

 (statement)

/* specifies repeated execution of statement until condition is no longer TRUE. */
• for(initial statement; condition; subsequent statement)

 (primary statement)

/* specifies evaluation of initial statement followed by evaluation of condition, and if condition is TRUE, specifies
repeated execution of primary statement followed by subsequent statement until condition is no longer TRUE */
• if(condition)

 (statement)

 else

 (alternate statement)

 /* statement is executed if condition is TRUE, alternate statement is executed otherwise */
• goto Label

/* jumps to the labeled statement represented as “Label: statement” */

4.10 Bitstream Parsing Operations
The bitstream is formatted as an ordered sequence of bytes. These bytes contain sequences of bits. The syntax
elements appear within a sequence of bits in the order specified in the syntax tables of section 7 and section 9, and for
each syntax element, the most-significant bit of the syntax element value is the left-most bit in the sequence of bits that
represents the syntax element and the least-significant bit of the syntax element value is the right-most bit. The bits of
the syntax elements shall be extracted from the bytes that represent them by extracting the most-significant bit of the
first syntax element from the most-significant bit of the first byte, the next bit of the syntax element from the next less
significant bit of the byte, etc., proceeding through to the least-significant bit of the byte and then the most-significant
bit of the following byte, etc. After the bits of the first syntax element, the same convention shall be followed, starting
at the next bit, for the bits of the next syntax element and then for the subsequent syntax elements.

Unless otherwise specified in a system-level specification, the bytes of the bitstream are ordered such that the first byte
shall be placed first, the second byte shall be placed second, etc.

Note: The byte order described above is sometimes referred to as "network byte order".

The pseudo-code examples use the following bitstream parsing operations
new_bit() // Returns the next bit from the bitstream

 static CurrentByte = 0;
 static CurrentBit = 7;

 extern unsigned char *ElementaryStream;

 new_bit() {
 Value = (ElementaryStream[CurrentByte] >>
 CurrentBit) & 1;
 if(CurrentBit != 0)
 CurrentBit--;
 else{
 CurrentByte++;
 CurrentBit = 7;
 }
 }

SMPTE 421M

© 2006 SMPTE 13

get_bits(n) //Reads n bits from the bitstream and returns the value.
// get_bits(0) is zero.
 get_bits(n) {
 DecodedBitString = 0;
 for(i = 0; i < n; i++)
 DecodedBitString = (DecodedBitString << 1) +
 new_bit();
 return(DecodedBitString);
 }

more_bits
(BitString, Len,
Tab)

Returns TRUE if the symbol BitString of length Len is not found in the
code table Tab. Otherwise, it returns FALSE.

vlc_decode() //Decodes the next variable-length codeword in the bitstream and
returns the decoded symbol
// Tab is set to appropriate variable length code table.
vlc_decode() {
 DecodedBitString = new_bit();
 DecodedLength = 1;
 while(more_bits(DecodedBitString, DecodedLength,
 Tab) {
 DecodedBitString = (DecodedBitString << 1) +
 new_bit();
 DecodedLength++;
 }
 return(DecodedBitString);
}

byte_aligned() Returns TRUE if the correct position in the bitstream is on a byte
boundary. Otherwise it returns FALSE.

4.11 Function Definitions
The functions smod (signed modulus), median3() and median4() are used in some of the pseudo-code examples in this
spec. The functions median3 and median4 are computed as illustrated in the following pseudo-code examples.

median3 ()

median3 (a, b, c)
{
 if (a > b)

{
 if (b > c)
 median = b
 else if (a > c)
 median = c
 else
 median = a
 }
 else if (a > c)

SMPTE 421M

© 2006 SMPTE 14

 median = a
 else if (b > c)
 median = c
 else
 median = b

 return median
}

median4 ()

median4 (a, b, c, d)
{

max = min = a
 if (b > max)
 max = b
 else if (b < min)
 min = b
 if (c > max)
 max = c
 else if (c < min)
 min = c
 if (d > max)
 max = d
 else if (d < min)
 min = d

median = (a + b + c + d - max - min) / 2
return median

}

The smod (signed modulus) operator is used in computation of motion vector, and is computed as
follows.
A smod b = ((A + b) & (2b – 1)) – b
A smod b lies within –b and b-1.
Note: The smod function is defined only for values of b that are powers of 2.

4.12 Definition of Terminology
For the purposes of this standard, the following definitions apply.

anchor picture: An I or a P picture or a skipped picture that is used as a reference picture for a B picture. There are
two anchor pictures for a B picture.

AC coefficient: Any transform coefficient for which the frequency in one or both dimensions is non-zero.

B field picture: A B picture coded with interlace field coding mode. A B Field picture cannot be used for predicting
any other picture except the opposite field of the same picture.

B frame picture: A frame structure B picture coded with interlace frame coding mode. A B Frame picture cannot be
used for predicting any other picture.

B picture; bidirectionally predictive-coded picture: A picture that is coded using motion compensated prediction
from past and/or future reference fields or frames. A B picture can contain macroblocks that are inter-coded, and
macroblocks that are intra-coded. A B picture cannot be used for predicting any other picture.

SMPTE 421M

© 2006 SMPTE 15

BI picture: A B picture where all the macroblocks are intra-coded. A BI picture cannot be used for predicting any other
picture.

backward motion vector: A motion vector that is used for motion compensation from a reference frame or reference
field at a later time in display order.

backward prediction: Prediction from the future reference frame (field).

bitplane coding: Technique by which macroblock level information is coded as part of the frame header information.

backward reference frame distance (BRFD): As computed from syntax elements coded in the bitstream, this is
nominally equal to one plus the number of frames between the current frame, and the subsequent (in display order)
reference anchor.

bitstream: An ordered series of bits that forms the coded representation of the data.

bitstream data unit (BDU): A unit of the compressed data which may be parsed (i.e. syntax decoded) independently of
other information at the same hierarchical level. A BDU could be, for example, a sequence header, an entry-point
header, a coded picture or a slice. An Encapsulation Mechanism (EM) is described to prevent emulation of the start
code prefix in the bitstream. The compressed data before encapsulation is called Raw Bitstream Decodable Unit
(RBDU), while Encapsulated BDU (EBDU) refers to the data after encapsulation.

bitrate: The rate at which the coded bitstream is delivered to the input of a decoder.

block: An 8-row by 8-column matrix of samples, or 64 transform coefficients.

bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially located immediately
below the corresponding line of the top field.

byte-aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8 bits from the first bit in the
stream.

byte: Sequence of 8 bits.

channel: A digital medium that stores or transports a bitstream.

clamping: The process of limiting values to a certain range, and can be implemented using the clip operator.

color-difference sub-sampling: The sampling grid used to sample the color-difference signals.

coded block pattern (CBP): A symbol indicating the presence or absence of residual information in blocks within a
macroblock.

coded block pattern of color-difference and luma blocks (CBPCY): The six-bit pattern representing CBP of the two
color-difference blocks and four luma blocks within a macroblock, and obtained from decoding the corresponding
variable-length syntax element.

coded picture: A coded picture is made of a picture header, the optional extensions immediately following it, and the
following picture data. A coded picture may be a coded frame or a coded field.

coded video bitstream: A coded representation of a series of one or more sequences.

coded order: The order in which the pictures are transmitted and decoded. This order is the same as the display order if
there are no B frames in the sequence. The coded order is not the same as the display order if there are B frames in the
sequence.

coding parameters: The set of user-definable parameters that characterize a coded video bitstream.

coding set: The set of VLC tables and constants that are used to decode the AC coefficients.

color-difference: The Cb, Cr signals resulting from the matrix equations defined in the image source documents.

component: A matrix, block or single sample from one of the three matrices (luma and two color-difference) that make
up a picture.

compression: Reduction in the number of bits used to represent an item of data.

DC coefficient: The transform coefficient for which the frequency is zero in both dimensions.

SMPTE 421M

© 2006 SMPTE 16

DC differential: The DC coefficient of a block in the bitstream that is differentially coded with respect to the DC-
coefficient of a neighboring block.

decoder: An embodiment of a decoding process.

decoding process, decoding algorithm: The process defined whereby a serialized bitstream is converted to an array of
8-bit Y, Cb, Cr samples with 4:2:0 color subsampling. The decoding process does not include the display rendering
process, which may convert these samples to images in another color space (such as RGB), may apply format specific
black and white levels, color primaries, Y, Cb, Cr matrix coefficients, sample aspect ratios, etc., and may display the
images with frequency and timing different from the sampled rate.

dequantization: The process of rescaling the quantized transform coefficients after their representation in the bitstream
has been decoded and before they are presented to the inverse transform.

direct prediction: Prediction from the both past reference frame (field), and the future reference frame (field) where
the motion vectors are derived from the collocated block in the future frame (field).

display order: The order in which the decoded pictures are displayed. Normally this is the same order in which they
were presented at the input of the encoder.

display process: The (non-normative) process by which reconstructed frames are displayed.

encoder: An embodiment of an encoding process.

encoding (process): A process which reads a stream of input pictures and produces a valid coded bitstream.

entry-point: A point in the bitstream that offers random access.

entry-point segment: The compressed bitstream (and the corresponding coded pictures) that is present between one
entry-point, and the following entry-point.

escape code, ESCAPECODE: The escape code is used to represent a symbol for which is there is no direct
representation in a VLC table.

extended motion vectors: Extended motion vectors are motion vectors which lie outside the default range. The default
range of motion vectors is [-64 63.f] X [-32 31.f], where f is the fractional motion vector ¾ for ¼ pixel motion
and ½ for ½ pixel motion resolution.

field: For an interlaced video signal, a "field" is the assembly of alternate lines of a frame. Therefore an interlaced
frame is composed of two fields, a top field and a bottom field.

forward motion vector: A motion vector that is used for motion compensation from a reference frame or reference
field at an earlier time in display order.

forward prediction: Prediction from the past reference frame (field).

forward reference frame distance (FRFD): As computed from syntax elements coded in the bitstream, this is
nominally equal to one plus the number of frames between the current frame, and the previous (in display order)
reference anchor.

frame: A frame contains lines of spatial information of a video signal. For progressive video, these lines contain
samples starting from one time instant and continuing through successive lines to the bottom of the frame. For
interlaced video, a frame consists of two fields, a top field and a bottom field. One of these fields will commence one
field period later than the other.

Frame coding mode (FCM): The syntax element which indicates whether the frame is coded in progressive mode,
interlace-field mode, or interlace-frame mode.

frame interpolation: The process of creating intermediate video frames (for display) based on the data in two
consecutive frames of decoded video. Frame interpolation is not part of the decoding process.

frame rate: The rate at which frames are output from the decoding process.

future reference frame (field): A future reference frame (field) is a reference frame (field) that occurs at a later time
than the current picture in display order.

SMPTE 421M

© 2006 SMPTE 17

frame re-ordering: The process of re-ordering the reconstructed frames when the coded order is different from the
display order. Frame re-ordering occurs when B frames are present in a bitstream. There is no frame re-ordering when
decoding low delay bitstreams.

half pel, hpel: A position that is half pixel away from integer pixel position.

header: A block of data in the coded bitstream containing the coded representation of a number of data elements
pertaining to the coded data that follow the header in the bitstream.

hypothetical reference decoder (HRD): hypothetical reference decoder is an alternate term for video buffering
verifier.

II picture: A Picture coded with interlace field coding mode where both fields are coded as an I Field.

inter-coded block, inter-block: A block that been coded using information both from itself, and from blocks and
pictures occurring at other times.

inter coding: Coding of a macroblock or picture that uses information both from it and from macroblocks and pictures
occurring at other times.

interlace: The property of frames where alternating lines of the frame represent different instances in time. In an
interlaced frame, one of the fields is meant to be displayed first. This field is called the first field. The first field may be
the top field or the bottom field of the frame.

interlace field coding: The coding mode used when the two fields of an interlace frame are coded separately. The
pictures coded using this mode are called interlace field pictures, or field pictures.

interlace frame coding: The coding mode used when the two fields of an interlace frame are coded together. The
pictures coded using this mode are called interlace frame pictures, or frame pictures.

inter macroblock, inter MB: A macroblock that has been coded using information both from itself, and from pictures
occurring at other times.

interpolation: the process used to generate subpixel values when the motion vectors are not integers.

interpolated prediction: Prediction from the both past reference frame (field), and the future reference frame (field)
where the motion vectors are explicitly coded in the bitstream.

I field picture: An I Picture coded with interlace field coding mode.

I interlace frame picture: An I Picture coded with interlace frame coding mode.

IP picture: A Picture coded with interlace field coding mode where the first field is coded as an I Field, and the second
field is coded as a P Field.

I picture; intra-coded picture: A picture coded using information only from itself. All the macroblocks in an I-picture
are intra-coded.

intra coding: Coding of a macroblock or picture that uses information only from that macroblock or picture.

intra-coded block, intra-block: A block that been coded using information only from that block or picture.

intra macroblock, intra MB: A macroblock that has been coded using information only from that block or picture.

level: A defined set of constraints on the values which may be taken by the parameters (such as bit rate and buffer size)
within a particular profile. A profile may contain one or more levels. Levels are hierarchical. A bitstream compliant to a
particular combination of level and profile is compliant to all higher levels at the same profile.

In a different context, level is the absolute value of a non-zero coefficient (see "run").

luma; Y’: is the value resulting from a weighted sum of 3 nonlinear (gamma pre-corrected) R,G,B components. It is
often carelessly called luminance and given the symbol Y.

macroblock: The four 8 by 8 blocks of luma data and the two corresponding 8 by 8 blocks of color-difference data
coming from a 16 by 16 section of the luma component of the picture.

SMPTE 421M

© 2006 SMPTE 18

motion compensation: The use of motion vectors to improve the efficiency of the prediction of sample values. The
prediction uses motion vectors to provide offsets into the past and/or future reference frames or reference fields
containing previously decoded sample values that are used to form the prediction error.

motion estimation: The process of estimating motion vectors during the encoding process.

motion vector (MV): A two-dimensional vector used for motion compensation that provides an offset from the
coordinate position in the current picture or field to the coordinates in a reference frame or reference field.

natural scan order: The scan order in which a two-dimensional array of symbols is scanned row-wise from left to
right, and the rows are scanned from top to bottom.

non-skipped macroblock: A macroblock which is not skipped, and for which data is coded.

opposite field: A field whose polarity is opposite to that of the current field. Note: the current and opposite fields are
not bound to a single frame.

opposite parity: The opposite parity of top is bottom, and vice versa.

out-of-loop processing: Out-of-loop processing consists of operations such as resizing the output video, color-
difference upsampling, and frame interpolation which are outside the decoding loop.

overlap smoothing: The filtering operation that is conditionally performed across edges of two neighboring Intra
blocks, after inverse transform and prior to the loop filter.

overscan: The amount of picture area that gets cropped off along the edges.

P field picture: A P Picture coded with interlace field coding mode.

P interlace frame picture: A P Picture coded with interlace frame coding mode.

PI Field picture: A Picture coded with interlace field coding mode where the first field is coded as a P Field, and the
second field is coded as an I Field.

PP picture: A Picture coded with interlace field coding mode where both fields are coded as a P Field.

P picture; predictive-coded picture: A picture that is coded using motion compensated prediction from past reference
fields or frame. A P picture can contain macroblocks that are inter-coded (i.e. coded using prediction) and macroblocks
that are intra-coded.

pan scan window: The portion of video displayed on a screen as a result of the view selection.

parameter: A variable within the syntax which may take one of a range of values. A variable which may take one of
only two values is called a flag.

parity (of field): The parity of a field may be top or bottom.

past reference frame (field): A past reference frame (field) is a reference frame (field) that occurs at an earlier time
than the current picture in display order.

pel: an alternate term for pixel.

picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of three rectangular
matrices of 8-bit numbers representing the luma and two color-difference signals. For progressive video, a picture is
identical to a frame, while for interlaced video, a picture may refer to a frame, or the top field or the bottom field of the
frame depending on the context.

post-processing: Post-processing consists of two operations: deblocking and deringing. Decoder can use either one, or
both, of these operations to mitigate the effect of compression artifacts, and improve perceptual quality of video.

prediction: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

prediction error: The difference between the actual value of a sample or data element and its predictor.

prediction loop: The parts of the decoding process that have an effect in producing the reference frame(s) are said to
be part of the prediction loop; other parts of the decoding process are said to be outside the decoding loop.

SMPTE 421M

© 2006 SMPTE 19

previous entry-point: The closest entry-point that temporally precedes the current entry-point in the sequence.

profile: A defined subset of the syntax of the standard, with a specific set of coding tools, algorithms, and syntax
associated with it. There are three profiles: simple, main and advanced.

progressive: The property of frames where all the samples of the frame represent the same instance in time.

pull-back operation: An operation in which a motion vector, which points to a region entirely outside the frame
boundaries of a reference frame, is adjusted so that it points to a region which is at least partially inside the frame
boundaries.

pull-down: Pull-down is a process where frame rate is increased through frame or field replication, such as when 24-
frame-per-second film is expanded to 60-frame-per-second video. Compression efficiency can be improved by coding
only the unique frames and providing hints to the display process to re-create the original sequence.

quantize, quantization: A process in which the continuous range of values of an input signal is divided into non-
overlapping (but not necessarily equal) subranges, and a discrete, unique value is assigned to each subrange. A unique
index is generated to represent this value.

quarter pel, qpel: A position that is quarter pixel away from integer pixel position.

random access: A random access point in the bitstream is defined by the following guarantee: If decoding begins at
this point, all frames needed for display after this point will have no decoding dependency on any data preceding this
point, and are also present in the decoding sequence after this point. A random access point is also called an entry-point.

range mapping: The process of rescaling decoded pixel values in advanced profile. Luma and color-difference values
may be scaled differently, and the coefficients used for scaling are transmitted in the entry point header. This process is
outside the prediction loop, and is performed as the last stage in decoding. This technique can be used to reduce the
bitrate.

range reduction: The process of rescaling decoded pixel values in main profile. Luma and color-difference values are
scaled by a factor of 2, if range reduction is signaled for that picture. This process is part of the prediction loop. This
technique can be used to reduce the bit rate.

raw mode: A mode of bitplane coding in which the corresponding macroblock level information is coded as part of the
macroblock syntax, and not as part of the picture header.

reconstructed picture: A reconstructed picture is obtained by decoding a coded picture. A reconstructed picture is
either a reconstructed frame (when decoding a frame picture), or one field of a reconstructed frame (when decoding a
field picture). If the coded picture is a field picture, then the reconstructed picture is the top field or the bottom field of
the reconstructed frame.

re-ordering delay: A delay in the decoding process that is caused by frame re-ordering.

repeat pad: The process of repeatedly padding the boundary pixels of the reference picture in the horizontal and
vertical direction to allow the motion vectors to point outside the frame boundary.

repeat pad region: The region beyond the frame boundary of the reference picture which has been repeat-padded with
boundary pixels.

rounding: The process of adjusting the bias before a division (or shift) operation.

run: The number of zero coefficients preceding a non-zero coefficient, in the scan order. The absolute value of the non-
zero coefficient is called "level".

same field: A field whose polarity is same as that of the current field.

sample aspect ratio: Specifies, for assisting the display process, the ratio between the intended horizontal distance
between the columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or minimum of the range
as appropriate.

SMPTE 421M

© 2006 SMPTE 20

sequence: A coded representation of a series of one or more pictures. In the advanced profile, a sequence consists of a
series of one or more entry-point segments, where each entry-point segment consists of a series of one or more pictures,
and where the first picture in each entry-point segment provides random access. In the simple and main profiles, the
first picture in each sequence shall be an intra coded picture.

size of coded picture: The size (in number of bytes) of coded bitstream that represents one picture.

skipped macroblock: A macroblock for which no data are encoded.

skipped picture: A skipped picture is a P-picture that is identical to its reference picture.

slice: A consecutive series of macroblock rows in a picture, which are encoded as a single unit.

source; input: Term used to describe the video material or some of its attributes before encoding.

start codes (SC): 32-bit codes embedded in that coded bitstream that are unique, and identify the beginning of a BDU.
Start codes consist of a unique three-byte Start Code Prefix (SCP), and a one-byte Start Code Suffix (SCS).

stuffing bytes: Zero-byte code-words that may be inserted into the coded bitstream, before a start-code, and after
flushing bits, that are discarded in the decoding process. Their purpose is to increase the bitrate of the stream which
would otherwise be lower than the desired bitrate.

top field: One of two fields that comprise a frame. Each line of a top field is spatially located immediately above the
corresponding line of the bottom field.

variable bitrate: Operation where the bitrate varies with time during the decoding of a coded bitstream.

variable-sized transform decoding: Technique where an 8x8 error block may be transformed using one 8x8
transform, or divided vertically and transformed with two 8x4 transforms or divided horizontally and transformed with
two 4x8 transforms, or divided into 4 quadrants and transformed with four 4x4 transforms.

variable length coding (VLC): A reversible procedure for coding that assigns shorter code-words to symbols of higher
probability and longer code-words to symbols of lower probability.

The acronym VLC also indicates a variable length code.

VC-1: This is the name of the standard described here.

video buffering verifier (VBV): A hypothetical decoder that is conceptually connected to the output of the encoder. Its
purpose is to provide a constraint on the variability of the data rate that an encoder or editing process may produce.

video sequence: The highest syntactic structure of coded video bitstreams. It contains a series of one or more coded
frames.

zigzag scanning order: A specific sequential ordering of the transform coefficients from (approximately) the lowest
spatial frequency to the highest.

4.13 Intermediate Variables
The following is a list of important intermediate variables that are used in the decoding process:

PQUANT: is the picture quantizer scale (step size) that is derived from the syntax element PQINDEX as defined in
7.1.1.6.

ALTPQUANT: is the alternate picture quantizer step size that is derived, from the syntax elements that are part of
VOPDQUANT, as defined in 7.1.1.31.

MQUANT: is the macroblock quantizer step size that is derived from the syntax elements PQUANT, ALTPQUANT,
MQDIFF and ABSMQ as defined in 7.1.3.4.

RND: is the variable used for rounding control and is derived as defined in 8.3.7.

CodedWidth: is the width of the coded frame, and derived from entry point header (6.2.13.1) or sequence header
(6.1.6) in advanced profile, and derived from meta-data element HORIZ_SIZE (Annex J.1.3) in simple/main profile.

SMPTE 421M

© 2006 SMPTE 21

CodedHeight: is the height of the coded frame, and derived from entry point header (6.2.13.2) or sequence header
(6.1.7) in advanced profile, and derived from meta-data element VERT_SIZE (Annex J.1.4) in simple/main profile.

4.14 Acronym Definitions
The following acronyms are commonly used.

BDU: Bitstream Data Unit.

BDU: Coded Block Pattern.

CBPCY: Coded Block Pattern of Color-difference and Luma blocks.

FCM: Frame Coding Mode.

HRD: Hypothetical Reference Decoder.

ITrans: Inverse Transform.

LSB: Least Significant Bit.

MB: MacroBlock.

MSB: Most Significant Bit.

MV: Motion Vector.

NA: Not Applicable.

RLD: Run Length Decode.

SC: Start Code.

Trans: Transform.

VBV: Video Buffering Verifier.

VLC: Variable Length Code.

VLD: Variable Length Decoding.

4.15 Guide to Interpreting Syntax Diagrams and Syntax Elements
A guide for interpretation of the diagrams consists of the following:

1. Arrow paths show the possible flows of syntax elements. Any syntax element which has zero length is considered
absent for arrow path diagramming

2. Abbreviations and semantics for each syntax element are as defined in later clauses.

3. Syntax elements shown with square-edged boundaries indicate fixed-length syntax elements; those with rounded
boundaries indicate variable-length syntax elements and those with a rounded boundary within an outer rounded
boundary indicate a syntax element made up of simpler syntax elements which are elaborated on in another section.

4. A fixed-length syntax element is defined to be a syntax element for which the length of the syntax element is not
dependent on the data in the content of the syntax element itself. The length of this syntax element is either always
the same, or is determined by the prior data in the syntax flow.

The term "layer" is used to refer to any part of the syntax that may be understood and diagrammed as a distinct entity.
The next-lower layer element in a layer diagram is indicated by a rectangle within a rectangle.

It is often convenient to denote the elements in binary representation. To avoid confusion with decimal representation,
whenever a number is expressed in binary format, a suffix of lower case 'b' is used.

SMPTE 421M

© 2006 SMPTE 22

Unless specified otherwise, the most-significant bit is transmitted first. This is bit 1 and is the leftmost bit in the code
tables in this document. Unless specified otherwise, all unused or spare bits are set to "0". All values of syntax not
explicitly defined in this document are SMPTE reserved for future use.

5 Picture Sampling and Overall Bitstream Structure

5.1 Introduction
There are two fundamental picture sampling structures: progressive and interlaced. The progressive sampling structure
assumes that all sample rows of the frame are sequential. The interlaced sampling structure assumes that top fields are
acquired within one time interval and the bottom fields are acquired within a different time interval.

5.2 Progressive Coding Mode

5.2.1 Input/output Format
Picture sampling shall use the Y, Cb, Cr color model with 4:2:0 sampling. Figure 7 below shows the spatial
relationship between the luma and color difference samples of the Y, Cb, Cr 4:2:0 interlaced format in the horizontal
and vertical axes. The figure also shows the spatial relationship between the luma and color-difference samples.

Figure 7: 4:2:0 Luma and color-difference sample horizontal and vertical positions

Note: Many interfaces operate using 4:2:2 and 4:4:4 sampling. For such interfaces, a sample down-converter will be
required prior to the encoder and a sample up-converter following the decoder. The down/up converters required for
interfaces using 4:2:2 and 4:4:4 sampling do not form part of this standard.

5.2.2 Hierarchical Elements
The bitstream syntax consists of the hierarchical layers:

• sequence
• entry-point
• picture
• slices
• macroblocks (MB)
• blocks

Luma samples

Color-difference samples

SMPTE 421M

© 2006 SMPTE 23

In the advanced profile, entry-point layer shall be present between the sequence and picture layers to signal a random
access point in the bitstream. Further, in the advanced profile, an optional slice layer may be present between the
picture layer and the macroblock layer. A slice contains one or more contiguous rows of macroblocks in their original
left-to-right order. A slice shall begin at the first macroblock of a row, and end at the last macroblock of the same or
another row. The entry-point and slice layers are present only in advanced profile. Figure 8 illustrates the picture,
macroblock, slice and block layers.

Figure 8: Coding Hierarchy showing Picture, Slice, Macroblock and Block layers

5.3 Interlace Coding Mode

5.3.1 Input/Output Format for 4:2:0 Interlace
Interlaced picture sampling shall use the Y, Cb, Cr color model with 4:2:0 sampling. Figure 7 shows the spatial
relationship between the luma and color-difference samples in the Y, Cb, Cr 4:2:0 interlaced format in the horizontal
and vertical axes. Figure 9 shows the relationship between vertical sample position and sampling time instant. The
vertical axis in the figure corresponds to the vertical axis in the frame, and the horizontal axis in the figure corresponds
to the temporal axis. Each frame is represented with an “edge-on” view. Note that Figure 9 does not show the spatial
relationship between horizontal and vertical sampling positions.

SMPTE 421M

© 2006 SMPTE 24

Figure 9: 4:2:0 Luma and color-difference temporal and vertical sample positions shown relative to sampling
time instant (where from left to right is shown a top field, bottom field, top field, and bottom field)

5.4 Frame Ordering
Dependence of B frames on temporally past and future anchor I or P frames dictates the ordering of coded and
displayed frames. The following rules shall apply to the ordering of frames in a VC-1 bitstream:

1. A frame in a VC-1 bitstream shall be entirely decodable from the information contained in the current and
previously coded frames.

2. The display or output order of frames in a VC-1 bitstream shall be identical to the coded order when B frames
are not indicated in the bitstream.

3. The display or output order of frames in a VC-1 bitstream shall be different from the coded order when B
frames are indicated in the bitstream (whether or not they are actually present), as follows:

a. B frames shall be output or displayed in the same order as they are encoded.
b. Anchor (I and P) frames shall be output or displayed at the sequence slot of the subsequently coded

anchor frame. Therefore, there shall be no output frame at the first coded instant. The last coded
anchor frame shall be displayed subsequent to the last coded frame.

These rules are illustrated in Table 2:

SMPTE 421M

© 2006 SMPTE 25

Table 2: Frame Ordering Rules for bitstreams containing B-pictures

 Input (coded) order Output (display) order

No B frames I0 P1 P2 P3 I4 … I0 P1 P2 P3 I4 …

B frames indicated I0 P1 P2 P3 I4 … X I0 P1 P2 P3 I4…

B frames indicated I0 P1 P2 B3 B4 P5
…

X I0 P1 B3 B4 P2
…

B frames indicated … P6 B7 B8 <end> … Pn B7 B8 P6 <end>

B frames indicated … P6 B7 B8 P9
<end>

… Pn B7 B8 P6 P9
<end>

Pn represents the nth P picture, where the value of n is inferred from the context. X represents the absence of an output
(display) picture.

Note: On the encoder side, the input frames may be reordered prior to coding so as to ensure that the decoded order is
identical to the input order, subject to a constant offset. Typically, this offset is equal to the maximum number of B
frames in the sequence.

5.5 Constraints

5.5.1 Minimum and maximum frame sizes
For progressive frames, the frame height and frame width shall be a multiple of 2. For interlaced frames, the frame
height shall be a multiple of 4, and the frame width shall be a multiple of 2. The maximum dimensions of the frame are
limited by the target profile and level of the bitstream as listed in Annex D. For more details on internal representation
of frames, and handing of frame dimensions which are not multiples of 16, see Annex K.2.

5.5.2 Maximum size of compressed bits
The data size corresponding to any macroblock row shall not exceed the greater of: (i) 6144 bits, or (ii) 1536 bits times
the number of macroblocks in the horizontal direction.

Compressed data corresponding to a macroblock row shall be defined to contain all the contiguous entropy coded
information required to decode the entire row of macroblocks, subject to availability of causal information from the
preceding macroblock row, and frame, field or slice-level header data. Therefore, the macroblock row contains –
besides the coded transform coefficients – motion vectors, and macroblock header elements such as the coded block
pattern and field/frame coding type.

If the macroblock information (such as 1 or 4-MV) is coded as part of the frame header (as a bitplane), the bits used for
this information are outside of the constraint. Instead, if this information is coded as part of the macroblock layer
syntax, bits used in coding this information are to be included in the macroblock row size calculation.

Slice header information, where present, is not included in the calculation of the macroblock row data size. Any zero-
valued stuffing bytes, and start-codes, are also not included in the macroblock row data size.

The following three examples illustrate this constraint:

Example 1 – Frame size 300×200, coded as progressive: Number of horizontal macroblocks is ceil(300/16) =
19. Maximum compressed data size of macroblock row = max(6144, 19×1536) =29184 bits.

Example 2 – Frame size 720×480, coded as interlace: Number of horizontal macroblocks is ceil(720/16) =
45. Maximum compressed data size of macroblock row = max(6144, 45×1536) = 69120 bits.

Example 3 – Frame size 40×40, coded as progressive: Number of horizontal macroblocks is ceil(40/16) = 3. Maximum
compressed data size of macroblock row = max(6144, 3×1536) = 6144 bits.

SMPTE 421M

© 2006 SMPTE 26

5.5.3 Bitstream Construction Constraints
The first frame in a bitstream conformant to either the simple profile or the main profile shall be an I frame. A bitstream
conformant to the advanced profile shall be constructed and constrained according to Annex G.

6 Sequence And Entry-Point Bitstream Syntax and Semantics
The bitstream syntax and semantics of the sequence and entry-point layer of the advanced profile are described in this
section.

In the simple and main profiles, the sequence-related metadata shall be communicated to the decoder by the transport
layer or other means. Annex J defines the syntax and semantics of this metadata required for the decoder. Note: For an
example of a sequence-level parameter transport, see SMPTE RP 227.

In the advanced profile, the sequence-related metadata is part of the video data bitstream and the syntax and semantics
are defined in this section. The presence of this sequence metadata is subject to the rules defined in Annex G.

6.1 Sequence-level Syntax and Semantics
A sequence-level header contains sequence-level parameters used to decode the sequence of compressed pictures.

Figure 10 shows the bitstream elements that make up the sequence header for the advanced profile and Table 3 defines
the bitstream syntax.

SMPTE 421M

© 2006 SMPTE 27

Figure 10: Syntax diagram for the sequence layer bitstream for the Advanced Profile

SMPTE 421M

© 2006 SMPTE 28

The following table shows the syntax elements of the sequence layer used for the advanced profile. This structure is not
present for simple and main profiles.

 Table 3: Sequence layer bitstream for Advanced Profile

SEQUENCE LAYER() { Number
of bits

Descriptor Referenc
e

 PROFILE 2 uimsbf 6.1.1

 LEVEL 3 uimsbf 6.1.2

 COLORDIFF_FORMAT 2 uimsbf 6.1.3

 FRMRTQ_POSTPROC 3 uimsbf 6.1.4.1

 BITRTQ_POSTPROC 5 uimsbf 6.1.4.2

 POSTPROCFLAG 1 uimsbf 6.1.5

 MAX_CODED_WIDTH 12 uimsbf 6.1.6

 MAX_CODED_HEIGHT 12 uimsbf 6.1.7

 PULLDOWN 1 uimsbf 6.1.8

 INTERLACE 1 uimsbf 6.1.9

 TFCNTRFLAG 1 uimsbf 6.1.10

 FINTERPFLAG 1 uimsbf 6.1.11

 RESERVED 1 uimsbf 6.1.12

 PSF 1 uimsbf 6.1.13

 DISPLAY_EXT 1 uimsbf 6.1.14

 if (DISPLAY_EXT == 1) {

 DISP_HORIZ_SIZE 14 uimsbf 6.1.14.1

 DISP_VERT_SIZE 14 uimsbf 6.1.14.2

 ASPECT_RATIO_FLAG 1 uimsbf 6.1.14.3

 if (ASPECT_RATIO_FLAG == 1) {

 ASPECT_RATIO 4 uimsbf 6.1.14.3.1

 if (ASPECT_RATIO == ‘15’) {

SMPTE 421M

© 2006 SMPTE 29

 ASPECT_HORIZ_SIZE 8 uimsbf 6.1.14.3.2

 ASPECT_VERT_SIZE 8 uimsbf 6.1.14.3.3

 }

 }

 FRAMERATE_FLAG 1 uimsbf 6.1.14.4

 if (FRAMERATE_FLAG == 1) {

 FRAMERATEIND 1 uimsbf 6.1.14.4.1

 if (FRAMERATEIND == 0) {

 FRAMERATENR 8 uimsbf 6.1.14.4.2

 FRAMERATEDR 4 uimsbf 6.1.14.4.3

 } else {

 FRAMERATEEXP 16 uimsbf 6.1.14.4.4

 }

 }

 COLOR_FORMAT_FLAG 1 uimsbf 6.1.14.5

 if (COLOR_FORMAT_FLAG ==1) {

 COLOR_PRIM 8 uimsbf 6.1.14.5.1

 TRANSFER_CHAR 8 uimsbf 6.1.14.5.2

 MATRIX_COEF 8 uimsbf 6.1.14.5.3

 }

 }

 HRD_PARAM_ FLAG 1 uimsbf 6.1.15

 if (HRD_PARAM_ FLAG == 1) {

 HRD_PARAM() 6.1.15.1

 }

}

SMPTE 421M

© 2006 SMPTE 30

6.1.1 Profile (PROFILE)(2 bits)
PROFILE is a 2-bit syntax element that specifies the profile used to encode the sequence, and shall be set to 3 to
indicate advanced profile. The values 0, 1, and 2 are SMPTE Reserved. The SMPTE reserved values may be used in
future to define additional profiles. The relation of profiles to coding tools is summarized in Annex D.

6.1.2 Level (LEVEL)(3 bits)
LEVEL is a 3-bit syntax element and specifies the encoding level for the clip in the advanced profile. The codes that
are used to signal the levels in the advanced profile shall be as defined in Table 4.

 Table 4: Meaning of LEVEL syntax element

LEVEL Meaning

000 Level 0

001 Level 1

010 Level 2

011 Level 3

100 Level 4

101-111 SMPTE Reserved

The coding limitations of the levels are defined in Annex D.3

6.1.3 Color-Difference Format (COLORDIFF_FORMAT) (2 bits)
The COLORDIFF_FORMAT syntax element is a 2-bit syntax element that indicates the color-difference/luma format
used to represent each picture. The formats shall be as defined in Table 5.

Table 5: Meaning of COLORDIFF_FORMAT syntax element

COLORDIFF_FORMAT Format

0 SMPTE Reserved

1 4:2:0

2 SMPTE Reserved

3 SMPTE Reserved

Only the value 1 corresponding to format 4:2:0 is permitted for this field. All other values are SMPTE Reserved.

6.1.4 Post processing Indicators
The post-processing indicators, described in section 6.1.4.1 and 6.1.4.2 provide a mechanism which may be used to
control the post-processing operation. The pseudo-code in Table 6, defines the decoding procedure for post-processing
indicators. Annex I.6 describes a mechanism for controlling post-processing using the post-processing indicators.

6.1.4.1 Quantized Frame Rate for Post processing Indicator (FRMRTQ_POSTPROC)(3 bits)

FRMRTQ_POSTPROC is a 3-bit syntax element that signals the (quantized) frame rate information as described in
Table 6.

6.1.4.2 Quantized Bit Rate for Post processing Indicator (BITRTQ_POSTPROC)(5 bits)

BITRTQ_POSTPROC is a 5-bit syntax element that signals the (quantized) bit rate information as described in Table 6.

SMPTE 421M

© 2006 SMPTE 31

Table 6: Decoding Procedure for Post-processing Indicators in Advanced Profile

if (FRMRTQ_POSTPROC == 0) && (BITRTQ_POSTPROC == 31) {

 Post processing indicators for Frame Rate and Bit Rate are undefined

}

else if ((FRMRTQ_POSTPRC == 0) && (BITRTQ_POSTPROC == 30)) {

 “frame rate” is around 2 frames/second

 “bit rate” is around 1952 kbps or more

}

else if ((FRMRTQ_POSTPROC == 1) && (BITRTQ_POSTPROC == 31)) {

 “frame rate” is around 6 frames/second

 “bit rate” is around 2016 kbps or more

 }

else {

 if (FRMRTQ_POSTPROC == 7) {

 “frame rate is around 30 frames/second or more

 }

 else {

 “frame rate is around “(2+FRMRTQ_POSTPROC*4)” frames/second

 }

 if (BITRTQ_POSTPROC == 31) {

 “bit rate” is around 2016 kbps or more

 }

 else {

 “bit rate” is around “(32 + BITRTQ_POSTPROC * 64)” kbps

 }

}

SMPTE 421M

© 2006 SMPTE 32

6.1.5 Post processing Flag (POSTPROCFLAG) (1 bit)
POSTPROCFLAG is a 1-bit syntax element that shall indicate whether syntax element POSTPROC is present in
picture headers. If POSTPROCFLAG == 1, then POSTPROC shall be present in picture headers. If
POSTPROCFLAG == 0, then POSTPROC shall not be present in picture headers.

6.1.6 Maximum Horizontal Size of Picture (MAX_CODED_WIDTH)(12 bits)
MAX_CODED_WIDTH specifies the maximum horizontal size of the coded picture within the sequence in units of
pixels. This syntax element shall be a 12-bit unsigned integer encoding of size. The maximum horizontal size of the
picture shall be equal to the value of this field multiplied by 2, plus 2. The horizontal size of the coded picture may
change at an entry point and shall be less than, or equal to, MAX_CODED_WIDTH.

6.1.7 Maximum Vertical Size of Picture (MAX_CODED_HEIGHT)(12 bits)
MAX_CODED_HEIGHT specifies the maximum vertical size of the coded picture within the sequence in units of
pixels. This syntax element shall be a 12-bit unsigned integer encoding of size. The maximum vertical size of the
picture shall be equal to the value of this field multiplied by 2, plus 2. The vertical size of the coded picture may change
at an entry point and shall be less than, or equal to, MAX_CODED_HEIGHT.

Note: The maximum vertical size of the coded picture is also subject to the constraints specified in 5.5.1.

6.1.8 Pull down Flag (PULLDOWN) (1 bit)
PULLDOWN is a 1-bit syntax element that shall indicate if the syntax elements RPTFRM, or TFF and RFF are present
in picture headers. If PULLDOWN == 0, these syntax elements shall not be present. If PULLDOWN == 1, the
presence of these syntax elements is defined in 7.1.1.17, 7.1.1.18 and 7.1.1.19.

6.1.9 Interlace Content (INTERLACE) (1 bit)
INTERLACE is a 1-bit syntax element. The individual frames may be coded using the progressive or interlace syntax
when INTERLACE == 1. If INTERLACE == 0, pictures shall be coded as single frames using the progressive syntax.

6.1.10 Frame Counter Flag (TFCNTRFLAG) (1 bit)
TFCNTRFLAG is a 1-bit syntax element. TFCNTRFLAG == 1 indicates that the syntax element TFCNTR shall be
present in the advanced profile picture headers. TFCNTRFLAG == 0 indicates that TFCNTR shall not be present in the
picture header.

6.1.11 Frame Interpolation Flag (FINTERPFLAG)(1 bit)
FINTERPFLAG is a 1-bit syntax element that indicates if the syntax element INTERPFRM is present in the picture
header. If FINTERPFLAG == 1, then INTERPFRM shall be present in picture headers. If FINTERPFLAG == 0, then
INTERPFRM shall not be present in picture headers.

6.1.12 Reserved Advanced Profile Flag (RESERVED)(1 bit)
RESERVED is a 1-bit syntax element and shall be set to 1. The value 0 is SMPTE Reserved.

6.1.13 Progressive Segmented Frame (PSF)(1 bit)
PSF is a 1-bit syntax element. If PSF == 1, the video source was Progressive Segmented Frame (PsF), and the display
process should treat the decoded frames (field-pairs) as progressive. If PSF == 0, the display process may treat the
decoded frames (field-pairs) according to the value of the INTERLACE syntax element.

6.1.14 Display Extension Flag (DISPLAY_EXT) (1 bit)
DISPLAY_EXT is a 1-bit syntax element. If DISPLAY_EXT == 1 then DISP_HORIZ_SIZE, DISP_VERT_SIZE, and
ASPECT_RATIO_FLAG shall be present in the sequence header. If DISPLAY_EXT == 0, then these elements shall
not be present.

SMPTE 421M

© 2006 SMPTE 33

6.1.14.1 Horizontal Display Size of Picture (DISP_HORIZ_SIZE)(14 bits)

DISP_HORIZ_SIZE is a 14-bit syntax element that shall be present only if DISPLAY_EXT is 1. It specifies the
horizontal display size of the picture in pixels. This syntax element is a 14-bit unsigned integer value representing (size-
1), and may represent sizes ranging from 1 to 16384.

Note: The horizontal display size is not used for decoding, but is used during display.

6.1.14.2 Vertical Display Size of Picture (DISP_VERT_SIZE)(14 bits)

DISP_VERT_SIZE is a 14-bit syntax element that shall be present only if DISPLAY_EXT is 1. It specifies the vertical
display size of the picture in pixels. This syntax element is a 14-bit unsigned integer value representing (size-1), and
may represent sizes ranging from 1 to 16384.

Note: DISP_VERT_SIZE is not used for decoding, but is used for display.

6.1.14.3 Sample Aspect Ratio Indicator Flag (ASPECT_RATIO_FLAG)(1 bit)

ASPECT_RATIO_FLAG is a 1-bit syntax element that shall be present only if DISPLAY_EXT == 1. If
ASPECT_RATIO_FLAG == 1, the syntax element ASPECT_RATIO shall be present. If ASPECT_RATIO_FLAG ==
0, the syntax element ASPECT_RATIO shall not be present.

6.1.14.3.1 Sample Aspect Ratio (ASPECT_RATIO)(4 bits)

ASPECT_RATIO is a 4-bit syntax element that shall be present only if the ASPECT_RATIO_FLAG == 1 and
DISPLAY_EXT == 1. ASPECT_RATIO specifies the encoded sample aspect ratio for the sequence. If
ASPECT_RATIO takes the value ‘15’, the syntax elements ASPECT_HORIZ_SIZE and ASPECT_VERT_SIZE shall
be present.

Note: The sample aspect ratio is often referred to as the pixel aspect ratio.

The value of the sample aspect ratio for each value of the ASPECT_RATIO syntax element shall be as defined in Table
7.

SMPTE 421M

© 2006 SMPTE 34

ASPECT_RATIO Sample Aspect
Ratio

(Informative) Examples of Use

0 Unspecified
1 1:1

(“square”)
1280x720 16:9 frame without overscan

Coded Image 1920x1088 Source Image 1920x1080
16:9 frame without overscan

640x480 4:3 frame without overscan
2 12:11 Coded Image 704x576 Source Image 720x576

(4:3 frame with horizontal overscan)
352x288 4:3 frame without overscan

3 10:11 Coded Image 704x480 Source Image 720x486
(4:3 frame with horizontal overscan)
352x240 4:3 frame without overscan

4 16:11 Coded Image 704x576 Source Image 720x576
(16:9 frame with horizontal overscan)

540x576 4:3 frame with horizontal overscan
5 40:33 Coded Image 704x480 Source Image 720x486

(16:9 frame with horizontal overscan)
Coded Image 528x480 Source Image 540x486

4:3 frame with horizontal overscan
6 24:11 352x576 4:3 frame without overscan

480x576 16:9 frame with horizontal overscan
7 20:11 352x480 4:3 frame without overscan

480x480 16:9 frame with horizontal overscan
8 32:11 352x576 16:9 frame without overscan
9 80:33 352x480 16:9 frame without overscan

10 18:11 480x576 4:3 frame with horizontal overscan
11 15:11 480x480 4:3 frame with horizontal overscan
12 64:33 Coded Image 528x576 Source Image 540x576

16:9 frame with horizontal overscan
13 160:99 Coded Image 528x480 Source Image 540x486

16:9 frame with horizontal overscan
14 SMPTE Reserved
15 Aspect width and

height transmitted.

Table 7: Meaning of ASPECT_RATIO syntax element

Note: For those entries in Table 7 that indicate "with horizontal overscan" in the Examples of Use column, the active
image area is not expected to fill all of the active pixels on each line. Consequently, the calculation of aspect ratio
given in the sample aspect ratio column is based on the coded picture area and cannot be determined directly from the
ratio of the size values of the overall pixel matrix. Rather, the aspect ratio is determined from the coded picture area.

6.1.14.3.2 Aspect Width (ASPECT_HORIZ_SIZE)(8 bits)

ASPECT_HORIZ_SIZE is an 8-bit syntax element that shall be present only if ASPECT_RATIO_FLAG == 1,
ASPECT_RATIO == ‘15’, and DISPLAY_EXT == 1. ASPECT_HORIZ_SIZE specifies the horizontal aspect size of
the sample. This syntax element shall be a binary encoding of sizes ranging from 1 to 256.

6.1.14.3.3 Aspect Height (ASPECT_VERT_SIZE)(8 bits)

SMPTE 421M

© 2006 SMPTE 35

ASPECT_VERT_SIZE is an 8-bit syntax element that shall be present only if ASPECT_RATIO_FLAG == 1,
ASPECT_RATIO == ‘15’, and DISPLAY_EXT == 1. ASPECT_VERT_SIZE specifies the vertical aspect size of the
sample. This syntax element shall be a binary encoding of sizes ranging from 1 to 256. The sample aspect ratio is
defined as the ratio of ASPECT_HORIZ_SIZE to ASPECT_VERT_SIZE.

6.1.14.4 Frame Rate Flag (FRAMERATE_FLAG)(1 bit)

The syntax element FRAMERATE_FLAG is a 1-bit syntax element that shall be present only if DISPLAY_EXT == 1.
If FRAMERATE_FLAG == 1, the syntax element FRAMERATEIND shall be present. If FRAMERATE_FLAG == 1,
frame rate information may be obtained from subsequent syntax elements. If FRAMERATE_FLAG == 0, the syntax
element FRAMERATEIND shall not be present. In this case, the display process may rely on the underlying
synchronization layer (such as the presentation time stamp in an MPEG-2 transport stream) to estimate the frame rate.

Note: If the video sequence is signaled as progressive (either implicitly as when the PROFILE syntax element takes the
value corresponding to simple or main profile, or explicitly as when the PROFILE syntax element is set to advanced
profile and the INTERLACE syntax element is set to zero), the period between two successive frames at the output of
the decoding process is the reciprocal of the frame rate indicated by the FRAMERATE syntax element. If the video
sequence is signaled as interlace, the period between two successive fields at the output of the decoding process is half
the reciprocal of the frame rate indicated by the FRAMERATE syntax element.

6.1.14.4.1 Frame Rate Indicator (FRAMERATEIND)(1 bit)

The syntax element FRAMERATEIND is a 1-bit syntax element that shall be present only if FRAMERATE_FLAG ==
1 and DISPLAY_EXT == 1. If FRAMERATEIND == 1, the frame rate shall be signaled explicitly by a 16 bit
FRAMERATEEXP field. If FRAMERATEIND == 0, the frame rate shall be signaled by a numerator field
(FRAMERATENR) and a denominator field (FRAMERATEDR), and the ratio of the two fields shall be taken to be the
frame rate.

6.1.14.4.2 Frame Rate Numerator (FRAMERATENR)(8bits)

The syntax element FRAMERATENR is an 8-bit syntax element that shall be present only if FRAMERATEIND == 0
and FRAMERATE_FLAG == 1 and DISPLAY_EXT == 1. FRAMERATENR indicates the frame rate numerator of
the encoded video sequence. The FRAMERATENR syntax element shall be as defined in Table 8.

 Table 8: Meaning of FRAMERATENR syntax element

FRAMERATENR Value of Frame Rate Numerator

0 Forbidden

1 24 * 1000

2 25 * 1000

3 30 * 1000

4 50 * 1000

5 60 * 1000

6 48 * 1000

7 72 * 1000

8-255 SMPTE Reserved

6.1.14.4.3 Frame Rate Denominator (FRAMERATEDR)(4 bits)

The syntax element FRAMERATEDR is a 4-bit syntax element that shall be present only if FRAMERATEIND == 0
and FRAMERATE_FLAG == 1 and DISPLAY_EXT == 1. FRAMERATEDR indicates the frame rate denominator of
the encoded video sequence. The FRAMERATEDR syntax element shall be as defined in Table 9.

SMPTE 421M

© 2006 SMPTE 36

 Table 9: Meaning of FRAMERATEDR syntax element

FRAMERATEDR Value of Frame Rate Denominator

0 Forbidden

1 1000

2 1001

3-15 SMPTE Reserved

6.1.14.4.4 Frame Rate Explicit (FRAMERATEEXP)(16bits)

The syntax element FRAMERATEEXP is a 16-bit syntax element that shall be present only if FRAMERATEIND == 1
and FRAMERATE_FLAG == 1 and DISPLAY_EXT == 1. FRAMERATEEXP explicitly indicates the frame rate of
the encoded video sequence. This syntax element shall be an encoding of frame rate ranging from 0.03125 Hz to 2048
Hz in uniform steps of 0.03125 Hz which shall be defined as follows:

 frame rate = (FRAMERATEEXP + 1) / 32.0 Hz.

6.1.14.5 Color Format Indicator Flag (COLOR_FORMAT_FLAG)(1 bit)

COLOR_FORMAT_FLAG is a 1-bit syntax element that shall be present only if DISPLAY_EXT == 1. If
COLOR_FORMAT_FLAG == 1, the syntax elements COLOR_PRIM, TRANSFER_CHAR and MATRIX_COEF
shall be present. These syntax elements may be used to derive color format information, such as Color Primaries,
Transfer Characteristics, and Matrix Coefficients. If COLOR_FORMAT_FLAG == 0, no color format information is
present in the bitstream, and these syntax elements shall be set to the default values specified below.

6.1.14.5.1 Color Primaries (COLOR_PRIM)(8 bits)

COLOR_PRIM is an 8-bit syntax element that shall be present only if COLOR_FORMAT_FLAG == 1 and
DISPLAY_EXT == 1. COLOR_PRIM describes the chromaticity coordinates of the color primaries. The
COLOR_PRIM syntax element shall be as defined in Table 10 indicating the technical specifications where the
chromaticity coordinates are specified. The default value is 1, ITU-R BT. 709-5.

SMPTE 421M

© 2006 SMPTE 37

 Table 10: Meaning of COLOR_PRIM syntax element

COLOR_PRIM Color Primaries Specification

0 Forbidden

1
ITU-R BT.709-5, SMPTE 274M-2005, ITU-R BT.1361 (Conventional
Color Space), and SMPTE 296M-2001
primary x y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white (CIE D65) 0.3127 0.3290

2
Color primaries not present

3-4
SMPTE Reserved

5
ITU-R BT.1700 Part B -625 PAL.
primary x y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white (CIE D65) 0.3127 0.3290

6
SMPTE C Primaries from ITU-R BT.1700 Part B – 525 PAL. Used in
SMPTE 293M-2003.
primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white (CIE D65) 0.3127 0.3290

7-255 SMPTE Reserved

6.1.14.5.2 Transfer Characteristics (TRANSFER_CHAR)(8 bits)

TRANSFER_CHAR is an 8-bit syntax element that shall be present only if COLOR_FORMAT_FLAG == 1 and
DISPLAY_EXT == 1. TRANSFER_CHAR describes the opto-electronic transfer characteristics of the source picture.
The TRANSFER_CHAR syntax element shall be as defined in Table 11, indicating the technical specification where
the transfer characteristics are specified. The default value is 1, ITU-R BT.709-5.

SMPTE 421M

© 2006 SMPTE 38

 Table 11: Meaning of TRANSFER_CHAR syntax element

TRANSFER_CHA
R

Transfer Characteristics Specification

0 Forbidden

1 ITU-R BT.709-5, SMPTE 274M-2005, SMPTE 296M-2001, SMPTE
293M-2003

V = 1.099 Lc0.45 - 0.099 for 1>= Lc >= 0.018

V = 4.500 Lc for 0.018 > Lc >= 0

2 Transfer Characteristics not present

3 SMPTE Reserved

4 ITU-R BT. 1700 Part A,

 Assumed display gamma 2.2

5 ITU-R BT. 1700 Part B and Part C.

Assumed display gamma 2.8

6 ITU-R BT.1700 Part A.

V = 1.099 Lc0.45 - 0.099 for 1>= Lc >= 0.018

V = 4.500 Lc for 0.018 > Lc >= 0

7 SMPTE Reserved

8 ITU-R BT.1361 (Conventional Color Space)

V = 1.099Lc
0.45 – 0.099 for 0.018 <= Lc < 1.33

V=4.50Lc for -0.0045 <= Lc < 0.018

V=-{1.099(-4Lc)0.45-0.099}/4 for -0.25 <= Lc < -0.0045

9-255 SMPTE Reserved

6.1.14.5.3 Matrix Coefficients (MATRIX_COEF)(8 bits)

MATRIX_COEF is an 8-bit syntax element that shall be present only if COLOR_FORMAT_FLAG == 1 and
DISPLAY_EXT == 1. MATRIX_COEF describes the matrix coefficients used to derive Y, Cb, Cr signals from the
color primaries. The MATRIX_COEF syntax element shall be as defined in Table 12 indicating the technical
specification where the matrices are specified. The default value is 6, ITU-R BT. 601-5.

SMPTE 421M

© 2006 SMPTE 39

MATRIX_COEF Matrix Coefficients Specification

0 Forbidden

1 ITU-R BT.709-5 (1125/60/2:1 only), SMPTE 274M-2005 and SMPTE
296M-2001, ITU-R BT.1361 (Conventional Color Space).

KR = 0.2126; KB = 0.0722

2 Matrix not present

3-5 SMPTE Reserved

6 ITU-R BT.1700, ITU-R BT.601-5, and SMPTE 293M-2003.

KR = 0.299; KB = 0.114

7-255 SMPTE Reserved

Table 12: Meaning of MATRIX_COEF syntax element

The interpretation of matrix coefficients shall be defined as follows:

E’Y = KR * E’R + (1 – KR – KB) * E’G + KB * E’B

E’PB = 0.5 * (E’B – E’Y) ÷ (1 – KB)

E’PR = 0.5 * (E’R – E’Y) ÷ (1 – KR)

– E′Y is analogue with values between 0 and 1;

– E′PB and E′PR are analog between the values – 0.5 and 0.5;

– E′R, E′G and E′B are analog with values between 0 and 1;

– Y, Cb, Cr are related to E′Y, E′PB and E′PR by the following formulae: Y = (219 * E′Y) + 16, Cb = (224 * E′PB) + 128, Cr
= (224 * E′PR) + 128.

Note: The decoding process given by this specification limits output sample values for Y, Cb, Cr to the range [0:255].
Thus, sample values outside the range implied by the above equations may occasionally occur at the output of the
decoding process. In particular the sample values 0 and 255 may occur.

6.1.15 Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit)
The HRD_PARAM_FLAG is a 1-bit flag that indicates the presence of HRD_PARAM parameters in the bitstream. If
this HRD_PARAM_FLAG == 0, HRD parameters shall not be present. If HRD_PARAM_FLAG == 1, syntax elements
of the HRD shall be present as detailed in 6.1.15.1.

6.1.15.1 Hypothetical Reference Decoder (HRD_PARAM)(Variable size)

The HRD_PARAM structure shall be present only if HRD_PARAM_FLAG == 1. The syntax elements that make up
the HRD_PARAM structure shall be as defined below.

See Annex C for additional details on the semantics and use of these syntax elements.

SMPTE 421M

© 2006 SMPTE 40

HRD_PARAM() Number
of Bits

Descriptor

{

 HRD_NUM_LEAKY_BUCKETS 5 uimsbf

 BIT_RATE_EXPONENT 4 uimsbf

 BUFFER_SIZE_EXPONENT 4 uimsbf

 for(n=1; n <= HRD_NUM_LEAKY_BUCKETS; n++)

 {

 HRD_RATE[n] 16 uimsbf

 HRD_BUFFER[n] 16 uimsbf

 }

Table 13: Syntax elements for HRD_PARAM structure

HRD_NUM_LEAKY_BUCKETS – Shall be a number between 0 and 31 that specifies the number of leaky buckets
N. The value of N shall be encoded as a fixed length code in binary using 5 bits, i.e., the number of leaky buckets N =
(HRD_NUM_LEAKY_BUCKETS)

HRD_RATE[n] and BIT_RATE_EXPONENT – These syntax elements define the peak transmission rate Rn in bits
per second for the nth leaky bucket. The mantissa of Rn shall be encoded in the syntax element HRD_RATE[n] using a
fixed-length code of 16 bits, and has the range from 1 to 216. The base-2 exponent of Rn shall be encoded in the syntax
element BIT_RATE_EXPONENT in fixed length using 4 bits, and shall take the range from 6 to 21.

Thus, Rn = (HRD_RATE[n] + 1) * 2 (BIT_RATE_EXPONENT + 6).

The rates shall be ordered from smallest to largest, i.e., HRD_RATE[n] < HRD_RATE[n+1].

HRD_BUFFER[n] and BUFFER_SIZE_EXPONENT – These syntax elements define the buffer size Bn in bits for
the nth leaky bucket. The mantissa of Bn shall be encoded in the syntax element HRD_BUFFER[n], using a fixed length
code of 16 bits, and has the range 1 to 216. The value of the base-2 exponent of Bn shall be encoded in the syntax
element BUFFER_SIZE_EXPONENT using a fixed length of 4 bits, and shall take the range from 4 to 19.

Thus, Bn = (HRD_BUFFER[n] + 1) * 2 (BUFFER_SIZE_EXPONENT + 4).

The buffer sizes shall be ordered from largest to smallest, i.e., HRD_BUFFER[n] >= HRD_BUFFER[n+1].

6.2 Entry-Point Header Syntax and Semantics
An entry-point header shall be present only in advanced profile. The entry point has two purposes.

First, it shall be used to signal a random access point within the bitstream. See 4.12 for the definition of random
access. An entry point guarantees that subsequent pictures can be decoded starting from the entry point.

Second, it shall be used to signal changes in the coding control parameters. An entry-point header contains syntax
elements specifying the buffer fullness of the HRD leaky bucket and it contains coding control parameters that are
used to signal which compression tools are enabled for the entry point segment.

The syntax elements that make up the entry-point layer shall be as defined in Figure 11, and Table 14. The use of the
entry-point header is defined in Annex G.

SMPTE 421M

© 2006 SMPTE 41

BROKEN_LINK

CLOSED_ENTRY

PANSCAN_FLAG

REFDIST_FLAG

LOOPFILTER

FASTUVMC

EXTENDED_MV

DQUANT

VSTRANSFORM

OVERLAP

QUANTIZER

HRD_FULLNESS

CODED_SIZE_FLAG

CODED_WIDTH

CODED_HEIGHT

RANGE_MAPY_FLAG

RANGE_MAPY

RANGE_MAPUV_FLAG

RANGE_MAPUV

EXTENDED_DMV

Figure 11: Syntax diagram for the entry-point layer bitstream for the Advanced Profile

SMPTE 421M

© 2006 SMPTE 42

 Table 14: Entry-point layer bitstream for Advanced Profile

ENTRYPOINT LAYER() { Number
of bits

Descripto
r

Reference

 BROKEN_LINK 1 uimsbf 6.2.1

 CLOSED_ENTRY 1 uimsbf 6.2.2

 PANSCAN_FLAG 1 uimsbf 6.2.3

 REFDIST_FLAG 1 uimsbf 6.2.4

 LOOPFILTER 1 uimsbf 6.2.5

 FASTUVMC 1 uimsbf 6.2.6

 EXTENDED_MV 1 uimsbf 6.2.7

 DQUANT 2 uimsbf 6.2.8

 VSTRANSFORM 1 uimsbf 6.2.9

 OVERLAP 1 uimsbf 6.2.10

 QUANTIZER 2 uimsbf 6.2.11

 if (HRD_PARAM_ FLAG == 1) { 6.1.15

 HRD_FULLNESS () 6.2.12

 }

 CODED_SIZE_FLAG 1 uimsbf 6.2.13

 if (CODED_SIZE_FLAG == 1) {

 CODED_WIDTH 12 uimsbf 6.2.13.1

 CODED_HEIGHT 12 uimsbf 6.2.13.2

 }

 if (EXTENDED_MV == 1) { 6.2.7

(Annex J)

 EXTENDED_DMV 1 uimsbf 6.2.14

 }

 RANGE_MAPY_FLAG 1 uimsbf 6.2.15

 if (RANGE_MAPY_FLAG == 1) {

 RANGE_MAPY 3 uimsbf 6.2.15.1

 }

 RANGE_MAPUV_FLAG 1 uimsbf 6.2.16

 if (RANGE_MAPUV_FLAG == 1) {

 RANGE_MAPUV 3 uimsbf 6.2.16.1

 }

}

SMPTE 421M

© 2006 SMPTE 43

6.2.1 Broken Link Flag (BROKEN_LINK) (1 bit)
BROKEN_LINK is a 1-bit syntax element. When CLOSED_ENTRY == 1, then BROKEN_LINK shall be equal to
zero. When CLOSED_ENTRY == 0, BROKEN_LINK indicates if the previous entry-point segment does not contain
the appropriate anchor frames that can be used to decode any dependent B frames in the current entry-point segment.

The combination of CLOSED_ENTRY == 0 and BROKEN_LINK == 1 shall indicate that the current entry point
contains B pictures which require an I or P anchor picture in the previous entry point to decode, and the previous
entry point segment no longer contains these anchor pictures (usually because of an edit). The combination of
CLOSED_ENTRY == 0 and BROKEN_LINK == 0 shall indicate that the previous entry point segment contains the
appropriate anchor frames that are required to decode any dependent B pictures.

When CLOSED_ENTRY == 0, and if the B pictures that follow an entry-point lack a reference anchor picture, these B
pictures shall be discarded.

If the first frame after an entry-point header is coded as a PI Field picture, the P Field is dependent on pictures in the
previous entry-point segment. In this case, the combination of CLOSED_ENTRY == 0 and BROKEN_LINK == 0 shall
indicate that the previous entry point segment contains the appropriate reference frames to decode this dependent P
Field in the PI Field picture that follows the entry-point. If CLOSED_ENTRY == 0, and if this P Field lacks the
reference picture, the P Field in the PI Field picture that follows the entry-point shall be discarded.

6.2.2 Closed Entry Point (CLOSED_ENTRY) (1 bit)
CLOSED_ENTRY is a 1-bit syntax element. CLOSED_ENTRY == 1 shall indicate that the current entry point
segment does not contain any B pictures that require reference to an I or P picture in the previous entry point segment
to decode. Further, if CLOSED_ENTRY == 1, the first frame after the entry-point header shall not be a PI Field
picture. CLOSED_ENTRY == 0 shall indicate that the entry point segment may contain B pictures that require
reference to an I or P picture in the previous entry point segment to decode.

6.2.3 Pan Scan Present Flag (PANSCAN_FLAG) (1 bit)
PANSCAN_FLAG is a 1-bit syntax element. PANSCAN == 1 shall indicate that pan/scan information is present in the
picture headers within the entry point segment. PANSCAN == 0 shall indicate that no pan/scan information is present
in the picture headers within the entry point segment.

6.2.4 Reference Frame Distance Flag (REFDIST_FLAG) (1 bit)
REFDIST_FLAG is a 1-bit syntax element. REFDIST_FLAG == 1 shall indicate that the REFDIST syntax element is
present in II, IP, PI or PP field picture headers. REFDIST_FLAG == 0 shall indicate that the REFDIST syntax element
is not present in II, IP, PI or PP field picture headers.

6.2.5 Loop Filter Flag (LOOPFILTER) (1 bit)
As defined in Annex J.1.9.

6.2.6 Fast UV Motion Compensation Flag (FASTUVMC) (1 bit)
As defined in Annex J.1.11.

6.2.7 Extended Motion Vector Flag (EXTENDED_MV)(1 bit)
As defined in Annex J.1.12.

6.2.8 Macroblock Quantization Flag (DQUANT)(2 bit)
As defined in Annex J.1.13.

6.2.9 Variable Sized Transform Flag (VSTRANSFORM)(1 bit)
As defined in Annex J.1.14.

SMPTE 421M

© 2006 SMPTE 44

6.2.10 Overlapped Transform Flag (OVERLAP) (1 bit)
As defined in Annex J.1.15.

6.2.11 Quantizer Specifier (QUANTIZER) (2 bits)
As defined in Annex J.1.19.

6.2.12 HRD Buffer Fullness (HRD_FULLNESS)(Variable Size)
HRD_FULLNESS is a variable size structure that shall be present only if the HRD_PARAM_FLAG in the sequence
header is set to 1. If the HRD_PARAM_FLAG in the sequence header is set to zero, HRD_FULLNESS structure shall
not be present. The structure shall be as defined in Table 15. See below and Annex C.2 for additional details on the
semantics and use of the HRD parameters.

 Table 15: Syntax Elements for HRD_FULLNESS structure

HRD_FULLNESS() Number
of bits

Descriptor

{

 for(n=1; n <= HRD_NUM_LEAKY_BUCKETS; n++)

 {

 HRD_FULL[n] 8 uimsbf

 }

HRD_FULL[n] – This syntax element defines the decoder buffer fullness. The decoder buffer fullness for the nth
leaky bucket shall be equal to (HRD_FULL[n] + 1) * Bn/256, where Bn is the buffer size for the nth leaky bucket.

6.2.13 Coded Size Flag (CODED_SIZE_FLAG) (1 bit)
CODED_SIZE_FLAG is a 1-bit syntax element. CODED_SIZE_FLAG == 1 shall indicate that the CODED_WIDTH
and CODED_HEIGHT syntax elements are present in the entry header. CODED_SIZE_FLAG == 0 shall indicate that
the CODED_WIDTH and CODED_HEIGHT syntax elements are not present in the entry header and the width and
height of the frames within the entry point segment shall be specified by the MAX_CODED_WIDTH and
MAX_CODED_HEIGHT syntax elements in the sequence header. The calculation of width and height of the frames is
shown in Figure 12.

If either the frame width (specified by either the CODED_WIDTH or MAX_CODED_WIDTH as described above) or
the frame height (as specified by the CODED_HEIGHT or the MAX_CODED_HEIGHT) of an entry point segment are
different from the frame width or the frame height of the previous entry point segment, then either CLOSED_ENTRY
shall be equal to 1, or BROKEN_LINK shall be equal to 1.

Note: This constraint prevents prediction from a different resolution picture, when the resolution changes at an entry
point.

6.2.13.1 Coded Frame Width (CODED_WIDTH) (12 bits)

CODED_WIDTH is a 12 bit unsigned integer that shall be present if CODED_SIZE_FLAG == 1. The coded width of
the frames within the entry point segment shall be equal to the value of this field multiplied by 2, plus 2. Therefore the
range is 2 to 8192. CODED_WIDTH shall be less than or equal to MAX_CODED_WIDTH.

6.2.13.2 Coded Frame Height (CODED_HEIGHT) (12 bits)

CODED_HEIGHT is a 12 bit unsigned integer that shall be present if CODED_SIZE_FLAG == 1. The coded height of
the frames within the entry point segment shall be equal to the value of this field multiplied by2, plus 2. Therefore the
range is 2 to 8192. CODED_HEIGHT shall be less than or equal to MAX_CODED_HEIGHT.

SMPTE 421M

© 2006 SMPTE 45

Note: The coded height of the frames is also subject to the constraints specified in 5.5.1.

If (CODED_SIZE_FLAG) {
 CodedWidth = CODED_WIDTH;
 CodedHeight = CODED_HEIGHT;
}
else {
 CodedWidth = MAX_CODED_WIDTH;
 CodedHeight = MAX_CODED_HEIGHT;
}

Figure 12: Calculation of Frame Width and Height

6.2.14 Extended Differential Motion Vector Range Flag (EXTENDED_DMV)(1 bit)
EXTENDED_DMV is a 1-bit syntax element that shall be present if EXTENDED_MV == 1. If this bit is 1, extended
differential motion vector range shall be signaled at the picture layer for the P and B pictures within the entry point
segment. If this bit is 0, extended differential motion vector range shall not be signaled.

6.2.15 Range Mapping Luma Flag (RANGE_MAPY_FLAG)(1 bit)
RANGE_MAPY_FLAG is a 1-bit syntax element. If RANGE_MAPY_FLAG == 1, the syntax element
RANGE_MAPY shall be present within the entry header. If RANGE_MAPY_FLAG == 0 the syntax element
RANGE_MAPY shall not be present.

6.2.15.1 Range Mapping Luma (RANGE_MAPY)(3 bits)

RANGE_MAPY is a 3-bit syntax element that shall be present if RANGE_MAPY_FLAG == 1. RANGE_MAPY takes
the value from 0 to 7. If this syntax element is present, the luma components of the decoded pictures within the entry
point segment shall be scaled according to the formula:

Y[n] = clip((((Y[n] – 128) * (RANGE_MAPY + 9) + 4) >> 3) + 128);

where Y[n] represents the pixel values of the luma component.

This scaling shall be performed after all other decoding stages (including loop-filter) have been performed.

If CLOSED_ENTRY == 0, the values of RANGE_MAPY_FLAG and RANGE_MAPY shall be set to the same values
as those of the corresponding syntax elements in the previous entry-point segment.

6.2.16 Range Mapping Color-Difference Flag (RANGE_MAPUV_FLAG)(1 bit)
RANGE_MAPUV_FLAG is a 1-bit syntax element. If RANGE_MAPUV_FLAG == 1, the syntax element
RANGE_MAPUV shall be present within the entry header. If RANGE_MAPUV_FLAG == 0, the syntax element
RANGE_MAPUV shall not be present.

6.2.16.1 Range Mapping Color-Difference (RANGE_MAPUV)(3 bits)

RANGE_MAPUV is a 3-bit syntax element that shall be present if RANGE_MAPUV_FLAG == 1. RANGE_MAPUV
takes the value from 0 to 7. If this syntax element is present, the color-difference components of the decoded pictures
within the entry point segment shall be scaled according to the formula:

Cb[n] = clip((((Cb[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);

Cr[n] = clip((((Cr[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);

This scaling shall be performed after all other decoding stages (including loop-filter) have been performed.

If CLOSED_ENTRY == 0, the values of RANGE_MAPUV_FLAG and RANGE_MAPUV shall be set to the same
values as those of the corresponding syntax elements in the previous entry-point segment.

SMPTE 421M

© 2006 SMPTE 46

7 Progressive Bitstream Syntax and Semantics

7.1 Picture-level Syntax and Semantics
This section defines the syntax and semantics of the picture layer, slice layer, macroblock layer, and block layer of the
compressed stream when the picture is coded in progressive mode. The slice layer shall be present only in advanced
profile bitstreams.

In the advanced profile, pictures and slices shall be byte-aligned and carried in a BDU (as defined in Annex E). Each
new picture or a slice is detected via start-codes as defined in Annex E.

In the simple and main profiles, pictures shall be byte-aligned. For each coded picture, the pointer to the coded
bitstream and its size shall be communicated to the decoder by the Transport Layer. In simple and main profiles, a
picture whose coded size is less than or equal to one byte shall be considered to be a skipped picture.

Figure 13 through Figure 28 show the bitstream elements that make up each layer. Table 16 through Table 32 shall
define the syntax elements of the picture-layer, slice-layer, macroblock-layer, block-layer bitstream.

Unless otherwise stated, the length of variable length fields shall be the number of bits in the defined binary value.

SMPTE 421M

© 2006 SMPTE 47

PTYPE

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

RESPIC

TRANSDCTAB

TRANSACFRM

TRANSACFRM2

I PICTURE MB

Picture Layer
(Progressive I Simple/Main Profile)

FRMCNT

RANGEREDFRM

BF

MVRANGE

Figure 13: Syntax diagram for the Progressive I picture layer bitstream in simple/main profile

SMPTE 421M

© 2006 SMPTE 48

Table 16: Progressive I picture layer bitstream for Simple and Main Profile

I SIMPLE/MAIN PICTURE () { Number
of bits

Descripto
r

Reference

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 FRMCNT 2 uimsbf 7.1.1.2

 if (RANGERED == 1) { Annex J.1.17

 RANGEREDFRM 1 uimsbf 7.1.1.3

 }

 PTYPE Var.
size or 1

vlclbf 7.1.1.4

In this table, PTYPE is 1b if
MAXBFRAMES == 0;
PTYPE is 01b otherwise.

 BF 7 uimsbf 7.1.1.5

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

Only M.P.

 }

 if (MULTIRES == 1) { Annex J.1.10

 RESPIC 2 uimsbf 7.1.1.10

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSACFRM2 Variabl
e size

vlclbf 7.1.1.12

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in the
frame. Sync markers, if

SMPTE 421M

© 2006 SMPTE 49

present, shall be handled as
defined in 8.8

 I AND BI SIMPLE/MAIN MB() Table 27

 }

}

SMPTE 421M

© 2006 SMPTE 50

PTYPE

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

TRANSDCTAB

TRANSACFRM

TRANSACFRM2

I PICTURE MB

Picture Layer
(Progressive BI Main Profile)

FRMCNT

BF

MVRANGE

BFRACTION

RANGEREDFRM

Figure 14: Syntax diagram for the Progressive BI picture layer bitstream in main profile

SMPTE 421M

© 2006 SMPTE 51

Table 17: Progressive BI picture layer bitstream for Main Profile

BI MAIN PICTURE () { Number
of bits

Descriptor Reference

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 FRMCNT 2 uimsbf 7.1.1.2

 if (RANGERED == 1) { Annex J.1.17

 RANGEREDFRM 1 uimsbf 7.1.1.3

 }

 PTYPE Var.
size or 1

vlclbf 7.1.1.4

In this table, PTYPE is
00b

 BFRACTION Var.
size

vlclbf 7.1.1.14

In this table,
BFRACTION is
1111111b

 BF 7 uimsbf 7.1.1.5

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSACFRM2 Variabl
e size

vlclbf 7.1.1.12

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { /‘all macroblocks’
represents all
macroblocks in the
frame. Sync markers, if
present, shall be handled
as defined in 8.8

SMPTE 421M

© 2006 SMPTE 52

 I AND BI SIMPLE/MAIN MB () Table 27

 }

}

SMPTE 421M

© 2006 SMPTE 53

Figure 15: Syntax diagram for the Progressive I and BI picture layer bitstream in advanced profile.

SMPTE 421M

© 2006 SMPTE 54

Table 18: Progressive I and BI picture layer bitstream for Advanced Profile

I AND BI ADV PICTURE () { Number
of bits

Descriptor Reference

 If (INTERLACE == 1) 6.1.9

 FCM Variabl
e size

vlclbf 7.1.1.15

// FCM==0 in this table.

 PTYPE Variabl
e size

vlclbf 7.1.1.4

In this table, PTYPE is 110b
or PTYPE is 1110b

 if (TFCNTRFLAG) { 6.1.10

 TFCNTR 8 uimsbf 7.1.1.16

 }

 if (PULLDOWN) { 6.1.8

 if (INTERLACE == 0 || PSF ==
1) {

 6.1.9, 6.1.13

 RPTFRM 2 uimsbf 7.1.1.19

 }

 else {

 TFF 1 uimsbf 7.1.1.17

 RFF 1 uimsbf 7.1.1.18

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 7.1.1.20

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindows
is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 7.1.1.21

 PS_VOFFSET 18 uimsbf 7.1.1.22

 PS_WIDTH 14 uimsbf 7.1.1.23

 PS_HEIGHT 14 uimsbf 7.1.1.24

 }

 }

SMPTE 421M

© 2006 SMPTE 55

 }

 RNDCTRL 1 uimsbf 7.1.1.25

 if (INTERLACE == 1) 6.1.9

 UVSAMP 1 uimsbf 7.1.1.26

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 7.1.1.27

 }

 ACPRED Bitplane 7.1.1.28

 if (OVERLAP == 1 && ‘PQUANT
<= 8’) {

 OVERLAP 6.2.10 PQUANT
(7.1.1.6) computed from
PQINDEX as shown in
7.1.1.6

 CONDOVER Variabl
e size

vlclbf 7.1.1.29

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane 7.1.1.30

 }

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSACFRM2 Variabl
e size

vlclbf 7.1.1.12

 TRANSDCTAB 1 uimsbf 7.1.1.13

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variabl
e size

vlclbf Table 24, 7.1.1.31

 }

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in this BDU.

SMPTE 421M

© 2006 SMPTE 56

 I AND BI ADV MB () Table 28

 }

}

SMPTE 421M

© 2006 SMPTE 57

Figure 16: Syntax diagram for the Progressive P picture layer bitstream in Simple/Main Profile.

SMPTE 421M

© 2006 SMPTE 58

Table 19: Progressive P picture layer bitstream for Simple and Main Profile

P SIMPLE/MAIN PICTURE () { Number
of bits

Descriptor Reference

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 FRMCNT 2 uimsbf 7.1.1.2

 if (RANGERED == 1) { Annex J.1.17

 RANGEREDFRM 1 uimsbf 7.1.1.3

 }

 PTYPE Var.
size or 1

vlclbf 7.1.1.4

In this table,

PTYPE is 1

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

Not S.P.

 }

 if (MULTIRES == 1) { Annex J.1.10

 RESPIC 2 uimsbf 7.1.1.10

 }

 MVMODE Variabl
e size

vlclbf 7.1.1.32

 if (MVMODE == ‘intensity compensation’) {

 MVMODE2 Variabl
e size

vlclbf 7.1.1.33

 LUMSCALE 6 uimsbf 7.1.1.34

 LUMSHIFT 6 uimsbf 7.1.1.35

 }

SMPTE 421M

© 2006 SMPTE 59

 if (MVMODE == ‘Mixed-MV’ || (MVMODE
== ‘Intensity Compensation’ && MVMODE2 ==
‘Mixed-MV’) {

 MVTYPEMB Bitplane 7.1.1.36

 }

 SKIPMB Bitplane 7.1.1.37

 MVTAB 2 uimsbf 7.1.1.38

 CBPTAB 2 uimsbf 7.1.1.39

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variabl
e size

vlclbf Table 24,
7.1.1.31

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 7.1.1.40

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 7.1.1.41

 }

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { ‘all
macroblocks’
represents all
macroblocks in
the frame. Sync
markers, if
present, shall be
handled as
defined in 8.8

 P SIMPLE/MAIN/ADV MB () Table 29

 }

}

SMPTE 421M

© 2006 SMPTE 60

 Figure 17: Syntax diagram for the Progressive P picture layer bitstream in Advanced Profile

SMPTE 421M

© 2006 SMPTE 61

Table 20: Progressive P picture layer bitstream for Advanced Profile

P ADV PICTURE () { Number
of bits

Descriptor Reference

 If (INTERLACE == 1) 6.1.9

 FCM Variabl
e size

vlclbf 7.1.1.15

// FCM==0 in this table.

 PTYPE Variabl
e size

vlclbf 7.1.1.4

In this table, PTYPE is 0

 if (TFCNTRFLAG) { 6.1.10

 TFCNTR 8 uimsbf 7.1.1.16

 }

 if (PULLDOWN) { 6.1.8

 if (INTERLACE == 0 || PSF ==
1) {

 6.1.9, 6.1.13

 RPTFRM 2 uimsbf 7.1.1.19

 }

 else {

 TFF 1 uimsbf 7.1.1.17

 RFF 1 uimsbf 7.1.1.18

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 7.1.1.20

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 7.1.1.21

 PS_VOFFSET 18 uimsbf 7.1.1.22

 PS_WIDTH 14 uimsbf 7.1.1.23

 PS_HEIGHT 14 uimsbf 7.1.1.24

 }

 }

 }

SMPTE 421M

© 2006 SMPTE 62

 RNDCTRL 1 uimsbf 7.1.1.25

 if (INTERLACE == 1) 6.1.9

 UVSAMP 1 uimsbf 7.1.1.26

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 7.1.1.27

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

 }

 MVMODE Variabl
e size

vlclbf 7.1.1.32

 if (MVMODE == ’intensity
compensation’) {

 MVMODE2 Variabl
e size

vlclbf 7.1.1.33

 LUMSCALE 6 uimsbf 7.1.1.34

 LUMSHIFT 6 uimsbf 7.1.1.35

 }

 if (MVMODE == ‘Mixed-MV’ ||
(MVMODE == ‘Intensity Compensation’
&& MVMODE2 == ‘Mixed-MV’) {

 MVTYPEMB Bitplane 7.1.1.36

 }

 SKIPMB Bitplane 7.1.1.37

 MVTAB 2 uimsbf 7.1.1.38

 CBPTAB 2 uimsbf 7.1.1.39

SMPTE 421M

© 2006 SMPTE 63

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variabl
e size

vlclbf Table 24, 7.1.1.31

 }

 if (VSTRANSFORM == 1) { 6.2.9

 TTMBF 1 uimsbf 7.1.1.40

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 7.1.1.41

 }

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in this
BDU.

 P SIMPLE/MAIN/ADV MB() Table 29

 }

}

SMPTE 421M

© 2006 SMPTE 64

Figure 18: Syntax diagram for the Progressive B picture layer bitstream in Main Profile.

SMPTE 421M

© 2006 SMPTE 65

Table 21: Progressive B picture layer bitstream for Main Profile

B MAIN PICTURE () { Number
of bits

Descriptor Reference

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 FRMCNT 2 uimsbf 7.1.1.2

 if (RANGERED == 1) { Annex J.1.17

 RANGEREDFRM 1 uimsbf 7.1.1.3

 }

 PTYPE Var.
size or 1

vlclbf 7.1.1.4

In this table, PTYPE is 00b

 BFRACTION Variabl
e size

vlclbf 7.1.1.14

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 vlclbf 7.1.1.8

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

Note: Not Simple Profile

 }

 MVMODE 1 uimsbf 7.1.1.32

 DIRECTMB Bitplane 7.1.1.42

 SKIPMB Bitplane 7.1.1.37

 MVTAB 2 uimsbf 7.1.1.38

 CBPTAB 2 uimsbf 7.1.1.39

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variabl
e size

vlclbf Table 24, 7.1.1.31

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 7.1.1.40

 if (TTMBF == 1) {

SMPTE 421M

© 2006 SMPTE 66

 TTFRM 2 uimsbf 7.1.1.41

 }

 }

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in the frame.
Sync markers, if present,
shall be handled as defined in
8.8

 B MAIN/ADV MB () Table 30

 }

}

SMPTE 421M

© 2006 SMPTE 67

Figure 19: Syntax diagram for the Progressive B picture layer bitstream in Advanced Profile.

SMPTE 421M

© 2006 SMPTE 68

Table 22: Progressive B picture layer bitstream for Advanced Profile

B ADV PICTURE () { Number
of bits

Descripto
r

Reference

 If (INTERLACE == 1) 6.1.9

 FCM Variabl
e size

vlclbf 7.1.1.15

// FCM==0 in this table.

 PTYPE Variabl
e size

vlclbf 7.1.1.4

In this table, PTYPE is 10b

 if (TFCNTRFLAG) { 6.1.10

 TFCNTR 8 uimsbf 7.1.1.16

 }

 if (PULLDOWN) { 6.1.8

 if (INTERLACE == 0 || PSF ==
1) {

 6.1.9, 6.1.13

 RPTFRM 2 uimsbf 7.1.1.19

 }

 else {

 TFF 1 uimsbf 7.1.1.17

 RFF 1 uimsbf 7.1.1.18

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 7.1.1.20

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 7.1.1.21

 PS_VOFFSET 18 uimsbf 7.1.1.22

 PS_WIDTH 14 uimsbf 7.1.1.23

 PS_HEIGHT 14 uimsbf 7.1.1.24

 }

 }

 }

SMPTE 421M

© 2006 SMPTE 69

 RNDCTRL 1 uimsbf 7.1.1.25

 if (INTERLACE == 1) 6.1.9

 UVSAMP 1 uimsbf 7.1.1.26

 if (FINTERPFLAG == 1) { 6.1.11

 INTERPFRM 1 uimsbf 7.1.1.1

 }

 BFRACTION Variabl
e size

vlclbf 7.1.1.14

 PQINDEX 5 uimsbf 7.1.1.6

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 7.1.1.7

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 7.1.1.8

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 7.1.1.27

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variabl
e size

vlclbf 7.1.1.9

 }

 MVMODE 1 uimsbf 7.1.1.32

 DIRECTMB Bitplane 7.1.1.42

 SKIPMB Bitplane 7.1.1.37

 MVTAB 2 uimsbf 7.1.1.38

 CBPTAB 2 uimsbf 7.1.1.39

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variabl
e size

vlclbf Table 24, 7.1.1.31

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 7.1.1.40

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 7.1.1.41

 }

 }

SMPTE 421M

© 2006 SMPTE 70

 TRANSACFRM Variabl
e size

vlclbf 7.1.1.11

 TRANSDCTAB 1 uimsbf 7.1.1.13

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in this
BDU.

 B MAIN/ADV MB() Table 30

 }

}

FCM

TFF

RFF

PTYPE

RPTFRM

Picture Layer
(Progressive Skipped Advanced

Profile)

PS_HOFFSET, PS_VOFFSET,
PS_WIDTH, PS_HEIGHT

PS_PRESENT

Figure 20: Syntax diagram for the Progressive Skipped picture layer bitstream in Advanced Profile.

SMPTE 421M

© 2006 SMPTE 71

Table 23: Progressive Skipped picture layer bitstream for Advanced Profile

SKIPPED ADV PICTURE () { Number
of bits

Descripto
r

Reference

 If (INTERLACE == 1) 6.1.9

 FCM Variabl
e size

vlclbf 7.1.1.15

// FCM==0b in this table.

 PTYPE Variabl
e size

vlclbf 7.1.1.4

In this table PTYPE is
1111b

 if (PULLDOWN) { 6.1.8

 if (INTERLACE == 0 || PSF ==
1) {

 6.1.9, 6.1.13

 RPTFRM 2 uimsbf 7.1.1.19

 }

 else {

 TFF 1 uimsbf 7.1.1.17

 RFF 1 uimsbf 7.1.1.18

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 7.1.1.20

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 7.1.1.21

 PS_VOFFSET 18 uimsbf 7.1.1.22

 PS_WIDTH 14 uimsbf 7.1.1.23

 PS_HEIGHT 14 uimsbf 7.1.1.24

 }

 }

 }

}

SMPTE 421M

© 2006 SMPTE 72

PQDIFF

VOPDQUANT

DQUANT = 2

DQUANTFRM

DQPROFILE

DQSBEDGE

DQDBEDGE

DQUANT = 1

DQBILEVEL

ABSPQ

PQDIFF

ABSPQ

Figure 21: Syntax diagram for VOPDQUANT in picture header

Table 24: VOPDQUANT in picture header (Refer to 7.1.1.31)

VOPDQUANT() { Number
of bits

Descripto
r

Reference

 if (DQUANT == 2) { 6.2.8 (Annex J)

 DQUANT_InFrame = TRUE // quantizer
can vary in frame

 See Note below.

 PQDIFF 3 uimsbf 7.1.1.31.6

 if (PQDIFF == 7) {

 ABSPQ 5 uimsbf 7.1.1.31.7

 }

SMPTE 421M

© 2006 SMPTE 73

 }

 else {

 DQUANTFRM 1 uimsbf 7.1.1.31.1

 if (DQUANTFRM == 1) {

 DQUANT_InFrame = TRUE
//quantizer can vary in frame

 See Note below.

 DQPROFILE 2 uimsbf 7.1.1.31.2

 if (DQPROFILE == ‘Single Edge‘) {

 DQSBEDGE 2 uimsbf 7.1.1.31.3

 }

 if (DQPROFILE == ‘Double Edge‘) {

 DQDBEDGE 2 uimsbf 7.1.1.31.4

 }

 if (DQPROFILE == ‘All
Macroblocks‘) {

 DQBILEVEL 1 uimsbf 7.1.1.31.5

 }

 if (!(DQPROFILE == ‘All
macroblocks‘ && DQBILEVEL == 0)) {

 PQDIFF 3 uimsbf 7.1.1.31.6

 if (PQDIFF == 7) {

 ABSPQ 5 uimsbf 7.1.1.31.7

 }

 }

 }

 else { //DQUANTFRM is 0

 DQUANT_InFrame = FALSE;
//same quantizer (PQUANT) is used for entire
frame

 See Note below.

 }

 }

}

Note: Refer to section 7.1.1.31 for a definition of
the syntax elements in VOPDQUANT.

Note: DQuant_InFrame is TRUE if quantizer can
vary between the macroblocks of a frame.
DQuant_InFrame == FALSE if only PQUANT is
used for all MBs in the frame.

SMPTE 421M

© 2006 SMPTE 74

Table 25: Bitplane coding (Refer to 7.2)

BITPLANE() { Number
of bits

Descriptor Reference

 INVERT 1 uimsbf 7.2.1

 IMODE Variabl
e size

vlclbf 7.2.2

 DATABITS Variabl
e size

vlclbf 7.2.3

}

Figure 22: Syntax diagram for the Slice-Layer bitstream in the Advanced Profile

SMPTE 421M

© 2006 SMPTE 75

Table 26: Slice-Layer bitstream in Advanced Profile

SLICE ADV () { Number
of bits

Descripto
r

Reference

 SLICE_ADDR 9 uimsbf 7.1.2.1

 PIC_HEADER_FLAG 1 uimsbf 7.1.2.2

 if (PIC_HEADER_FLAG == 1) {

 PICTURE_LAYER()

 }

 for (‘all macroblocks’) { ‘all macroblocks’
represents all
macroblocks in this
slice layer BDU.

 MB_LAYER () Table 28, Table 29
or Table 30 as
appropriate. See
note below.

 }

}

Note: The MB layer syntax may be I picture as
defined as in Table 28, P picture as defined in
Table 29, or B picture as defined in Table 30. The
choice of table referenced by the MB layer syntax
layer is defined by the kind of picture to which this
slice belongs.

SMPTE 421M

© 2006 SMPTE 76

BLOCK LAYER

MB Layer
(I Picture Simple/Main Profile)

CBPCY

ACPRED

Figure 23: Syntax diagram for macroblock layer bitstream in Progressive I and BI picture for simple/main
profile

Table 27: Macroblock layer bitstream in Progressive I and BI picture for Simple/Main Profile

I AND BI SIMPLE/MAIN MB() { Number
of bits

Descriptor Reference

 CBPCY Variabl
e size

vlclbf 7.1.3.1

 ACPRED 1 uimsbf 7.1.3.2

 for (‘all blocks in MB’) {

 INTRA_BLOCK() Table 31

 }

}

SMPTE 421M

© 2006 SMPTE 77

BLOCK LAYER

MB Layer
(I Picture Advanced Profile)

MQDIFF

ABSMQ

CBPCY

ACPRED

OVERFLAGMB

Figure 24: Syntax diagram for macroblock layer bitstream in progressive I picture for advanced profile

SMPTE 421M

© 2006 SMPTE 78

Table 28: Macroblock layer bitstream in Progressive I and BI picture for Advanced Profile

I AND BI ADV MB() { Number
of bits

Descripto
r

Reference

 CBPCY Variabl
e size

vlclbf 7.1.3.1

 if (ACPRED Coding Mode == ‘Raw’) { 7.1.1.28, 7.2.2

 ACPRED 1 uimsbf 7.1.3.2

 }

 if (CONDOVER == 11b

 && OVERFLAGS Coding Mode == ‘Raw’)
{

 7.1.1.29,
7.1.1.30, 7.2.2

 OVERFLAGMB 1 uimsbf 7.1.3.3

 }

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘All Macroblocks’) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 7.1.3.5

 }

 }

 }

 }

 for (‘all blocks in MB’) {

 INTRA_BLOCK() Table 31

 }

}

SMPTE 421M

© 2006 SMPTE 79

Figure 25: Syntax diagram for macroblock layer bitstream in Progressive-P picture for Simple/Main/Advanced
Profiles

Table 29: Macroblock layer bitstream in Progressive P picture for Simple/Main/Advanced Profile

P SIMPLE/MAIN/ADV MB() { Number
of bits

Descriptor Reference

 if ((MVMODE == ‘Mixed-MV’ ||
(MVMODE == ‘Intensity Compensation’ &&
MVMODE2 == ‘Mixed-MV’) && MVTYPEMB
Coding Mode == ‘Raw’) {

 7.1.1.32, 7.1.1.33,
7.1.1.36

 MVMODEBIT 1 uimsbf 7.1.3.6

SMPTE 421M

© 2006 SMPTE 80

 }

 if (SKIPMB Coding Mode == ‘Raw’) { 7.1.1.37

 SKIPMBBIT 1 uimsbf 7.1.3.7

 }

 if (1-MV mode) {

 if (non-skipped MB) {

 MVDATA Variabl
e size

vlclbf 7.1.3.8

 if (‘hybridpred syntax element for
MV prediction is present’) {

 Conditions for
presence of
hybridpred syntax
element is defined in
Figure 55 in
8.3.5.3.5

 HYBRIDPRED 1 uimsbf 7.1.3.9

 }

 if (‘intra_flag’ && ‘more_present
flag’ == 0) {

 For ‘intra_flag’ and
‘more_present flag’,
see 8.3.5.2.1

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘All
Macroblocks‘) {

 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7)
{

 ABSMQ 5 uimsbf 7.1.3.5

 }

 }

 }

 }

 ACPRED 1 uimsbf 7.1.3.2

 }

 else if (‘more_present flag’ == 1){ 8.3.5.2.1

 if (‘intra_flag’) { 8.3.5.2.1

 ACPRED 1 uimsbf 7.1.3.2

 }

SMPTE 421M

© 2006 SMPTE 81

 CBPCY Variabl
e size

vlclbf 7.1.3.1

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘all
macroblocks‘) {

 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7)
{

 ABSMQ 5 uimsbf 7.1.3.5

 }

 }

 }

 }

 }

 if (TTMBF == 0 && !(‘intra_flag’)
&& ‘at least 1 coded block’) {

/* the presence of ‘at least 1 coded block’ is
inferred from more_present flag. Since DC
coefficients are not treated separately, a coded
inter-block has at least one non-zero coefficient */

 For TTMBF, see
7.1.1.40

For intra_flag see
8.3.5.2.1

 TTMB Variabl
e size

vlclbf 7.1.3.10

 }

 for (‘all blocks in MB’) {

 if (‘intra_flag’ || ‘coded block’)

/* coded block is inferred from CBPCY. */

 For intra_flag see
8.3.5.2.1. For coded
block, see 8.3.5.5.

 BLOCK()

 Table 31 if intra
block or Table 32
otherwise

 }

 } /* non-skipped MB */

 else { /* skipped MB */

 if (‘hybridpred syntax element for
MV prediction is present’) {

 Conditions for
presence of
hybridpred syntax
element is defined in
Figure 55 in
8.3.5.3.5

SMPTE 421M

© 2006 SMPTE 82

 HYBRIDPRED 1 uimsbf 7.1.3.9

 }

 } /* skipped MB */

 } /* 1-MV mode */

 else { /* 4-MV mode */

 if (non-skipped MB) {

 CBPCY Variabl
e size

vlclbf 7.1.3.1

 for (‘each of the 4 Y-blocks’) {

 if (‘CBPCY bit set for this
block’) {

 BLKMVDATA Variabl
e size

vlclbf 7.1.3.11

 }

 if (‘hybridpred syntax element
for MV prediction is present’) {

 Conditions for
presence of
hybridpred syntax
element is defined in
Figure 55 in
8.3.5.3.5

 HYBRIDPRED 1 uimsbf 7.1.3.9

 }

 }

 If (‘all blocks are inter’ && ‘all
blocks have zero AC coefficients’)

 //inferred via
intra_flag and
more_present_flag
of BLKMVDATA
as described in
8.3.5.2.1

 goto End4MV;

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘all
macroblocks‘) {

 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 7.1.3.5

 }

SMPTE 421M

© 2006 SMPTE 83

 }

 }

 }

 if (‘any block is intra’ && ‘non-zero
prediction for that block’) {

 //intra status inferred
intra_flag of
BLKMVDATA

 ACPRED 1 uimsbf 7.1.3.2

 }

 if (TTMBF == 0 && ‘at least 1
coded inter-block’) {

/* The coded status of block is inferred from
more_present flag of MVDATA. A coded inter-
block has at least one non-zero coefficient. */

 For TTMBF, see
7.1.1.40

For
more_present_flag
see 8.3.5.2.1

 TTMB Variabl
e size

vlclbf 7.1.3.10

 }

 for (‘all blocks in MB’) {

 If (‘intra block’ || ‘coded inter-
block’)

/* intra block is deduced from intra_flag, and
‘coded inter-block’ is deduced from
more_present_flag of BLKMVDATA. A coded
inter-block has at least one non-zero coefficient. */

 For intra_flag and
more_present_flag
see 8.3.5.2.1

 BLOCK() Table 31 if intra
block or Table 32
otherwise

 }

 End4MV: /* End of 4-MV */

 } /* non-skipped MB */

 else { /* skipped MB */

 for (‘all 4 Y-blocks’) {

 if (‘hybridpred syntax element
for MV prediction is present’) {

 Conditions for
presence of
hybridpred syntax
element is defined in
Figure 55 in
8.3.5.3.5

 HYBRIDPRED 1 uimsbf 7.1.3.9

 }

 }

 } /* skipped MB */

 } /* 4-MV mode */

SMPTE 421M

© 2006 SMPTE 84

}

Figure 26: Syntax diagram for macroblock layer bitstream in Progressive B picture for Main/Advanced Profiles

Table 30: Macroblock layer bitstream in Progressive B picture for Main/Advanced Profile

B MAIN/ADV MB() { Number
of bits

Descripto
r

Reference

 if (DIRECTMB Coding Mode == ‘Raw’)
{

 7.1.1.42

SMPTE 421M

© 2006 SMPTE 85

 DIRECTBBIT 1 uimsbf 7.1.3.12

 }

 if (SKIPMB Coding Mode == ‘Raw’) {

 SKIPMBBIT 1 uimsbf 7.1.3.7

 }

 if (!DIRECTBBIT) { 7.1.1.42, 7.1.3.12

 if (!SKIPMBBIT) { 7.1.1.37, 7.1.3.7

 BMV1 Variabl
e size

vlclbf 7.1.3.13

 }

 if (!(‘intra_flag of BMV1’) ||
SKIPMBBIT) {

 8.3.5.2.1, 7.1.1.37,
7.1.3.7

 BMVTYPE Variabl
e size

vlclbf 7.1.3.14

 }

 }

 if (SKIPMBBIT) 7.1.1.37, 7.1.3.7

 goto End;

 if (DIRECTBBIT) 7.1.1.42, 7.1.3.12

 goto DecodeCBPCY;

 If (‘more_present flag’ of BMV1 == 0
&& ‘Inter MB’)

/* ‘Inter MB’ is deduced if ‘intra_flag’ of
BMV1 is 0 */

 8.3.5.2.1

 goto End:

 if (‘intra_flag’ && ‘more_present flag’ of
BMV1 == 0) {

 8.3.5.2.1,

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘all
macroblocks‘) {

 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7)

 ABSMQ 5 uimsbf 7.1.3.5

 }

 }

SMPTE 421M

© 2006 SMPTE 86

 }

 ACPRED 1 uimsbf 7.1.3.2

 goto DecodeCoeff:

 }

 if (BMVTYPE == ‘Interpolated’) { See 7.1.3.14. Also
implies that the
‘more_present flag’ of
BMV1 was 1

 BMV2 Variabl
e size

vlclbf 7.1.3.15

For interpolated MBs,
BMV1 is backward MV
and BMV2 is forward
MV. Also note that
BMV2 cannot indicate
Intra.

 if (‘more_present flag’ of BMV2
== 0)

 See 8.3.5.2.1 for
more_present flag

 goto End;

 }

 if (‘intra_flag’) 8.3.5.2.1

 ACPRED 1 uimsbf 7.1.1.28

DecodeCBPCY:

 CBPCY Variabl
e size

vlclbf 7.1.3.1

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == ‘all
macroblocks‘) {

 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 7.1.3.4

 } else {

 MQDIFF 3 uimsbf 7.1.3.4

 if (MQDIFF == 7)

 ABSMQ 5 uimsbf 7.1.3.5

 }

 }

 } Variabl
e size

vlclbf

 if (TTMBF == 0 && ‘Inter MB’ && ‘at
least one coded block’) {

/* ‘Inter MB’ is deduced if ‘intra_flag’ of
BMV1 is 0. The presence of ‘at least 1 coded

 For TTMBF, see
7.1.1.40 For
more_present flag, see
8.3.5.2.1

SMPTE 421M

© 2006 SMPTE 87

block’ is inferred from more_present flag. A
coded block in inter-MB has at least one non-
zero coefficient */

 TTMB Variabl
e size

vlclbf 7.1.3.10

 }

DecodeCoeff:

 for (‘all blocks in MB’) {

 if (‘intra_flag’ || ‘coded block’)

/* The presence of ‘coded block’ is inferred
from more_present flag. A coded block in
inter-MB has at least one non-zero coefficient
*/

 For more_present flag,
see 8.3.5.2.1

 BLOCK() Table 31 if intra block or
Table 32 otherwise

 }

End:

}

SMPTE 421M

© 2006 SMPTE 88

Figure 27: Syntax diagram for the Intra-coded block layer bitstream.

Table 31: Intra block layer bitstream

INTRA_BLOCK() { Number
of bits

Descripto
r

Reference

 DCCOEF Variabl
e size

vlclbf 7.1.4.1

 if (DCCOEF != 0) {

 if (DCCOEF == ‘ESCAPECODE’) { Figure 37 in 8.1.3.1

SMPTE 421M

© 2006 SMPTE 89

 DCCOEFESC Variabl
e size

vlclbf 7.1.4.2

 }

 else {

 if (QUANT == 1) QUANT refers to
MQUANT as described
in 8.1.3.1

 DCCOEF_EXTQUANT1 2 uimsbf 7.1.4.3

 else if (QUANT == 2) QUANT refers to
MQUANT as described
in 8.1.3.1

 DCCOEF_EXTQUANT2 1 uimsbf 7.1.4.4

 }

 DCSIGN 1 uimsbf 7.1.4.5

 }

 if (‘intra block has AC coefficient’) { presence of AC
coefficient is inferred
from CBPCY

 while (!(last_flag)) {

/* last_flag == 1 implies that all coefficients
have been decoded in this block. last_flag == 0
implies that more coefficients are present. */

 see 8.1.3.4 for decoding
of last_flag

 ACCOEF1 Variabl
e size

vlclbf 7.1.4.6

 if (ACCOEF1 == ‘Escape Index’) { Escape Index has been
described in Figure 41
in 8.1.3.4

 ESCMODE Variabl
e size

vlclbf 7.1.4.7

 if (ESCMODE == ‘mode1’ ||
ESCMODE == ‘mode2’) {

 7.1.4.8, 8.1.3.4

 ACCOEF2 Variabl
e size

vlclbf 7.1.4.8

 }

 else { /* ‘escape mode 3’ */ 7.1.4.9, 8.1.3.4

 ESCLR 1 uimsbf 7.1.4.9

 if (‘ESCMODE == mode3’
&& 'for first time’) {

/* This condition is triggered when mode3 is
used (ESCMODE is equal to mode3) for the
first time in a frame, field or slice as described
in 8.1.3.4*/

 8.1.3.4

 ESCLVLSZ Variabl vlclbf 7.1.4.10

SMPTE 421M

© 2006 SMPTE 90

e size

 ESCRUNSZ 2 uimsbf 7.1.4.11

 }

 ESCRUN Variabl
e size

 7.1.4.12

 LVLSGN2 1 uimsbf 7.1.4.13

 ESCLVL Variabl
e size

 7.1.4.14

 }

 } /* ‘escape mode’ */

 if (ESCMODE != ‘mode3’) { Figure 41 in 8.1.3.4

 LVLSIGN 1 uimsbf 7.1.4.15

 }

 } /* while () */

 } /* if intra block has AC coefficient */

}

SMPTE 421M

© 2006 SMPTE 91

Figure 28: Syntax diagram for the Inter-coded block layer bitstream.

Table 32: Inter block layer bitstream

INTER BLOCK() { Number
of bits

Descripto
r

Reference

 if (TTMB == ‘block’ && !(‘ the first inter
coded block’)) {

 7.1.3.10

 TTBLK Variabl
e size

vlclbf 7.1.4.16

 }

 if (‘transform type is 4x4’ || (‘transform type
is 8*4, 4*8 && (TTMBF == ‘1’ || (TTMB ==
‘Macroblock’ && !(‘the first inter coded
block’))))) {

 7.1.1.40, 7.1.3.10

 SUBBLKPAT Variabl
e size

vlclbf 7.1.4.17

SMPTE 421M

© 2006 SMPTE 92

 }

 for (i = 0; i < SUBBLKNUM; i++) { SUBBLKNUM = 1,
2, 4 for Inter 8x8,
8x4/4x8, 4x4 blocks
respectively

 if (IsSubBlkCoded(i)){

/* IsSubBlkCoded(i) is 1 if the subblock i has at
least one non-zero coefficient, 0 otherwise. */

 The value of
IsSubBlkCoded(i) is
derived from either
TTMB 7.1.3.10, or
SUBBLKPAT
7.1.4.17

 while (!(last_flag)) {

/* last_flag == 1 implies that all coefficients have
been decoded in this block. last_flag == 0 implies
that more coefficients are present. */

 see 8.1.3.4 for
decoding of last_flag

 ACCOEF1 Variabl
e size

vlclbf 7.1.4.6

 if (ACCOEF1 == ‘Escape Index’) { Escape Index has
been described in
8.1.3.4

 ESCMODE Variabl
e size

vlclbf 7.1.4.7

 if (ESCMODE == ‘mode1’ ||
ESCMODE == ‘mode2’) {

 7.1.4.8, 8.1.3.4

 ACCOEF2 Variabl
e size

vlclbf 7.1.4.8

 }

 else { /* ‘escape mode 3’ */ 7.1.4.9, 8.1.3.4

 ESCLR 1 uimsbf 7.1.4.9

 if (ESCMODE == ‘mode 3’
for the first time’) {

/* This condition is triggered when mode3 is
used (ESCMODE is equal to mode3) for the first
time in a frame, field or slice as described in
8.1.3.4*/

 8.1.3.4

 ESCLVLSZ Variabl
e size

vlclbf 7.1.4.10

 ESCRUNSZ 2 uimsbf 7.1.4.11

 }

 ESCRUN Variabl
e size

 7.1.4.12

 LVLSGN2 1 uimsbf 7.1.4.13

 ESCLVL Variabl
e size

 7.1.4.14

SMPTE 421M

© 2006 SMPTE 93

 }

 } /* ‘escape mode’ */

 if (ESCMODE != ‘mode3’) { Figure 41 in 8.1.3.4

 LVLSIGN 1 uimsbf 7.1.4.15

 }

 } /* while () */

 } // IsSubBlkCoded(i)

 }//for i= 0; i<SUBBLKNUM; i++

}

Note: ‘the first inter coded block’ is 1 if the block
is the first inter-coded block in the macroblock,
and 0 otherwise.

7.1.1 Picture layer
Data for each picture shall consist of a picture header followed by data for the macroblock layer. Figure 13, Figure 14
and Figure 15 show the bitstream elements that make up the I and BI progressive picture layer in simple/main profile
and advanced profile, respectively, and Figure 16 and Figure 17 show the bitstream elements that make up the P
progressive picture layer in simple/main profile and advanced profile, respectively.

7.1.1.1 Frame Interpolation Hint (INTERPFRM) (1 bit)

INTERPFRM is a 1-bit syntax element that shall be present in all progressive frame types for all profiles, if the syntax
element FINTERPFLAG == 1. This bit is not used in the decoding process. Its intended purpose is to provide a hint to
the display process that the current temporal region is suitable for temporal interpolation.

Note: The need to perform frame interpolation or the method of doing so is outside the scope of this document.

If INTERPFRM == 0, then the current temporal region (the current frame and its surrounding frames) is considered
unsuitable for frame interpolation. If INTERPFRM == 1, then the temporal region is considered suitable for frame
interpolation. For example, the display process can use interpolation to increase the displayed frame-rate when
INTERPFRM == 1. It is important to reemphasize that this interpolation is outside the decoding process.

7.1.1.2 Frame Count (FRMCNT) (2 bits)

FRMCNT is a 2-bit syntax element that shall be present in all picture headers for simple and main profiles. The value of
this field should be used as a frame count and shall be incremented by one for each consecutive frame (in coded order)
in the bitstream. FRMCNT has no effect on the decoding or display process.

Note: FRMCNT is a modulo 4 counter that can be used to check if any frames have been lost at the decoder input.

7.1.1.3 Range Reduction Frame (RANGEREDFRM) (1 bit)

RANGEREDFRM is a 1-bit syntax element present in all frame types, for the main profile only, if the sequence level
flag RANGERED == 1. If RANGEREDFRM == 1, then range reduction shall be used for the frame. If
RANGEREDFRM == 0, then range reduction shall not be used for the frame. For a B Frame or a BI Frame, the value
of the RANGEREDFRM syntax element shall be identical to the value of the corresponding syntax element in the
subsequent anchor frame (in display order). See sections 8.1.1.4 and 8.3.4.11 for a description of range reduction
decoding.

7.1.1.4 Picture Type (PTYPE) (Variable size)

For simple and main profiles:

If the sequence level syntax element MAXBFRAMES == 0, then PTYPE shall be as defined in Table 33.

SMPTE 421M

© 2006 SMPTE 94

Table 33: Simple/Main Profile Picture Type FLC if MAXBFRAMES == 0

PTYPE FLC Picture Type

0 I

1 P

If MAXBFRAMES > 0, then PTYPE shall be as defined in Table 34.

Table 34: Main Profile Picture Type VLC if MAXBFRAMES > 0

PTYPE VLC Picture Type

1b P

01b I

00b B or BI

In simple and main profiles, if the size of any coded picture is less than or equal to one byte, that picture shall be treated
as a skipped frame.

Note: In simple and main profiles, the size of coded picture is passed to the decoder via the Transport Layer.

For advanced profile:

PTYPE shall be as defined in Table 35.

Table 35: Advanced Profile Picture Type VLC

PTYPE VLC Picture Type

110b I

0b P

10b B

1110b BI

1111b Skipped

If PTYPE indicates that the frame is skipped, then the frame shall be reconstructed as a P frame which is identical to its
reference frame. The reconstruction of the skipped frame is equivalent conceptually to copying the reference frame. A
skipped picture means that no further data is transmitted for this frame.

7.1.1.5 Buffer Fullness (BF) (7 bits)

BF is a 7-bit syntax element that shall be present in simple and main profile I picture headers. BF represents the value
of buffer fullness (as a percentage of the buffer size) at the encoder, and shall be in the range of 0 to 100%, inclusive. A
value of 100% (1111111b) shall indicate that the encoder buffer is full, and a value of 0 shall indicate that the encoder
buffer is empty. This syntax element is not used in the decoding process.

Note: The knowledge of buffer fullness at an I Frame can be useful if decoding begins at this point, and thus facilitates
implementation of trick modes.

7.1.1.6 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX is a 5-bit syntax element that shall signal the quantizer scale index for the entire frame. It is present in all
picture types. If the quantizer is signaled implicitly (this is signaled by syntax element QUANTIZER == 00b), then
PQINDEX shall specify both the picture quantizer scale (PQUANT) and the quantizer (uniform or non-uniform) used
for the frame. See section 8.1.3.8 for details on dequantization using uniform as well as non-uniform quantizers.

SMPTE 421M

© 2006 SMPTE 95

PQINDEX shall be translated to PQUANT for the case where QUANTIZER == 00b (implicit quantizer) as defined in
Table 36.

Table 36: PQINDEX to PQUANT/Quantizer Translation (Implicit Quantizer)

PQINDEX PQUANT Quantizer PQINDE
X

PQUANT Quantizer

0 NA NA 16 13 Non-uniform

1 1 Uniform 17 14 Non-uniform

2 2 Uniform 18 15 Non-uniform

3 3 Uniform 19 16 Non-uniform

4 4 Uniform 20 17 Non-uniform

5 5 Uniform 21 18 Non-uniform

6 6 Uniform 22 19 Non-uniform

7 7 Uniform 23 20 Non-uniform

8 8 Uniform 24 21 Non-uniform

9 6 Non-uniform 25 22 Non-uniform

10 7 Non-uniform 26 23 Non-uniform

11 8 Non-uniform 27 24 Non-uniform

12 9 Non-uniform 28 25 Non-uniform

13 10 Non-uniform 29 27 Non-uniform

14 11 Non-uniform 30 29 Non-uniform

15 12 Non-uniform 31 31 Non-uniform

If the quantizer is signaled explicitly at the sequence or frame level (signaled by syntax element QUANTIZER == 01b,
10b or 11b), then PQUANT shall be equal to PQINDEX for all values of PQINDEX except when PQINDEX is equal
to ‘0’. The case where PQINDEX is equal to 0 shall be SMPTE Reserved. The macroblock quantizer step size
(MQUANT) shall be initialized to PQUANT. MQUANT may be modified as described in 7.1.1.31, 7.1.3.4 and 7.1.3.5.

7.1.1.7 Half QP Step (HALFQP) (1 bit)

HALFQP is a 1-bit syntax element that shall be present in all frame types if PQINDEX is less than or equal to 8. The
HALFQP syntax element allows the picture quantizer to be expressed in half step increments over the low PQUANT
range. If HALFQP == 1, then the picture quantizer step size shall be equal to PQUANT + ½. If HALFQP == 0, then the
picture quantizer step size shall be equal to PQUANT. Therefore, if the uniform quantizer is used, then half step sizes
are possible up to PQUANT == 9 (i.e., picture quantizer step size = 1, 1.5, 2, 2.5 … 8.5, 9), and then only integer step
sizes are allowable above PQUANT == 9. For the non-uniform quantizer, half-step sizes are possible up to PQUANT
== 7 (i.e., 1, 1.5, 2, 2.5 … 6.5, 7).

Note: HALFQP applies only if a macroblock is coded using PQUANT, and does not apply if the macroblock is coded
with a quantizer value derived from VOPDQUANT syntax elements.

7.1.1.8 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER is a 1 bit syntax element that shall be present in all frame types if the syntax element QUANTIZER ==
01b. In this case, the quantizer used for the frame shall be specified by PQUANTIZER. If PQUANTIZER == 0, then
the non-uniform quantizer shall be used for the frame. If PQUANTIZER == 1, then the uniform quantizer shall be used.

SMPTE 421M

© 2006 SMPTE 96

7.1.1.9 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element that shall be present for sequences coded using the main and advanced
profiles when the sequence-layer EXTENDED_MV == 1. For the main profile, it shall be present in I, P and B pictures.
The value of this syntax element shall be ignored in main profile I pictures as this syntax element is not used in I
pictures. For the advanced profile, it shall be present in P, and B pictures.

For the simple profile, the default range shall be used. For the main profile and advanced profile, when
EXTENDED_MV == 0, the default range shall be used. The default range of motion vectors is [-64 63.f] X [-32
31.f], where f is the fraction ¾ for ¼ pixel motion and ½ for ½ pixel motion resolution. In other words, the default
range for quarter-pixel motion modes is [-64 63¾] along the horizontal (X) axis and [-32 31¾] along the vertical (Y)
axis.

When EXTENDED_MV == 1, the MVRANGE meaning shall be as defined in Table 37. Section 8.3.5.2 details the
decoding of differential motion vectors, at the macroblock layer, for different ranges specified by MVRANGE.

Table 37: Motion Vector Range Signaled by MVRANGE

MVRANGE Value MV range in full pixel units (horizontal x vertical)

0b (also default) [-64, 63.f] x [-32, 31.f]

10b [-128, 127.f] x [-64, 63.f]

110b [-512, 511.f] x [-128, 127.f]

111b [-1024,1023.f] x [-256, 255.f]

The value of the MVRANGE syntax element of a B picture shall be greater or equal to the value of the MVRANGE
syntax element of the subsequent (in display order) anchor P picture. The MVRANGE of a B picture may take any
value defined in Table 37 if the subsequent anchor is an I picture or a skipped picture.

7.1.1.10 Picture Resolution Index (RESPIC) (2 bits)

RESPIC is a 2 bit syntax element that shall be present in progressive I and P pictures if MULTIRES ==1. This syntax
element specifies the scaling factor of the current frame relative to the full resolution frame. The RESPIC syntax
element shall be as defined in Table 38. Refer to section 8.1.1.3 for a description of variable resolution coding. The
RESPIC syntax element of a P picture header shall carry the same value as the RESPIC syntax element of the closest
preceding I frame.

Table 38: Progressive picture resolution code-table

RESPIC
FLC

Horizontal
Scale

Vertical
Scale

00b Full Full

01b Half Full

10b Full Half

11b Half Half

7.1.1.11 Frame-level Transform AC Coding Set Index (TRANSACFRM) (Variable size)

TRANSACFRM is a variable-sized syntax element that shall be present in all frame types and shall be as defined in
Table 39. See sections 8.1.1.1 and 8.3.4.9 for a description of the TRANSACFRM syntax element.

SMPTE 421M

© 2006 SMPTE 97

Table 39: Transform AC coding set index code-table

TRANSACFRM Coding set
index

0b 0

10b 1

11b 2

7.1.1.12 Frame-level Transform AC Table-2 Index (TRANSACFRM2) (Variable size)

TRANSACFRM2 is a variable-sized syntax element that shall be present in I frames, and shall be as defined in Table
39. See section 8.1.1.1 for a description of the Transform AC coding sets.

7.1.1.13 Intra Transform DC Table (TRANSDCTAB) (1 bit)

TRANSDCTAB is a 1 bit syntax element that shall be present in all frame types. See section 8.1.1.2 for a description.

7.1.1.14 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION is a variable-sized syntax element that shall be present in B picture headers. It shall also be present in BI
picture headers of main profile. BFRACTION signals a fraction that may take on a limited set of fractional values
between 0 and 1, denoting the relative temporal position of the B frame within the interval formed by its anchors. This
fraction shall be used to scale co-located motion vectors for deriving the ‘Direct’ motion vectors.

The mapping of BFRACTION is defined in Table 40.

Table 40: BFRACTION VLC Table

BFRACTION
VLC

Fraction BFRACTIO
N VLC

Fraction

000b 1/2 1110101b 2/7

001b 1/3 1110110b 3/7

010b 2/3 1110111b 4/7

011b 1/4 1111000b 5/7

100b 3/4 1111001b 6/7

101b 1/5 1111010b 1/8

110b 2/5 1111011b 3/8

1110000b 3/5 1111100b 5/8

1110001b 4/5 1111101b 7/8

1110010b 1/6 1111110b SMPTE
Reserve
d

111001b1 5/6 1111111b See
below

1110100b 1/7

SMPTE 421M

© 2006 SMPTE 98

For simple and main profiles the value 1111111b shall indicate that the frame is coded as a BI Frame. For advanced
profile, this value is SMPTE Reserved, and BI Frames shall be signaled using the PTYPE syntax element.

7.1.1.15 Frame Coding Mode (FCM) (Variable size)

FCM is a variable-sized syntax element that shall be present only in advanced profile, and only if the sequence level
syntax element INTERLACE == 1. It indicates whether the frame is coded as progressive, interlace-field or interlace-
frame, and shall be as defined in Table 41. B frames shall be constrained to be of the same frame coding mode (i.e.
progressive, field-interlace or frame-interlace) as the anchor frame that follows them.

Table 41: Frame Coding Mode VLC

FCM Frame
Coding Mode

0b Progressive

10b Frame-
Interlace

11b Field-
Interlace

7.1.1.16 Temporal Reference Frame Counter (TFCNTR) (8 bits)

TFCNTR is an 8 bit syntax element that shall be present only in advanced profile, and only if the sequence level syntax
element TFCNTRFLAG == 1. TFCNTR of each coded frame shall be incremented by one modulo 256 when examined
in display order at the output of the decoding process, except when a sequence header occurs. TFCNTR of the first
frame after a sequence header shall be set to zero.

In interlace field pictures the temporal reference coded in the frame header shall be associated with both field pictures
in the frame.

7.1.1.17 Top Field First (TFF) (1 bit)

TFF is a 1 bit syntax element that shall be present in advanced profile picture headers if (PULLDOWN == 1 &&
INTERLACE == 1 && PSF == 0). TFF == 1 shall indicate that the Top Field is the first decoded field. TFF == 0 shall
indicate that the bottom field is the first decoded field. If PULLDOWN == 0, TFF shall not be present in the picture
header, and Top Field shall be the first decoded field.

7.1.1.18 Repeat First Field (RFF) (1 bit)

RFF is a one bit syntax element that shall be present in advanced profile picture headers if (PULLDOWN == 1 &&
INTERLACE == 1 && PSF == 0).

Note: RFF can be used during the display process. RFF == 1 implies that the first field can be repeated during display.
RFF == 0 implies that no repetition is necessary.

7.1.1.19 Repeat Frame Count (RPTFRM) (2 bits)

RPTFRM is a 2 bit syntax element that shall be present in advanced profile picture headers if (PULLDOWN == 1 &&
(INTERLACE == 0 || PSF == 1)). RPTFRM shall be set to the number of frames to repeat (0-3).

Note: RPTFRM can be used during the display process. It represents the number of times the frame can be repeated
during display.

7.1.1.20 Pan Scan Present Flag (PS_PRESENT) (1 bit)

PS_PRESENT is a 1 bit syntax element that shall be present in all advanced profile picture headers if the entry point
header PANSCAN_FLAG == 1. There may be up to four pan scan windows for each frame. The number of pan scan
windows in the frame is implicitly determined as defined in section 8.9.1. If PS_PRESENT == 1, then the syntax
elements PS_HOFFSET, PS_VOFFSET, PS_WIDTH and PS_HEIGHT shall also be present for each pan scan window
in the frame. If PS_PRESENT == 0, then the syntax elements PS_HOFFSET, PS_VOFFSET, PS_WIDTH and

SMPTE 421M

© 2006 SMPTE 99

PS_HEIGHT shall not be present. See section 8.9 for a description of pan scan and the definition of the four syntax
elements below.

7.1.1.21 Pan Scan Window Horizontal Offset (PS_HOFFSET) (18 bits)

PS_HOFFSET is an 18 bit syntax element that shall be present in all advanced profile progressive picture headers if the
picture header syntax element PS_PRESENT == 1. This syntax element is defined in 8.9.2.

7.1.1.22 Pan Scan Window Vertical Offset (PS_VOFFSET) (18 bits)

PS_VOFFSET is an 18 bit syntax element that shall be present in all advanced profile progressive picture headers if the
picture header syntax element PS_PRESENT == 1. This syntax element is defined in 8.9.2.

7.1.1.23 Pan Scan Window Width (PS_WIDTH) (14 bits)

PS_WIDTH is a 14 bit syntax element present that shall be present in all advanced profile progressive picture headers if
the picture header syntax element PS_PRESENT == 1. This syntax element is defined in 8.9.2.

7.1.1.24 Pan Scan Window Height (PS_HEIGHT) (14 bits)

PS_HEIGHT is a 14 bit syntax element that shall be present in all advanced profile progressive picture headers if the
picture header syntax element PS_PRESENT == 1. This syntax element is defined in 8.9.2.

7.1.1.25 Rounding Control Bit (RNDCTRL)(1 bit)

RNDCTRL is a 1 bit syntax element that shall be present in all advanced profile picture headers. The flag is used to
indicate the type of rounding used for the current frame. If RNDCTRL == 1, the parameter RND which controls
rounding shall be set to 1. Otherwise, RND shall be set to 0. In I and BI pictures, RNDCTRL shall be equal to 0. See
Section 8.3.7 for more details on the effect of RND on rounding.

7.1.1.26 UV Sampling Format (UVSAMP)(1 bit)

UVSAMP is a 1 bit syntax element that shall only be present in all advanced profile picture headers, when the sequence
level field INTERLACE == 1. If UVSAMP == 1, then progressive subsampling of the color-difference is used. If
UVSAMP == 0, interlace subsampling of the color-difference is used. This syntax element does not affect decoding of
the bitstream.

7.1.1.27 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2-bit syntax element that is present in all pictures in advanced profile when the sequence level flag
POSTPROCFLAG == 1. This element is not required for the decoding process, but may be used by the display
process. The four post-processing mode indicators shall be as defined in Table 41.

Table 42: POSTPROC code table

POSTPRO
C

Post processing Indication

00b No Post Processing

01b De-blocking

10b De-ringing

11b De-blocking && De-ringing

Note: It is desirable that decoders perform the post processing steps as indicated by the values above, and when post
processing is done, the algorithms of Annex H be used. If both post-processing steps are performed, it is preferred that
de-blocking is performed before de-ringing.

7.1.1.28 AC Prediction (ACPRED)(Variable size)

ACPRED is a bitplane coded syntax element that shall be present in all advanced profile I and BI pictures. ACPRED is
used to indicate the AC prediction status for each macroblock in the picture. See section 7.2 for a description of the
bitplane coding. See section 8.1.3.7 for a description of AC prediction.

SMPTE 421M

© 2006 SMPTE 100

7.1.1.29 Conditional Overlap Flag (CONDOVER) (Variable size)

CONDOVER is a variable-sized syntax element that shall be present only in advanced profile I pictures, and only when
OVERLAP == 1, and PQUANT is less than or equal to 8 (regardless of HALFQP). CONDOVER may take the values
of 0b, or 10b, or 11b. For the meaning of these values, and how CONDOVER affects overlap smoothing in advanced
profile, see section 8.5.2 (Rules 4c. 4d. and 4e).

7.1.1.30 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS) (Variable size)

OVERFLAGS is a bitplane coded syntax element that shall be present only in advanced profile I pictures, and only
when CONDOVER has the binary value 11b. See section 8.5.2 for a description of how OVERFLAGS affects over-
loop smoothing.

7.1.1.31 Macroblock Quantization (VOPDQUANT) (Variable size)

The VOPDQUANT syntax element shall be made up of several bitstream syntax elements as shown in Figure 21.
VOPDQUANT shall be present in Progressive P and B pictures, and in advanced profile I pictures, when the sequence
header syntax element DQUANT is nonzero.

The syntax of VOPDQUANT is dependent on the value of DQUANT. The syntax of VOPDQUANT is defined in
Table 24. The macroblock quantizer step size (MQUANT) of the individual macroblocks in the picture is modified as
specified below:

Case 1: DQUANT == 1.

 There are four possibilities in this case:

1. Those macroblocks located on the picture edge boundary shall be quantized with a second quantization
step size (ALTPQUANT), while all other macroblocks shall be quantized with the frame quantization
step size (PQUANT).

2. Two adjacent edges are signaled (see Table 45), and those macroblocks located on the two picture edges
shall be quantized with ALTPQUANT, while the rest of the macroblocks shall be quantized with
PQUANT.

3. One edge only is signaled (see Table 44) and those macroblocks located on the picture edge are
quantized with ALTPQUANT while the rest of the macroblocks are quantized with PQUANT.

4. Every single macroblock may be quantized differently. In this case, it will be indicated whether each
macroblock may be selected from only two quantization steps (PQUANT or ALTPQUANT), or whether
each macroblock may be arbitrarily quantized using any step size.

Case 2: DQUANT == 2.
1. The macroblocks located on the picture edge boundary shall be quantized with ALTPQUANT while the

rest of the macroblocks shall be quantized with PQUANT.

The VOPDQUANT syntax elements are defined as follows:

7.1.1.31.1 Differential Quantizer Frame (DQUANTFRM) (1 bit)

The DQUANTFRM is a 1-bit syntax element that shall be present only when DQUANT ==1. If
DQUANTFRM == 0, then the current picture shall only be quantized with PQUANT. The decoder shall use
the default value of zero for DQUANTFRM if DQUANT != 1.

7.1.1.31.2 Differential Quantizer Profile (DQPROFILE) (2 bits)

The DQPROFILE is a 2-bit syntax element that shall be present only when DQUANT == 1 and
DQUANTFRM == 1. It shall specify where it is allowable to change quantization step sizes within the
current picture as defined in Table 43.

SMPTE 421M

© 2006 SMPTE 101

Table 43: Macroblock Quantization Profile (DQPROFILE) Code Table

DQPROFIL
E FLC

Location

00b All four Edges

01b Double Edge

10b Single Edge

11b All Macroblocks

7.1.1.31.3 Differential Quantizer Single Boundary Edge (DQSBEDGE) (2 bits)

The DQSBEDGE is a 2-bit syntax element that shall be present when DQPROFILE == ‘Single Edge’. It
shall specify which edge will be quantized with ALTPQUANT as defined in Table 44.

Table 44: Single Boundary Edge Selection (DQSBEDGE) Code Table

DQSBEDG
E FLC

Boundary Edge

00b Left

01b Top

10b Right

11b Bottom

7.1.1.31.4 Differential Quantizer Double Boundary Edge (DQDBEDGE) (2 bits)

The DQDBEDGE is a 2-bit syntax element that shall be present only when DQPROFILE == ‘Double Edge’.
It shall specify which two edges will be quantized with ALTPQUANT as defined in Table 45.

Table 45: Double Boundary Edges Selection (DQDBEDGE) Code Table

DQDBEDG
E FLC

Boundary Edges

00b Left and Top

01b Top and Right

10b Right and Bottom

11b Bottom and Left

7.1.1.31.5 Differential Quantizer Binary Level (DQBILEVEL) (1 bit)

The DQBILEVEL is a 1-bit syntax element that shall be present only when DQPROFILE == ‘All
Macroblocks’ (see Table 43). DQBILEVEL determines the number of possible quantization step sizes which
can be used by each macroblock in the frame. See section 7.1.3.4.

7.1.1.31.6 Picture Quantizer Differential (PQDIFF) (3 bits)

PQDIFF is a 3 bit syntax element that signals either the PQUANT differential or an escape code. If PQDIFF
!= 7, then PQDIFF signals the differential, and the ABSPQ syntax element shall not be present in the
bitstream. In this case:

 ALTPQUANT = PQUANT + PQDIFF + 1

SMPTE 421M

© 2006 SMPTE 102

If PQDIFF equals 7, then PQDIFF signals the escape code and the ABSPQ syntax element shall be present in
the bitstream, and ALTPQUANT shall be decoded as:

 ALTPQUANT = ABSPQ

Note: The value of ALTPQUANT has to be in the range of 1 to 31 for the bitstream to be valid.

7.1.1.31.7 Absolute Picture Quantizer (ABSPQ) (5 bits)

ABSPQ is a 5-bit syntax element that shall be present in the bitstream only if PQDIFF equals 7. In this case,
ABSPQ shall directly signal the value of ALTPQUANT as described above.

7.1.1.32 Motion Vector Mode (MVMODE) (Variable size)

MVMODE is a variable-sized syntax element that shall be present in P and B picture headers. For P Pictures, the
MVMODE syntax element shall signal one of four motion vector coding modes, or the intensity compensation mode. If
the bitstream corresponds to the simple profile, the MVMODE syntax element shall not take the value corresponding to
intensity compensation mode.

For P pictures, depending on the value of PQUANT, MVMODE shall be as defined in either Table 46 or Table 47.

Table 46: P Picture Low rate (PQUANT > 12) MVMODE code table

MVMOD
E VLC

Mode

1b 1-MV Half-pel bilinear

01b 1-MV

001b 1-MV Half-pel

0000b Mixed-MV

0001b Intensity Compensation

Table 47: P Picture High rate (PQUANT <= 12) MVMODE code table

MVMOD
E VLC

Mode

1b 1-MV

01b Mixed-MV

001b 1-MV Half-pel

0000b 1-MV Half-pel bilinear

0001b Intensity Compensation

For B pictures, MVMODE shall be as defined in Table 48.

SMPTE 421M

© 2006 SMPTE 103

Table 48: B Picture MVMODE code table

MVMODE
VLC

Mode

1b 1-MV

0b 1-MV Half-pel Bilinear

Note: Intensity compensation cannot be signaled for B Pictures, and only two motion modes are valid

7.1.1.33 Motion Vector Mode 2(MVMODE2) (Variable size)

MVMODE2 is a variable-sized syntax element that shall be present in P pictures and only if the picture header syntax
element MVMODE == 0001b (intensity compensation, see Table 46 and Table 47). Refer to section 8.3.4.3 for a
description of motion vector mode and intensity compensation. Depending on the value of PQUANT, MVMODE2
shall be as defined in either Table 49 or Table 50.

Table 49: P Picture Low rate (PQUANT > 12) MVMODE2 code table

MVMODE
2 VLC

Mode

1b 1-MV Half-pel bilinear

01b 1-MV

001b 1-MV Half-pel

000b Mixed-MV

Table 50: P Picture High rate (PQUANT <= 12) MVMODE2 code table

MVMODE
2 VLC

Mode

1b 1-MV

01b Mixed-MV

001b 1-MV Half-pel

000b 1-MV Half-pel bilinear

7.1.1.34 Luma Scale (LUMSCALE)(6 bits)

LUMSCALE is a 6-bit syntax element that shall be present in P pictures and only if the picture header syntax element
MVMODE == 0001b (intensity compensation). LUMSCALE shall be as defined in section 8.3.8.

7.1.1.35 Luma Shift (LUMSHIFT)(6 bits)

LUMSHIFT is a 6-bit syntax element that shall be present in P pictures and only if the picture header syntax element
MVMODE == 0001b (intensity compensation). LUMSHIFT shall be as defined in section 8.3.8.

7.1.1.36 Motion Vector Type Bitplane (MVTYPEMB)(Variable size)

MVTYPEMB is a variable-sized syntax element that shall be present in P pictures if MVMODE or MVMODE2
indicates that “Mixed-MV” motion vector mode is used. The MVTYPEMB syntax element uses bitplane coding to
signal the motion vector type (1- or 4-MV) for each macroblock in the frame. MVTYPEMB shall be defined as in
section 8.3.4.3. Refer to section 8.7 for a description of the bitplane coding method. Refer to section 8.3.5.2 for a
description of the motion vector decoding process.

SMPTE 421M

© 2006 SMPTE 104

7.1.1.37 Skipped Macroblock Bit Syntax Element (SKIPMB)(Variable size)

SKIPMB is a variable-sized syntax element that shall be present in P or B pictures. The SKIPMB syntax element
signals the skipped macroblocks using a bitplane coding method. SKIPMB shall be as defined in section 8.3.4.4. Refer
to section 8.7 for a description of the bitplane coding method.

7.1.1.38 Motion Vector Table (MVTAB) (2 bits)

MVTAB is a 2-bit syntax element that shall be present only in P and B frames. The MVTAB syntax element shall
specify which of four tables is used to decode the motion vector data as defined in Table 51. Refer to sections 8.3.5.2.1
and 8.4.5.1 for a description of the motion vector decoding process.

Table 51: MVTAB code-table

MVTAB
FLC

Motion Vector Differential VLC
Table

00b Table 0 (Table 246)

01b Table 1 (Table 247)

10b Table 2 (Table 248)

11b Table 3 (Table 249)

The motion vector tables are listed in section 11.10.

7.1.1.39 Coded Block Pattern Table (CBPTAB) (2 bits)

CBPTAB is a 2-bit syntax element that shall be present in P and B frames. CBPTAB shall specify the table used to
decode the CBPCY syntax element (described in section 7.1.3.1) for each coded macroblock in P and B pictures, as
defined in Table 52. The CBP tables are listed in section 11.6. See sections 8.3.5.2 and 8.4.4.5 for a description of how
CBPCY is used.

Table 52: CBPTAB table

CBPTAB
FLC

Table used to decode CBPCY (P
& B pictures)

00b CBP Table 0 (Table 169)

01b CBP Table 1 (Table 170)

10b CBP Table 2 (Table 171)

11b CBP Table 3 (Table 172)

7.1.1.40 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

TTMBF is 1-bit syntax element that shall be present in P and B picture headers, and only if the sequence-level syntax
element VSTRANSFORM == 1. If TTMBF == 1, then the TTFRM syntax element shall also be present in the picture
layer. See sections 8.3.4.7 and 8.4.4.6 for a description.

7.1.1.41 Frame-level Transform Type (TTFRM) (2 bits)

TTFRM is a 2-bit syntax element that shall be present in P and B picture headers only if VSTRANSFORM == 1 and
TTMBF == 1. The TTFRM syntax element shall be as defined in Table 53. See sections 8.3.4.8 and 8.4.4.7 for a
description.

SMPTE 421M

© 2006 SMPTE 105

Table 53: Transform type select code-table

TTFRM
FLC

Transform type

00b 8x8 Transform

01b 8x4 Transform

10b 4x8 Transform

11b 4x4 Transform

7.1.1.42 B Frame Direct Mode Macroblock Bit syntax element (DIRECTMB)(Variable size)

DIRECTMB is a variable-sized syntax element that shall only be present in B pictures. The DIRECTMB syntax
element uses bitplane coding to specify the macroblocks in the B picture that are coded in ‘Direct’ mode. The
DIRECTMB syntax element may also specify that the ‘Direct’ mode is signaled in raw mode (see section 7.1.3.12).
Refer to section 8.7 for a description of the bitplane coding method.

7.1.2 Slice Layer
A slice represents one or more contiguous rows of macroblocks. A slice-layer is present only in the advanced profile.
Even in the advanced profile, the slice layer is optional, and may be skipped by coding a picture as a single bitstream
data unit. When a picture is coded in multiple Bitstream Data Units (BDUs), slices are used. A slice shall always begin
at the first macroblock in a row and shall always end at the last macroblock in the same or another row. Thus a slice
shall contain an integer number of complete rows. A slice shall always be byte-aligned and each slice shall be contained
in a different BDU.

The beginning of a new slice is detected through a search for start-codes as defined in Annex E. The first BDU in a
frame shall be preceded by the frame start code, and shall contain the frame layer syntax elements. The first BDU in the
second field of an inter-lace field coded picture shall be preceded by the field start code, and shall contain the field
layer syntax elements. The other BDUs in the picture shall be preceded by the slice start code, and contain the slice
layer syntax elements.

When a new slice begins, motion vector predictors, predictors for AC and DC coefficients, and the predictors for
quantization parameters shall be reset. In other words, with respect to prediction, the first row of macroblocks in the
slice shall be considered to be the first row of macroblocks in the picture. This ensures that there is no inter-slice
dependency in predictors.

Further, when slices are used, all bitplane information shall be carried in raw coding mode which ensures that each
macroblock carries its own local information. For the purposes of deblocking, each slice shall be treated independently.
In other words, the top and bottom macroblock rows of each slice are treated as if they are the top and macroblocks
rows of the picture in the deblocking process. Thus, there shall be no loop-filtering across slices. No overlap smoothing
shall be allowed across a macroblock boundary if the adjacent macroblocks belong to different slices. Thus, there is no
overlap smoothing across different slices.

The Slice Layer shall be as defined in Figure 22. The syntax elements that make up the slice layer are defined in the
following sections.

7.1.2.1 Slice Address (SLICE_ADDR)(9 bits)

SLICE_ADDR is a 9-bit syntax element. The row address of the first macroblock row in the slice shall be binary
encoded in this syntax element. This syntax element may take the value from 1 to 511 as a binary value. The value 0 for
this syntax element is SMPTE Reserved.

Note: The maximum picture size of 8192 pixels corresponds to a maximum of 512 macroblock rows. Further, the first
macroblock row in the frame/field cannot be preceded by a slice header, and therefore the SLICE_ADDR syntax
element does not take the value 0.

SMPTE 421M

© 2006 SMPTE 106

7.1.2.2 Picture Header Present Flag (PIC_HEADER_FLAG)(1 bit)

PIC_HEADER_FLAG is a 1-bit syntax element that shall be present in the slice header. If PIC_HEADER_FLAG == 0,
then the picture header information shall not be repeated in the slice header. If the PIC_HEADER_FLAG == 1, the
picture header information shall be repeated in the slice header.

7.1.3 Macroblock Layer
Data for each macroblock shall consist of a macroblock header followed by the block layer. Figure 23 – Figure 26, and
Table 27 - Table 30 show the macroblock layer structure for I picture, P picture and B picture macroblocks. The
elements that make up the macroblock layer are described in the following sections. Specified in square brackets are the
types (intra, inter or both) in which the block elements occur.

7.1.3.1 Coded Block Pattern (CBPCY) (Variable size)[I, P,B]

CBPCY is a variable-sized syntax element that shall be present in all I and BI picture macroblocks, and may be present
in P and B picture macroblocks. In I and BI pictures, CBPCY shall be decoded using the VLC table of section 11.5. In
P and B pictures, CBPCY shall be decoded using the VLC table specified by the CBPTAB syntax element as described
in section 7.1.1.39. The CBPCY tables for P and B pictures are defined in section 11.6. Section 8.1.2.1 describes the
CBPCY syntax element in I picture macroblocks and section 8.3.5.5 describes the CBPCY syntax element in P picture
and B picture macroblocks.

7.1.3.2 AC Prediction Flag (ACPRED)(1 bit)[I, P,B]

ACPRED is a 1-bit syntax element that shall be present in all I and BI picture macroblocks and in intra macroblocks in
P pictures and B Pictures. In advanced profile I and BI pictures, ACPRED shall be present at the macroblock layer only
if the raw mode is used to code the ACPRED bitplane. See section 8.3.5.1 for a description of the macroblock types.
ACPRED shall also be present in a 4-MV macroblock in P pictures, only if at least one of the blocks in that macroblock
is intra-coded, and if that block(s) has a non-zero predictor. (See section 8.3.6.1.3 for details on determining if a block
has a non-zero predictor). ACPRED == 0 shall indicate that AC prediction was not used. ACPRED == 1 shall indicate
that AC prediction was used. See section 8.1.2.2 for a description of the ACPRED syntax element in I pictures and
section 8.3.6.1 for a description of the ACPRED syntax element in P and B pictures.

7.1.3.3 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

OVERFLAGMB is a 1 bit syntax element that shall be present only in advanced profile I pictures, only when
CONDOVER has the value 11b and only when the raw mode is chosen to encode the OVERFLAGS plane. In this
case, one bit shall be present in the macroblock header to indicate whether or not to perform overlap filtering to edge
pixels within the block and neighboring blocks. See section 8.5.2 for a description.

7.1.3.4 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P,B]

MQDIFF is a variable-sized syntax element that shall be present in P and B pictures, and in advanced profile I pictures
only if the picture layer syntax element DQPROFILE == ‘All Macroblocks’. The syntax depends on the DQBILEVEL
syntax element as defined below.

If DQBILEVEL == 1, then MQDIFF shall be a 1 bit syntax element and the ABSMQ syntax element shall not be
present in the bitstream. If MQDIFF == 0, then MQUANT = PQUANT (meaning that PQUANT shall be used as the
quantization step size for the current macroblock). If MQDIFF == 1, then MQUANT = ALTPQUANT.

If DQBILEVEL == 0, then MQDIFF shall be a 3 bit syntax element. In this case MQDIFF shall decode either to an
MQUANT differential or to an escape code as follows:

If MQDIFF does not equal 7, then MQDIFF shall decode to the differential and the ABSMQ syntax element
shall not be present in the bitstream. In this case:

 MQUANT = PQUANT + MQDIFF

MQUANT shall be in the range of 1 to 31 for the bitstream to be valid. If MQDIFF equals 7, then the ABSMQ
syntax element shall be present in the bitstream and MQUANT shall be decoded as:

 MQUANT = ABSMQ

Figure 29 defines this computation of MQUANT.

SMPTE 421M

© 2006 SMPTE 107

if (DQPROFILE == ‘all macroblocks‘) {
 if (DQBILEVEL) {
 //Decode 1 bit flag MQDIFF
 if (MQDIFF == 0)
 MQUANT = PQUANT
 else
 MQUANT = ALTPQUANT
 }
 else {
 //Decode 3 bit syntax element MQDIFF
 if (MQDIFF != 7) {
 MQUANT = PQUANT + MQDIFF; // Note MQUANT has be in the range 1 to 31
 }
 else {
 //Decode 5 bit syntax element ABSMQ
 MQUANT = ABSMQ; // Note MQUANT has to be in the range 1 to 31
 }
 }
}

Figure 29: Calculation of MQUANT when DQPROFILE == ‘all macroblocks’

7.1.3.5 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P,B]

ABSMQ is a 5 bit syntax element that shall be present in the bitstream only if MQDIFF == 7. In this case, ABSMQ is
decoded to directly derive the value of MQUANT as defined in Figure 29 above (i.e. MQUANT == ABSMQ).

7.1.3.6 MV Mode Bit (MVMODEBIT)(1 bit)[P]

MVMODEBIT is a 1-bit syntax element that shall be present in P frame macroblocks if the picture is coded in ‘Mixed-
MV’ Mode, and only when the raw mode is chosen to code the MVTYPEMB bitplane (see section 7.1.1.36). The
definition of raw mode is where the IMODE Coding Mode is set to ‘Raw’ as defined in section 7.2.2 (Table 69). If
MVMODEBIT == 0, then the macroblock shall be coded in 1-MV mode, and if MVMODEBIT == 1, then the
macroblock shall be coded in 4-MV mode.

7.1.3.7 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element that shall be present in P and B frame macroblocks if the raw mode is used to
code the SKIPMB bitplane (see section 7.1.1.32). For definition of raw mode, see section 7.2.2 (Table 69). If
SKIPMBBIT == 1, then the macroblock shall be skipped. If SKIPMBBIT == 0, the macroblock shall not be skipped.
See sections 8.3.4.4 and 8.4.4.3 for details on skipped macroblocks.

7.1.3.8 Motion Vector Data (MVDATA)(Variable size)[P]

MVDATA is a variable sized syntax element that may be present in P picture macroblocks. This syntax element
decodes to the motion vector(s) for the macroblock. The table used to decode this syntax element is specified by the
MVTAB syntax element in the picture layer as specified in section 7.1.1.38. See section 8.3.5.2.1 for a description of
the motion vector decode process.

7.1.3.9 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P]

HYBRIDPRED is a 1-bit syntax element per motion vector that may be present in P picture macroblocks. Section
8.3.5.3.5 describes how HYBRIDPRED is used in the decoding process.

SMPTE 421M

© 2006 SMPTE 108

7.1.3.10 MB-level Transform Type (TTMB)(Variable size)[P,B]

The TTMB syntax element is a variable syntax element and shall be present in P and B picture inter-coded
macroblocks, if the picture layer syntax element TTMBF == 0, and if at least one of the blocks has non-zero
coefficients (i.e. at least one coded block in the macroblock). The TTMB syntax element shall specify the transform
type, the signal level and the subblock pattern. If the signal level specifies macroblock mode, the transform type
decoded from the TTMB syntax element shall be used to decode all coded blocks in the macroblock. If the signal level
signals block mode, then the transform type decoded from the TTMB syntax element shall be used to decode the first
coded block in the macroblock. The transform type of the remaining blocks shall be decoded at the block level. If the
transform type is 8x4 or 4x8, then the subblock pattern shall indicate the subblock pattern of the first block. The
subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-zero coefficient.

The table used to decode the TTMB syntax element depends on the value of PQUANT. For PQUANT less than or
equal to 4, Table 54 shall be used. For PQUANT greater than 4 and less than or equal to 12, Table 55 shall be used. For
PQUANT greater than 12, Table 56 shall be used.

Table 54: High Rate (PQUANT < 5) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

11b 8x8 Block NA

101110b 8x4 Block Bottom

1011111b 8x4 Block Top

00b 8x4 Block Both

10110b 4x8 Block Right

10101b 4x8 Block Left

01b 4x8 Block Both

100b 4x4 Block NA

10100b 8x8 Macroblock NA

1011110001b 8x4 Macroblock Bottom

101111001b 8x4 Macroblock Top

101111011b 8x4 Macroblock Both

101111000000b 4x8 Macroblock Right

101111000001b 4x8 Macroblock Left

10111100001b 4x8 Macroblock Both

101111010b 4x4 Macroblock NA

SMPTE 421M

© 2006 SMPTE 109

Table 55: Medium Rate (5 <= PQUANT < 13) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110b 8x8 Block NA

0110b 8x4 Block Bottom

0011b 8x4 Block Top

0111b 8x4 Block Both

1111b 4x8 Block Right

1110b 4x8 Block Left

000b 4x8 Block Both

010b 4x4 Block NA

10b 8x8 Macroblock NA

0010100b 8x4 Macroblock Bottom

0010001b 8x4 Macroblock Top

001011b 8x4 Macroblock Both

001001b 4x8 Macroblock Right

00100001b 4x8 Macroblock Left

0010101b 4x8 Macroblock Both

00100000b 4x4 Macroblock NA

SMPTE 421M

© 2006 SMPTE 110

Table 56: Low Rate (PQUANT >= 13) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110b 8x8 Block NA

000b 8x4 Block Bottom

1110b 8x4 Block Top

00101b 8x4 Block Both

010b 4x8 Block Right

011b 4x8 Block Left

0011b 4x8 Block Both

1111b 4x4 Block NA

10b 8x8 Macroblock NA

0010000001b 8x4 Macroblock Bottom

00100001b 8x4 Macroblock Top

001001b 8x4 Macroblock Both

00100000001b 4x8 Macroblock Right

001000001b 4x8 Macroblock Left

0010001b 4x8 Macroblock Both

00100000000b 4x4 Macroblock NA

7.1.3.11 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[P]

BLKMVDATA is a variable-sized syntax element that that may be present in P picture macroblocks that are coded in 4-
MV mode. This syntax element decodes to the motion information for the block. The table used to decode this syntax
element shall be specified by the MVTAB syntax element in the picture layer as specified in section 7.1.1.38. See
section 8.3.5.2.1 for a description of when the BLKMVDATA syntax element is present and how it is used.

7.1.3.12 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element that shall be present in B frame macroblocks if the frame level syntax element
DIRECTMB (see section 7.1.1.42) indicates that raw mode is used (see section 7.2.2, Table 69). If DIRECTBBIT == 1,
then the macroblock shall be decoded using ‘Direct’ mode. See section 8.4.5.3 for details on ‘Direct’ mode.

7.1.3.13 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element that may be present in B picture macroblocks. This syntax element decodes to
the first motion vector for the macroblock. The table used to decode this syntax element shall be specified by the
MVTAB syntax element in the picture layer as specified in section 7.1.1.38. The decoding procedure for BMV1 is
described in section 8.4.5.5.

7.1.3.14 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]

BMVTYPE is a variable sized syntax element that may be present in B frame macroblocks and indicates whether the
macroblock uses forward, backward or interpolated prediction. The value of BFRACTION (in the picture header, see
section 7.1.1.14) along with BMVTYPE shall determine which type is used as defined in Table 57.

SMPTE 421M

© 2006 SMPTE 111

Table 57: B Frame Motion Prediction Type

7.1.3.15 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element that shall be present in B picture macroblocks if the Interpolated mode is used.
This syntax element decodes to the forward motion vector for the macroblock. In this case, the backward motion vector
is decoded from BMV1. If BMV2 is present, it shall not indicate that the macroblock is intra-coded (i.e. decoding of
BMV2 sets the corresponding intra_flag to 0). The table used to decode this syntax element shall be specified by the
MVTAB syntax element in the picture layer as specified in section 7.1.1.38. The decoding procedure for BMV2 is
described in section 8.4.5.5and 8.3.5.2.1

7.1.4 Block Layer
Figure 27 and Figure 28 show the block layer syntax elements for intra and inter-coded blocks respectively. The
elements that make up the block layer are described in the following sections. Specified in square brackets are the types
(intra, inter or both) in which the block elements occur.

7.1.4.1 Transform DC Coefficient (DCCOEF)(Variable size)[intra]

The DCCOEF is a variable-sized syntax element that shall only be present in intra-coded blocks and decodes to either
the transform DC differential or the escape code. Refer to section 8.1.3.1 for a definition of the Transform DC decoding
process. One of two code tables is used to decode the DCCOEF and the chosen table shall be specified by the
TRANSDCTAB syntax element in the picture header as described in section 8.1.1.2. Section 11.7 lists the DC tables.

7.1.4.2 Transform DC Coefficient (DCCOEFESC)(variable size)[intra]

The DCCOEFESC syntax element shall only be present in intra-coded blocks and only if DCCOEF decodes to the
escape code (refer to 7.1.4.7). The size of DCCOEFESC syntax element may be 8, 9 or 10 bits, depending on the
quantization step size of the block. Refer to section 8.1.3.1 for a description of the Transform DC decoding process.

7.1.4.3 Transform DC Coefficient Extension for Quant1 (DCCOEF_EXTQUANT1)(2 bit)[intra]

The DCCOEF_EXTQUANT1 is a 2-bit syntax element that shall only be present in intra-coded blocks, and only if
DCCOEF is decodes to a non-zero and non-escape code value, and if the quantizer step size for the block has the value
1. This syntax element shall be used in conjunction with DCCOEF to determine the value of the DC differential when
the quantizer step size takes the value 1. Refer to section 8.1.3.1 for a description of the Transform DC decoding
process.

7.1.4.4 Transform DC Coefficient Extension for Quant2 (DCCOEF_EXTQUANT2)(1 bit)[intra]

The DCCOEF_EXTQUANT2 is a 1-bit syntax element that shall only be present in intra-coded blocks, and only if
DCCOEF decodes to a non-zero and non-escape code value, and if the quantizer step size for the block has the value 2.
This syntax element shall be used in conjunction with DCCOEF to determine the value of the DC differential when the
quantizer step size takes the value 2. Refer to section 8.1.3.1 for a description of the Transform DC decoding process.

7.1.4.5 Transform DC Sign (DCSIGN)(1 bit)[intra]

DCSIGN is a one-bit syntax element that indicates the sign of the DC differential. It shall only be present if DCCOEF
decodes to a non-zero value. If DCSIGN == 0, then the DC differential is positive. If DCSIGN == 1, then the DC
differential is negative.

Motion Prediction Type BMVTYPE
VLC

Fraction (derived
from BFRACTION)

>= 1/2

Fraction (derived
from BFRACTION)

< 1/2

0b Backward Forward

10b Forward Backward

11b Interpolated Interpolated

SMPTE 421M

© 2006 SMPTE 112

7.1.4.6 Transform AC Coefficient 1 (ACCOEF1)(Variable size)[both]

ACCOEF1 is a variable-sized syntax element that may be present in both intra and inter blocks. This is a variable-
length codeword that shall decode to the run, level and last_flag for each non-zero AC coefficient. Refer to section
8.1.3.4 for a description of the Transform AC decoding process. One of three code tables shall be used to decode
ACCOEF1. The table is signaled in the picture header by the TRANSACFRM or TRANSACFRM2 as defined in
sections 8.1.3.4 and 8.3.4.9. Section 11.8 lists the AC code tables.

7.1.4.7 Transform AC Escape Decoding Mode (ESCMODE)(Variable size)[both]

ESCMODE is a variable-sized syntax element that may be present in both intra and inter blocks. It shall only be present
if ACCOEF1 decodes to the escape code. ESCMODE shall specify which of three escape decoding methods are used to
decode the AC coefficient. Table 58 shows the code-table used to decode the escape modes.

Table 58: AC escape decoding mode code-table

ESCMODE
VLC

AC Escape
Decoding
Mode

1b Mode 1

01b Mode 2

00b Mode 3

If Mode 1 or Mode 2 decoding mode is specified, then the bitstream shall contain the ACCOEF2 element as described
in section 7.1.4.8. If Mode 3 decoding mode is specified, then the bitstream shall contain the ESCLR, ESCRUN,
ESCLVL and LVLSIGN2 syntax elements and may contain the ESCLVLSZ and ESCRUNSZ elements, as described in
sections 7.1.4.9 - 7.1.4.11.

7.1.4.8 Transform AC Coefficient 2 (ACCOEF2)(Variable size)[both]

ACCOEF2 is a variable-sized syntax element that may be present in both intra and inter blocks. It shall only be present
if ACCOEF1 decodes to the escape code and if the ESCMODE syntax element (described in section 7.1.4.7) specifies
AC decoding Escape Mode 1 or 2 (refer to section 8.1.3.4 for a description of the Transform AC decoding process).
One of three code tables shall be used to decode ACCOEF2. The table is signaled in the picture header by the
TRANSACFRM or TRANSACFRM2 as described in sections 8.1.3.4 and 8.3.4.9. Section 11.8 lists the AC tables.

7.1.4.9 Escape Mode 3 Last Run (ESCLR)(1 bit)[both]

ESCLR is a 1-bit syntax element that may be present in both intra and inter blocks. It shall only be present if
ESCMODE specifies AC decoding Escape Mode 3. ESCLR shall specify whether this coefficient is the last non-zero
coefficient in the block. If ESCLR == 1, then this coefficient shall be the last non-zero coefficient. If ESCLR == 0, then
this coefficient shall not be the last non-zero coefficient.

7.1.4.10 Escape Mode 3 Level Size (ESCLVLSZ)(Variable size)[both]

ESCLVLSZ is a variable-sized syntax element that may be present in both intra and inter blocks. It shall only be
present if ESCMODE specifies AC decoding Escape Mode 3, and if this is the first time Mode 3 has been signaled
within the current picture (in other words, all subsequent instances of Escape Mode 3 coding within this picture do not
have this syntax element). ESCLVLSZ shall specify the codeword size for the Mode 3 escape-coded level values for
the entire picture. If there are multiple slices in a picture, ESCLVLSZ shall only be present in a slice if ESCMODE
specifies AC decoding Escape Mode 3 and if this is the first time Mode 3 has been signaled within that slice. In this
case, ESCLVLSZ shall have the same value in all the slices of that picture.

Table 59 (conservative table) shall be used to decode ESCLVLSZ when PQUANT is between 1 and 7, both values
inclusive, or if VOPDQUANT syntax element is present in that picture and the quantizer can vary in the picture as
determined by the pseudo-code in Table 24. Table 60 (efficient table) shall be used when PQUANT is 8 and higher,
and if VOPDQUANT syntax element is absent in that picture or if the same quantizer is used in the picture as
determined by the pseudo-code in Table 24.

SMPTE 421M

© 2006 SMPTE 113

Note: The conservative table covers the widest range of possible transform values, whereas the efficient table covers a
limited subset and is therefore used when the values may be guaranteed to be within the available range.

Table 59: Escape Mode 3 level codeword size conservative code-table (used for 1 <= PQUANT <= 7 or if
VOPDQUANT is present and quantizer can vary in picture)

1 <= PQUANT <= 7

ESCLVLS
Z VLC

Level codeword size

001b 1

010b 2

011b 3

100b 4

101b 5

110b 6

111b 7

00000b 8

00001b 9

00010b 10

00011b 11

SMPTE 421M

© 2006 SMPTE 114

Table 60: Escape Mode 3 level codeword size efficient code-table (used for 8 <= PQUANT <= 31, and if
VOPDQUANT is absent or if the same quantizer is used in the picture)

8 <= PQUANT <= 31

ESCLVLS
Z VLC

Level codeword size

1b 2

01b 3

001b 4

0001b 5

00001b 6

000001b 7

000000b 8

7.1.4.11 Escape Mode 3 Run Size (ESCRUNSZ)(2 bits)[both]

ESCRUNSZ is a 2-bit syntax element that may be present in both intra and inter blocks. It shall only be present if
ESCMODE specifies AC decoding escape mode 3, and if this is the first time escape mode 3 is signaled within the
frame. ESCRUNSZ shall specify the codeword size for the mode 3 escape-coded run values for the entire frame. If
there are multiple slices in a frame, ESCRUNSZ shall be present in a slice if this is the first time mode 3 has been
signaled within that slice, and ESCRUNSZ shall have the same value in all the slices of that frame. The run codeword
size shall be decoded according to Table 61:

Table 61: Escape Mode 3 run codeword size code-table

ESCRUNSZ FLC Run codeword size

00b 3

01b 4

10b 5

11b 6

7.1.4.12 Escape Mode 3 Run (ESCRUN)(Variable size)[both]

ESCRUN may be present in both intra and inter blocks. It shall only be present if ESCMODE specifies AC decoding
Escape Mode 3. The size of the ESCRUN codeword is fixed throughout the picture, with the size being specified in the
ESCRUNSZ syntax element described in section 7.1.4.11. ESCRUN shall directly decode to the run value for the
coefficient. For example, if the size (from ESCRUNSZ) is 4 bits and the value is 0101b, then the run is decoded as 5.

7.1.4.13 Escape Mode 3 Level Sign (LVLSGN2)(1 bit)[both]

LVLSGN2 is a 1-bit syntax element that may be present in both intra and inter blocks. It shall only be present if
ESCMODE specifies AC decoding Escape Mode 3. LVLSGN2 specifies the sign of the decoded level value
(ESCLVL). If LVLSGN2 == 0, then the level shall be positive. If LVLSGN2 == 1, then the level shall be negative.

SMPTE 421M

© 2006 SMPTE 115

7.1.4.14 Escape Mode 3 Level (ESCLVL)(Variable size)[both]

ESCLVL may be present in both intra and inter blocks. It shall only be present if ESCMODE specifies AC decoding
Escape Mode 3. The size of the ESCLVL codeword is fixed throughout the frame, with the size being specified in the
ESCLVLSZ syntax element described in section 7.1.4.10. ESCLVL shall directly decode to the level value for the
coefficient. For example, if the size (from ESCLVLSZ) is 3 bits and the value is 110b, then the run is decoded as 6.

7.1.4.15 Transform AC Level Sign (LVLSIGN)(1 bit)[both]

LVLSIGN may be present in both intra and inter blocks. It shall always be present unless ESCMODE specifies AC
decoding Escape Mode 3. LVLSIGN is a one-bit value that shall specify the sign of the AC level. Refer to section
8.1.3.4 for a description of the Transform AC decoding process. If LVLSIGN == 0, then the level shall be positive. If
LVLSIGN == 1, then the level shall be negative.

7.1.4.16 Block-level Transform Type (TTBLK)(Variable size)[inter]

The TTBLK syntax element shall be present only in inter-coded blocks and only if the macroblock level syntax element
TTMB (see section 7.1.3.10) indicates that the signaling level is ‘Block.’ The 8x8 error blocks may be transformed
using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4 Transforms. The TTBLK syntax
element shall decode to the transform type for the inter-coded block as well as the subblock pattern if the transform type
is 8x4 or 4x8. The table used to decode the TTBLK syntax element depends on the value of PQUANT.

If PQUANT <= 4, then Table 62 shall be used.

If PQUANT > 4 && PQUANT <= 12, then Table 63 shall be used.

If PQUANT > 12, then Table 64 shall be used.

The TTBLK syntax element shall not be present for the first inter-coded block in each macroblock since the transform
type and subblock pattern decoded in TTMB is used for the first inter-coded block. TTBLK shall be present for each
inter-coded block after the first. The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-
zero coefficient.

Table 62: High Rate (PQUANT < 5) TTBLK VLC Table

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

00b 8x4 Both

01b 4x8 Both

11b 8x8 NA

101b 4x4 NA

10000b 8x4 Top

10001b 8x4 Bottom

10010b 4x8 Right

10011b 4x8 Left

SMPTE 421M

© 2006 SMPTE 116

Table 63: Medium Rate (5 =< PQUANT < 13) TTBLK VLC Table

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

11b 8x8 NA

000b 4x8 Right

001b 4x8 Left

010b 4x4 NA

011b 8x4 Both

101b 4x8 Both

1000b 8x4 Bottom

1001b 8x4 Top

Table 64: Low Rate (PQUANT >= 13) TTBLK VLC Table

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

01b 8x8 NA

000b 4x8 Both

001b 4x4 NA

100b 8x4 Bottom

110b 4x8 Right

111b 4x8 Left

1010b 8x4 Both

1011b 8x4 Top

7.1.4.17 Transform sub-block pattern (SUBBLKPAT)(Variable size)[inter]

The SUBBLKPAT syntax element shall only be present in inter-coded blocks and only if the transform type for the
block is 4x4, or if the transform type for the block is 8x4, 4x8 and the two conditions described below are satisfied:

a) if the transform type is specified at the frame level,
b) if the transform type is specified at the macroblock level and the block is not the first coded inter block in the

macroblock.

For 4x4 transform types, the SUBBLKPAT syntax element shall always be present, and it shall specify which of the 4
4x4 subblocks have at least one non-zero coefficient.

SMPTE 421M

© 2006 SMPTE 117

Figure 30: 4x4 Subblocks

The subblock pattern shall be decoded as a 4 bit field where each bit indicates whether the corresponding subblock
contains at least one non-zero coefficient. Figure 30 shows the labeling of the 4 subblocks that make up an 8x8 block.
The subblock pattern shall be decoded as follows:

Subblock pattern = 8 * SB0 + 4 * SB1 + 2 * SB2 + SB3

Where:

SBx = 0 if the corresponding subblock does not contain any non-zero coefficients and

SBx = 1 if the corresponding subblock contains at least one non-zero coefficient.

The following tables show the VLC codewords used to decode the subblock pattern. The table used depends on the
value of PQUANT.

If PQUANT <= 4, then Table 65 shall be used.

If PQUANT > 4 && PQUANT <= 12, then Table 66 shall be used.

If PQUANT > 12, then Table 67 shall be used.

Table 65: High Rate (PQUANT < 5) SUBBLKPAT VLC Table

SUBBLKPA
T VLC

Subblock
Pattern

SUBBLKPA
T VLC

Subblock
Pattern

1b 15 01010 8

0000b 11 01011 4

0001b 13 01100 2

0010b 7 01110 1

00110b 12 01111 14

00111b 3 011010 6

01000b 10 011011 9

01001b 5

SMPTE 421M

© 2006 SMPTE 118

Table 66: Medium Rate (5 =< PQUANT < 13) SUBBLKPAT VLC Table

SUBBLKPA
T VLC

Subblock
Pattern

SUBBLKPA
T VLC

Subblock
Pattern

01b 15 1111 4

000b 2 00100 6

0011b 12 00101 9

1000b 3 10110 14

1001b 10 10111 7

1010b 5 11000 13

1101b 8 11001 11

1110b 1

Table 67: Low Rate (PQUANT >= 13) SUBBLKPAT VLC Table

SUBBLKPA
T VLC

Subblock
Pattern

SUBBLKPA
T VLC

Subblock
Pattern

010b 4 1111 15

011b 8 00000 6

101b 1 00001 9

110b 2 10010 14

0001b 12 10011 13

0010b 3 11100 7

0011b 10 11101 11

1000b 5

Bottom

Top

8x4 Transform 4x8 Transform

Left Right

Figure 31: 8x4 and 4x8 Subblocks

For 8x4 or 4x8 transform types (shown in Figure 31), the SUBBLKPAT syntax element specifies which of the two sub-
blocks have at least one non-zero coefficient. For 8x4 and 4x8 transform types, SUBBLKPAT shall be present only if
either a) the transform type is specified at the frame level (TTMBF == 1), or b) if the transform type is specified at the
macroblock level and if the block is not the first coded inter block in the macroblock. If the transform type is specified
at the macroblock level, the coded block pattern for the first coded block in the macroblock is decoded from the TTMB
syntax element. SUBBLKPAT shall be decoded according to Table 68 (an X indicates that the sub-block contains at
least one non-zero coefficient):

SMPTE 421M

© 2006 SMPTE 119

Table 68: 8x4 and 4x8 Transform sub-block pattern code-table for Progressive pictures

8x4 Sub-block pattern 4x8 Sub-block pattern SUBBLKPA
T VLC

Top Bottom Left Right

10b X X

0b X X X X

11b X X

7.2 Bitplane Coding Syntax
Various frame-level syntax elements use a bitplane coding scheme to indicate the status of the macroblocks that make
up the frame. For example, in P and B frames, the presence of skipped macroblocks is signaled with a bit set to 1 and
the presence of a non-skipped macroblock is signaled with a bit set to 0. These bits are coded as a frame-level bitplane.
The following diagram shows the elements that make up the bitplane. Refer to section 8.7 for a definition of bitplane
coding.

DATABITS

Bitplane Syntax

IMODE

INVERT

Figure 32: Syntax diagram for the bitplane coding

7.2.1 Invert Flag (INVERT) (1-bit)
INVERT is a 1-bit syntax element. Refer to section 8.7.1 for a description of how the INVERT value is used in
decoding the bitplane.

7.2.2 Coding Mode (IMODE) (variable)
IMODE is a variable length syntax element that specifies the coding mode used to decode the bitplane. The IMODE
syntax element shall be as defined in Table 69. Refer to section 8.7.2 for a description of how the IMODE value is used
in decoding the bitplane.

SMPTE 421M

© 2006 SMPTE 120

Table 69: IMODE VLC Code table

IMOD
E
VLC

Coding Mode

10b Norm-2

11b Norm-6

010b Rowskip

011b Colskip

001b Diff-2

0001b Diff-6

0000b Raw

7.2.3 Bitplane Coding Bits (DATABITS) (variable)
DATABITS is a variable sized syntax element that decodes the bitplane. The method used to decode the bitplane shall
be determined by the value of IMODE. Refer to section 8.7.3 for a description the different coding methods.

8 Progressive Decoding Process
This section describes the decoding processes required for decoding progressive I pictures (section 8.1), progressive BI
pictures (section 8.2), progressive P pictures (section 8.3) and progressive B pictures (section 8.4) for all profiles.

This section also defines the processes that are common to progressive coded picture types including the overlapped
transform decoding process (section 8.5), the in-loop deblock filtering process (section 8.6), the bitplane coding
process (section 8.7), the sync markers for simple/main profiles (section 8.8), and the pan-scan decoding process for
advanced profile (section 8.9).

8.1 Progressive I Frame Picture Decoding
The following sections describe the processes for decoding progressive I frame pictures.

Section 8.1.1 defines the picture layer decoding, and section 8.1.2 defines the macroblock and section 8.1.3 defines
block layer decoding.

8.1.1 Progressive I Frame Picture Layer Decode
Figure 13 defines the elements that make up the I Picture layer header for simple and main profiles. Figure 15 defines
the elements that make up the I Frame Picture layer header for the advanced profile. The following sections provide
extra detail for those elements that are not self-explanatory.

8.1.1.1 Frame-level Transform AC Table Index (TRANSACFRM and TRANSACFRM2)

TRANSACFRM (7.1.1.11) and TRANSACFRM2 (7.1.1.12) are variable-length syntax elements that are present in the
picture layer. The TRANSACFRM syntax element shall provide the index that selects the coding set used to decode the
Transform AC coefficients for the Cb, Cr blocks. The TRANSACFRM2 syntax element shall provide the index that
selects the coding set used to decode the Transform AC coefficients for the Y blocks. Table 39 defines the Transform
AC Coding Set Index code table that shall be used to decode the TRANSACFRM and TRANSACFRM2 syntax
elements. Refer to section 8.1.3.4 for a description of AC coefficient decoding.

SMPTE 421M

© 2006 SMPTE 121

8.1.1.2 Intra Transform DC Table (TRANSDCTAB)

TRANSDCTAB (7.1.1.13) is a one-bit syntax element that shall specify which of two tables is used to decode the
Transform DC coefficients in intra-coded blocks. If TRANSDCTAB == 0, then the low motion tables of Section 11.7.1
shall be used. If TRANSDCTAB == 1, then the high motion tables of Section 11.7.2 shall be used.

8.1.1.3 Picture Resolution Index (RESPIC)

The RESPIC syntax element in I pictures shall specify the scaling factor of the decoded I picture relative to a full
resolution frame. The decoded picture may be full resolution or half the original resolution in either the horizontal or
vertical dimensions or half resolution in both dimensions. The scaling factor shall be decoded from the RESPIC syntax
element according to Table 38.

Note: RESPIC is not used in advanced profile.

The resolution decoded in the I picture RESPIC syntax element shall apply to all subsequent P pictures until the next I
picture. In other words, all P pictures are coded at the same resolution as the closest preceding I picture. The RESPIC
syntax element that is present in a P picture header shall carry the same value as the RESPIC syntax element of the
closest temporally preceding I frame.

The pseudo-code of Figure 12 specifies how the new frame dimensions shall be calculated if a down-sampled
resolution is indicated.

X = 16 * ((CodedWidth + 15) / 16)
Y = 16 * ((CodedHeight + 15) / 16)
x = new horizontal resolution
y = new vertical resolution
hscale = horizontal scaling factor (0 = full resolution, 1= half resolution)
vscale = vertical scaling factor (0 = full resolution, 1= half resolution)

x = X
y = Y
if (hscale == 1)
{
 x = X / 2
 if ((x & 15) != 0)
 x = x + 16 – (x & 15)
}
if (vscale == 1)
{
 y = Y / 2
 if ((y & 15) != 0)
 y = y + 16 – (y & 15)
}

Figure 33: Calculation of Frame Dimensions in Multires Down-sampling Pseudo-code

If the decoded picture is one of the sub-sampled resolutions, then it may be up-sampled to full resolution prior to
display according to Annex B.

8.1.1.4 Range Reduction Frame - I Frame (RANGEREDFRM)

The RANGEREDFRM shall only be present when RANGERED == 1 at the sequence level.

SMPTE 421M

© 2006 SMPTE 122

When RANGEREDFRM == 1 for the current I picture, the current decoded picture shall be scaled up while keeping the
original reconstructed picture for use in future motion compensation. Each pixel of the picture shall be scaled up
according to the following formula:
Y[n] = clip((Y[n] – 128) * 2 + 128);
Cb[n] = clip((Cb[n] – 128) * 2 + 128);
Cr[n] = clip((Cr[n] – 128) * 2 + 128);

8.1.2 Macroblock Layer Decode
As shown in Figure 8, the picture is composed of macroblocks and blocks. Figure 23 shows the elements that make up
the I Picture macroblock layer.

8.1.2.1 Coded Block Pattern (CBPCY)

The coded block pattern specifies which of the six blocks that make up the macroblock have AC coefficient
information coded within the bitstream. The coded block pattern is derived from the six-bit value obtained from
decoding the variable-length CBPCY syntax element in the macroblock header. The table of section 11.5 shall be used.
The coded block pattern (cbpcy) shall be derived from the six-bit value decoded from the CBPCY syntax element
(decoded_cbpcy) as follows:

cbpcy = (predicted_Y0 << 5)| (predicted_Y1 << 4) | (predicted_Y2 << 3) | (predicted_Y3 << 2)|
(decoded_cbpcy & 0x03)
where predicted_Y0 .. predicted_Y3 are each one-bit values calculated as follows:
if (LT3 == T2)

predicted_Y0 = L1,
else
 predicted_Y0 = T2
predicted_Y0 ^= ((decoded_cbpcy >> 5) & 0x01);
if (T2 == T3)

predicted_Y1 = predicted_Y0
else
 predicted_Y1 = T3
predicted_Y1 ^= ((decoded_cbpcy >> 4) & 0x01);
if (L1 == predicted_Y0)
 predicted_Y2 = L3
else
 predicted_Y2 = predicted_Y0
predicted_Y2 ^= ((decoded_cbpcy >> 3) & 0x01);
if (predicted_Y0 == predicted_Y1)
 predicted_Y3 = predicted_Y2
else
 predicted_Y3 = predicted_Y1
predicted_Y3 ^= ((decoded_cbpcy >> 2) & 0x01);

Figure 34: Calculation of cbpcy

L0, L1, L2, L3, LT3, T0, T1, T2 and T3 are one-bit values representing the coded status of the neighboring luma blocks
as illustrated in Figure 35. If the neighboring block is outside the frame boundaries, or if the neighboring block belongs
to a different slice, its coded status shall be set to zero. The figure shows the four luma blocks which make up the
current macroblock outlined in a heavy border along with blocks from the neighboring macroblocks. The values of T0,

SMPTE 421M

© 2006 SMPTE 123

T1, etc define whether the corresponding block was coded or not. For example, if L0 == 1, then block Y0 in the
macroblock to the immediate left of the current macroblock was coded. If L0 == 0, then the block was not coded.

Note: The cbpcy bits corresponding to Cb and Cr are not affected by this calculation.

Figure 35: CBP encoding using neighboring blocks

The six-bit coded block pattern (cbpcy) shall specify which of the six blocks that make up the macroblock have at least
one non-zero AC coefficient coded in the block layer bitstream. The bit positions in the six-bit coded block pattern
syntax element shall correspond to the six blocks as defined in Table 70 (bit position 0 is the rightmost bit):

Table 70: Coded block pattern bit position

Coded Block Pattern Bit Position

5 4 3 2 1 0

Block Y0 Y1 Y2 Y3 Cb Cr

A bit value of 1 in the coded block pattern shall indicate that the corresponding block has at least one non-zero AC
coefficient coded in the block layer bitstream. A value of zero shall indicate that there are no AC coefficients coded in
the block layer bitstream.

8.1.2.2 AC Prediction Flag (ACPRED)

The ACPRED (7.1.3.2) syntax element in the macroblock header is a one-bit syntax element that shall specify whether
AC prediction is used to decode the AC coefficients for all the blocks in the macroblock. Section 8.1.3.7 describes the
AC prediction process. If ACPRED == 1, then AC prediction shall be used. If ACPRED == 0, it shall not be used.

8.1.3 Block Layer Decode
Figure 8 illustrates how each macroblock is made up of 6 blocks. As the figure shows, the 4 blocks that make up the Y
component of the macroblock are decoded first followed by the Cb and Cr blocks.

Figure 36 shows the process used to reconstruct the 8x8 blocks.

T0 T1

T2 T3

L0 L1

L2 L3

LT3

Current
Macroblock
(Y Blocks)

SMPTE 421M

© 2006 SMPTE 124

Figure 36: Intra block reconstruction

As Figure 36 shows, the DC and AC Transform coefficients are decoded using separate techniques. The DC coefficient
is decoded differentially. An optional differential coding of the left or top AC coefficients may be used. The following
sections describe the process for reconstructing intra blocks.

8.1.3.1 DC Differential Bitstream Decode

The DC coefficient shall be decoded differentially with respect to an already-decoded DC coefficient neighbor. This
section describes the process used to decode the bitstream to obtain the DC differential.

Figure 27 shows the bitstream elements used to decode the DC differential. DCCOEF (7.1.4.1) shall be decoded using
one of two VLC code tables. The table shall be specified by the TRANSDCTAB syntax element in the picture header
(see section 8.1.1.2). Based on the value of TRANSDCTAB, one of the two tables listed in section 11.7 shall be used to
decode DC Differential. If TRANSDCTAB == 0, then the low motion luma DC differential and the low motion Color-
Differential DC differential tables of Section 11.7.1 shall be used to decode the DC differential for luma and color-
difference components respectively. If TRANSDCTAB == 1, then the corresponding high motion counterparts of
Section 11.7.2 shall be used.

The pseudo-code of Figure 37, where QUANT refers to MQUANT, shall specify the DC differential decoding process
and the decoding of the syntax elements DCCOEF, DCCOEF_ESC, DCCOEF_EXTQUANT1,
DCCOEF_EXTQUANT2, and DCSIGN:

DCDifferential = vlc_decode(); // DCCOEF
if(DCDifferential != 0) {
 if(DCDifferential == ESCAPECODE) {
 if(QUANT == 1)
 DCDifferential = flc_decode(10); // DCCOEF_ESC
 else if(QUANT == 2)
 DCDifferential = flc_decode(9); // DCCOEF_ESC

Predicted block

AC Prediction

....

run level last

Quantized Transform Coefficients

AC VLD

Inverse
Quantize

Inverse
Trans

RLD

Inverse
zigzag

sca

DC VLD

DC Prediction

SMPTE 421M

© 2006 SMPTE 125

 else // QUANT is > 2
 DCDifferential = flc_decode(8); // DCCOEF_ESC
 }
 else { // DCDifferential is not ESCAPECODE
 if(QUANT == 1)
 DCDifferential = DCDifferential*4 + flc_decode(2) – 3; // DCCOEF_EXTQUANT1
 else if(QUANT == 2)
 DCDifferential = DCDifferential*2 + flc_decode(1) – 1; // DCCOEF_EXTQUANT2
 }
 DCSign = flc_decode(1); // DCSIGN
 if (DCSign == 1)
 DCDifferential = -DCDifferential
}

Figure 37: DC Differential Decoding Pseudo-code

8.1.3.2 DC Predictor

Figure 38: DC predictor candidates

The quantized DC value for the current block shall be obtained by adding the DC predictor to the DC differential
obtained as described in section 8.1.3.1. In the simple and main profiles, the DC predictor shall be obtained directly
from the DC coefficients of one of the previously decoded adjacent blocks. In the advanced profile, there may be an
additional coefficient scaling step if the macroblocks quantizers of the neighboring blocks are different than that of the
current block. The DC coefficient scaling (along with AC coefficient scaling) for prediction in advanced profile is
described in section 8.1.3.9 and these scaled DC coefficients shall be used for computing the prediction direction, as
well as the actual prediction. Figure 38 shows the current block and the candidate predictors from the adjacent blocks.
The values A, B and C represent the quantized DC values for the top, top-left and left adjacent blocks respectively.

In the following cases there are no adjacent blocks:

1) The current block is in the first block row of the frame. In this case there are no A or B (and possibly C) blocks

2) The current block is in the first block column in the frame. In this case there are no B and C (and possibly A)
blocks.

In the case of I and BI pictures in simple/main profile, the procedure specified in Figure 39 shall be used for calculating
the DC predictor and the prediction direction. In the case of I and BI pictures in advanced profile, the procedure
specified in Figure 40 shall be used for calculating the DC predictor and the prediction direction. In the advanced
profile, if the macroblock quantizer is different from those of the predictor blocks, the DC components shall be scaled
as specified in section 8.1.3.9 before selection the DC predictor and the prediction direction.

// If a neighboring block is unavailable for prediction, its DC coefficient is assumed to be the default_predictor
if (OVERLAP == 1 && PQUANT >= 9)
 default_predictor = 0; //overlap filtering is on in this case
else
 default_predictor = (1024 + (DCStepSize >> 1)) / DCStepSize; // overlap filtering is off

Current
Block

A

C

B

SMPTE 421M

© 2006 SMPTE 126

if (predictor A is unavailable)
 predictor A’s DC coefficient = default_predictor;
if (predictor B is unavailable)
 predictor B’s DC coefficient = default_predictor;
if (predictor C is unavailable)
 predictor C’s DC coefficient = default_predictor;
if (|predictor B’s DC coefficient – predictor A’s DC coefficient| <= |predictor B’s DC coefficient – predictor C’s
DC coefficient|)
{
 prediction_direction = LEFT;
 DCPredictor = predictor C’s DC coefficient;
}
else
{
 prediction_direction = TOP;
 DCPredictor = predictor A’s DC coefficient;
}

Figure 39: Calculation of DC Predictor and Prediction Direction for Simple/Main Profile I and BI pictures:
pseudo-code

if ((predictorA is available) && (predictorC is available))
{

 if (abs(predictorB’s DC coefficient – predictorA’s DC coefficient) <=
 abs(predictorB’s DC coefficient – predictorC’s DC coefficient)) {
 prediction_direction = LEFT;
 DCPredictor = predictorC’s DC coefficient;
 }
 else {
 prediction_direction = TOP;
 DCPredictor = predictorA’s DC coefficient;
 }
}
else if (predictorA is available) {
 prediction_direction = TOP;
 DCPredictor = predictorA’s DC coefficient;
 }
else if (predictorC is available) {
 prediction_direction = LEFT;
 DCPredictor = predictorC’s DC coefficient;
 }
else {
 prediction_direction = LEFT;
 DCPredictor = 0;
}

Figure 40: Calculating of DC Predictor and Prediction Direction for all other cases: pseudo-Code

SMPTE 421M

© 2006 SMPTE 127

The quantized DC coefficient shall be calculated by adding the DC differential and the DC predictor as follows:
 DCCoeffQ = DCPredictor + DCDifferential

8.1.3.3 DC Inverse-quantization

The quantized DC coefficient shall be reconstructed by performing the following de-quantization operation:
 DCCoefficient = DCCoeffQ * DCStepSize

The value of DCStepSize shall be derived from the value of MQUANT (obtained from PQUANT and the
VOPDQUANT syntax elements) as follows:

For MQUANT equal to 1 or 2:
 DCStepSize = 2 * MQUANT

For MQUANT equal to 3 or 4:
 DCStepSize = 8

For MQUANT greater than or equal to 5:
 DCStepSize = MQUANT / 2 + 6

8.1.3.4 AC Coefficient Bitstream Decode

The non-zero quantized AC coefficients shall be coded using a 3D run-level method. A set of tables and constants are
used to decode the run, level and last_flag values. For descriptive purposes, the set of tables and constants is called an
AC coding set. Following is a description of the tables and constants that make up an AC coding set.

Tables

The first step in reconstructing the AC Transform coefficients is to decode the bitstream to obtain the run, level and
last_flag triplets that represent the location and quantized level for each non-zero AC coefficient.

Code table (CodeTable): The code table used to decode the ACCOEF1 and ACCOEF2 variable-length encoded
syntax elements.

Run table (RunTable): The table of run values indexed by the value decoded in the ACCOEF1 or ACCOEF2 syntax
elements

Level table (LevelTable): The table of level values indexed by the value decoded in the ACCOEF1 or ACCOEF2
syntax elements.

Not-last delta run table (NotLastDeltaRunTable): The table of delta run values indexed by the level value as
illustrated in pseudo-code of Figure 41. It is used in escape coding Mode 2 (see Table 58).

Last delta run table (LastDeltaRunTable): The table of delta run values indexed by the level value as illustrated in
pseudo-code of Figure 41. It is used in escape coding Mode 2 (see Table 58).

Not-last delta level table (NotLastDeltaLevelTable): The table of delta level values indexed by the run value as
illustrated in pseudo-code of Figure 41. It is used in escape coding Mode 1 (see Table 58).

Last delta level table (LastDeltaLevelTable): The table of delta level values indexed by the run value as illustrated in
pseudo-code of Figure 41. It is used in escape coding Mode 1 (see Table 58).

Presence of Fixed Length Codes – Mode3 (first_mode3): This is used in escape coding Mode 3 (see Table 58) where
symbols are coded by fixed length codes. It shall be set to one at the beginning of a frame, field or a slice. It shall be
set to zero, whenever Mode 3 is used for the first time.

Constants

Start index of last coefficient (StartIndexOfLast): The VLC encodes index values from 0 to N. The index values are
used to obtain the run and level values from RunTable and LevelTable respectively. The first (StartIndexOfLast-1)
of these index values corresponds to run, level pairs that are not the last pair in the block. The next StartIndexOfLast
to N-1 index values correspond to run, level pairs that are the last pair in the block. The last value, N, is the Escape
Index (see next).

SMPTE 421M

© 2006 SMPTE 128

Escape Index (EscapeIndex): The last in the set of indices encoded by the VLC. See the description above and the
pseudo-code of Figure 41 for a description of how this constant is used.

The pseudo-code of Figure 41 shall specify how the tables and constants are used to decode a run, level and last_flag
triplet.

decode_symbol(run, level, last_flag) {
 last_flag = 0;
 int index = vlc_decode(); // Use CodeTable to decode VLC codeword (ACCOEF1)
 if (index != EscapeIndex)
 {
 run = RunTable[index];
 level = LevelTable[index];
 sign = get_bits(1);
 if (sign == 1)
 level = -level;
 if (index >= StartIndexOfLast)
 last_flag = 1;
 }
 else
 {
 escape_mode = vlc_decode(); // Use Table 58 to decode ESCMODE syntax element
 if (escape_mode == mode1)
 {
 index = vlc_decode(); // Decode VLC codeword (ACCOEF2)
 run = RunTable[index];
 level = LevelTable[index];
 if (index >= StartIndexOfLast)
 last_flag = 1;
 if (last_flag == 0)
 level = level + NotLastDeltaLevelTable[run];
 else
 level = level + LastDeltaLevelTable[run];
 sign = get_bits(1);
 if (sign == 1)
 level = -level;

 }
 else if (escape_mode == mode2)
 {
 index = vlc_decode(); // Use Decode VLC codeword (ACCOEF2)
 run = RunTable[index];
 level = LevelTable[index];
 if (index >= StartIndexOfLast)
 last_flag = 1;
 if (last_flag == 0)
 run = run + NotLastDeltaRunTable[level] + 1;
 else

SMPTE 421M

© 2006 SMPTE 129

 run = run + LastDeltaRunTable[level] + 1;
 sign = get_bits(1);
 if (sign == 1)
 level = -level;
 }
 else if escape_mode == mode3 // (fixed-length encoding)
 {
 last_flag = get_bits(1);
 if (first_mode3 == 1)
 {
 first_mode3 = 0;
 level_code_size = vlc_decode(); // Use Table 59 or Table 60 to decode
 run_code_size = 3 + get_bits(2);
 }
 run = get_bits(run_code_size);
 sign = get_bits(1);
 level = get_bits(level_code_size);
 if (sign == 1)
 level = -level;
 }
 }
}

Figure 41: Coefficient decode pseudo-code

The process illustrated in Figure 41 above for decoding the non-zero AC shall be repeated until last_flag == 1. This
flag indicates the last non-zero coefficient in the block.

To improve coding efficiency, there are eight AC coding sets. The eight coding sets are divided into two groups of four,
nominally called intra and inter coding sets. For Y blocks, one of the four intra coding sets shall be used. For Cb and Cr
blocks, one of the four inter coding sets shall be used. Section 11.8 defines the tables that make up each coding set that
shall be used. The particular set used to decode a block shall be signaled by an index value in the picture header. The
following two tables define how the index corresponds to the coding set for Y and Cb/Cr blocks. As the tables show, if
the value of PQINDEX (see section 7.1.1.6) is <= 8, then the high rate coding set shall be used for index 0. If
PQINDEX is > 8, then the low motion coding set shall be used for index 0.

Table 71: Coding Set Correspondence for PQINDEX <= 8

Y blocks Cb and Cr blocks

Inde
x

Table Index Table

0 High Rate Intra
(Table 219-Table
225)

0 HighRate Inter
(Table 226- Table
232)

1 High Motion Intra
(Table 177-Table
183)

1 High Motion Inter
(Table 184-Table
190)

2 Mid Rate Intra
(Table 205-Table
211)

2 Mid Rate Inter
(Table 212-Table
218)

SMPTE 421M

© 2006 SMPTE 130

Table 72: Coding Set Correspondence for PQINDEX > 8

Y blocks Cb and Cr blocks

Inde
x

Table Index Table

0 Low Motion Intra
(Table 191-Table
197)

0 Low Motion Inter
(Table 198-Table
204)

1 High Motion Intra
(Table 177-Table
183)

1 High Motion Inter
(Table 184-Table
190)

2 Mid Rate Intra
(Table 205-Table
211)

2 Mid Rate Inter
(Table 212-Table
218)

The value decoded from the TRANSACFRM2 syntax element shall be used as the coding set index for Y blocks and
the value decoded from the TRANSACFRM syntax element shall be used as the coding set index for Cb and Cr blocks.

8.1.3.5 AC Run-level Decode

The ordered run and level pairs obtained as described in section 8.1.3.4 shall be used to form 63 elements (representing
AC coefficients) in a 64 element array by employing a run-level decode process as illustrated in the pseudo-code of
Figure 42.

array[64] = {0}; // 64 element array initialized to zero.
array[0] = DCCoefficient;
curr_position = 1;
do {
 decode_symbol(run, level, last_flag);// decode the bitstream as described in Figure 41 to
 // obtain run, level and last_flag values for coefficient
 array[curr_position + run] = level;
 curr_postion = curr_postion + run + 1;
} while (last_flag != 1)

Figure 42: Run-level decode pseudo-code

8.1.3.6 Zigzag Scan of AC Coefficients

Decoding the run-level pairs as described in section 8.1.3.5 produces a one-dimensional array of quantized transform
coefficients. The elements in the array shall be scanned to form an 8x8 two-dimensional array in preparation for the
Inverse Transform. Figure 44 shows the elements in an 8x8 array labeled from 0 to 63. A mapping array is used to scan
out the coefficients in the one-dimensional array to the 8x8 array, where the DC coefficient always maps to position
(0,0). The process of scanning out coefficients for an NxM Inverse Transform block is defined in Figure 43.

// NxM Inverse Transform Block has M rows and N columns
// array [N * M] is represents coefficients after run-level decode
// Coeff[M][N] represents Transform Coefficient block
// zigzagscan [N * M] represents mapping used to scan out coefficients
for (i = 0; i < N * M; i++) {
 index = zigzagscan[i];

SMPTE 421M

© 2006 SMPTE 131

 row = index / N;
 col = index % N;
 Coeff[row][col] = array [i];
}

Figure 43: Zigzag Scan Pseudo-code for NxM Block

As an example,

Figure 46 shows the mapping array used to produce the one-dimensional to two-dimensional scan out pattern shown in
Figure 45.

0

181716

262524

343332

424140

504948

56 57 58 59

51

43

35

27

19

15141312

20 21 22 23

28 29 30 31

36 37 38 39

44 45 46 47

52 53 54 55

63626160

111098

7654321

Figure 44: 8x8 array with positions labeled

Figure 45: Example zigzag scanning pattern

8 1 2 9 16 24 17 10 3 4 11 18 25 32 40 33 26 19 120 5 6 13 20 27 34 41 48

49 42 35 28 21 14 7 15 22 29 36 43 50 57 58 51 44 37 3056 23 31 38 45 52 59 60 53

39 47 54 61 62 55 6346

Figure 46: Zigzag scan mapping array

One of three scan arrays shall be used to scan out the one-dimensional array depending on the AC prediction status for
the block (see section 8.1.3.7 for description of AC prediction). The AC prediction status shall determine which scan
array is used according to Table 73.

SMPTE 421M

© 2006 SMPTE 132

Table 73: Scan Array Selection

AC Prediction AC Scan Array

ACPRED == 0 Normal scan

ACPRED == 1 and
prediction_directio
n == Top

Horizontal scan

ACPRED == 1 and
prediction_directio
n == Left

Vertical scan

The tables for the normal, horizontal, and vertical scan arrays as defined in section 11.9.1 shall be used.

8.1.3.7 AC Prediction

If the ACPRED (7.1.1.28, 7.1.3.2) syntax element specifies that AC prediction is used for the blocks, then the top row
or left column of AC coefficients in the decoded block shall be treated as differential values from the coefficients in the
corresponding row or column in a predicted block. The predictor block shall be either the block immediately above or
to the left of the current block. For each block, the direction chosen for the DC predictor shall be used for the AC
predictor (see section 8.1.3.2). If there is no intra block in this direction, the AC predictor shall be set to zero. Figure 47
shows that for top prediction the first row of AC coefficients in the block immediately above shall be used as the
predictor for the first row of AC coefficients in the current block. For left prediction the first column of AC coefficients
in the block to the immediate left shall be used as the predictor for the first column of AC coefficients in the current
block. There is an additional coefficient scaling step if the macroblock quantizers of the neighboring blocks are
different than that of the current block. The AC coefficient scaling (along with DC coefficient scaling) for prediction in
advanced profile is described in section 8.1.3.9, and these scaled AC coefficients shall be used for prediction.

Top Prediction Left Prediction

Figure 47: AC prediction candidates

If a block does not exist in the predicted direction then the predicted values for all 7 coefficients shall be set to zero. For
example, if the prediction is ‘TOP’ but the block is in the top row, then there is no adjacent block in the ‘TOP’
direction.

When the ACPRED syntax element specifies that AC prediction is not used for the blocks, the predictors for the 7 AC
coefficients in the first row or first column shall be set to zero.

The AC coefficients in the predicted row or column shall be added to the corresponding decoded AC coefficients in the
current block to produce the fully reconstructed quantized Transform coefficient block as defined in Figure 48.

// Coeff[8][8] represents Transform Coefficient block
// PredTop[7] represents first row of AC coefficients (after scaling if needed) in block above
// PredLeft[7] represents first column of AC coefficients (after scaling if needed) in block to the left
if (ACPRED == 1 && prediction_direction == TOP) {

SMPTE 421M

© 2006 SMPTE 133

 for (col = 1; col < 8; col++)
 Coeff[0][col] = Coeff[0][col] + PredTop[col-1];
}
else if (ACPRED == 1 && prediction_direction == LEFT) {
 for (row = 1; row < 8; row++)
 Coeff[row][0] = Coeff[row][0] + PredLeft[row-1];
}

Figure 48: AC Prediction pseudo-code

8.1.3.8 Inverse AC Coefficient Quantization

Depending on whether the uniform or non-uniform quantizer is used (see section 7.1.1.6 and 7.1.1.8), the non-zero
quantized AC coefficients reconstructed as described in the sections above shall be inverse quantized according to the
following formula:

(if uniform quantizer)

dequant_coeff = quant_coeff * double_quant,

or (if nonuniform quantizer)

dequant_coeff = quant_coeff * double_quant + sign(quant_coeff) * quant_scale

where:

 quant_coeff is the quantized coefficient

 dequant_coeff is the inverse quantized coefficient

if the block is coded with PQUANT

 double_quant = 2 * MQUANT + HALFQP

or if the block is coded with quantizer derived from VOPDQUANT syntax elements (i.e. derived from ALTPQUANT,
or PQDIFF/MQDIFF, or ABSPQ/ABSMQ)

 double_quant = 2 * MQUANT

 quant_scale = MQUANT

MQUANT may be decoded in the macroblock layer in the VOPDQUANT syntax elements, or may be derived from the
picture layer PQUANT, as defined in sections 7.1.1.6, 7.1.1.31, 7.1.3.4 and 7.1.3.5. HALFQP is decoded in the picture
layer as defined in section 7.1.1.7.

8.1.3.9 Coefficient Scaling

For DC and AC prediction, the coefficients in the predicted blocks shall be scaled if the macroblocks quantizers are
different than that of the current block. The scaling process is described below.

18)200000][*(>>+∗= xDCSTEPDQScaleDCSTEPDCDC cppp ,

 18)200000][*(>>+∗= xSTEPDQScaleSTEPACAC cppp

where

 pDC is the scaled DC coefficient in the predictor block

 pDC is the original DC coefficient in the predictor block

 pDCSTEP is the DCStepSize of the predictor block

SMPTE 421M

© 2006 SMPTE 134

 cDCSTEP is the DCStepSize in the current block

 pAC is the scaled AC coefficient in the predictor block

 pAC is the original AC coefficient in the predictor block

 pSTEP is the double_quant-1 in the predictor block

 cSTEP is the double_quant-1 in the current block

 DQScale is a 63 element integer array as shown in Table 74.

Table 74: DQScale

Index DQScale[Index]

1 262144

2 131072

3 87381

4 65536

5 52429

6 43691

7 37449

8 32768

9 29127

10 26214

11 23831

12 21845

13 20165

14 18725

15 17476

16 16384

17 15420

18 14564

19 13797

20 13107

21 12483

22 11916

23 11398

24 10923

25 10486

SMPTE 421M

© 2006 SMPTE 135

26 10082

27 9709

28 9362

29 9039

30 8738

31 8456

32 8192

33 7944

34 7710

35 7490

36 7282

37 7085

38 6899

39 6722

40 6554

41 6394

42 6242

43 6096

44 5958

45 5825

46 5699

47 5578

48 5461

49 5350

50 5243

51 5140

52 5041

53 4946

54 4855

55 4766

56 4681

57 4599

58 4520

59 4443

60 4369

SMPTE 421M

© 2006 SMPTE 136

61 4297

62 4228

63 4161

The product pDC * pDCSTEP , and the product pAC * pSTEP product shall not exceed the signed 12 bit

range, i.e., these product values shall be limited to ≥ -2048 && ≤ 2047.

8.1.3.10 Inverse Transform

After reconstruction of the transform coefficients, the resulting 8 × 8 blocks shall be processed by a separable
two-dimensional inverse transform of size 8 by 8 that is in accordance with Annex A. The inverse transform output
shall have a dynamic range of 10 bits, as a signed integer.

Subsequent to the inverse transform, the process of overlap smoothing shall be carried out if signaled, as described in
section 8.5. Finally, the constant value of 128 shall be added to the reconstructed and possibly overlap smoothed intra
block. This result shall be clamped to the range [0 255] and shall form the reconstruction prior to loop filtering.

For simple and main profile I frames, if overlap filtering is not used, the constant 128 shall not be added prior to
clamping. The conditions for when overlap filtering is applied in simple and main profile I frames are described section
8.5.1. For advanced profile I frames, or if overlap filtering is used in simple and main profile I frames, the constant 128
shall be added prior to clamping.

8.2 Progressive BI Frame Picture Decoding
A BI frame picture is a special type of frame that is a hybrid of I and B pictures and shall not be used as an anchor or
reference frame to predict other frames. BI frame pictures are permitted in main and advanced profiles only.

The syntax of BI frame pictures is almost identical to that of I frame pictures. This section describes only the
differences between decoding of BI frame pictures and decoding of I frame pictures as described in section 8.1.

8.2.1 BFRACTION following picture type (main profile only)
The BFRACTION syntax element (section 7.1.1.14) immediately follows the picture type in a BI frame sent in main
profile. BFRACTION == “1111111b” (Table 40) indicates that this B frame shall be re-interpreted as BI.

In advanced profile, the PTYPE syntax element is used to signal the BI frame as defined in Table 35.

8.2.2 No picture resolution index (RESPIC)
RESPIC (7.1.1.10) shall not be present in a BI frame. BI frames, along with B frames are constrained to operate at the
same resolution as their corresponding anchor frames.

8.3 Progressive P Frame Picture Decoding
Figure 59 shows the steps required to decode and reconstruct blocks in progressive P frame pictures. The following
sections describe the process for decoding progressive P frame pictures. Section 8.3.1 defines frame skipping, section
8.3.2 defines the handling of out-of-bounds reference pixels, section 8.3.3 defines the P picture types, section 8.3.4
defines the picture layer decoding, section 8.3.5 defines macroblock layer decoding, section 8.3.6 defines block layer
decoding, section 8.3.7 defines rounding control, and section 8.3.8 defines intensity compensation.

8.3.1 Skipped Frame Pictures
In main and simple profiles, frame skipping is signaled through additional means. As a coded frame always contains
more than 8 bits of data, if the total length of the data comprising a compressed frame is 8 bits, this signals that the
frame was coded as a P frame with no motion or residual error information present (a non-coded frame). The decoder
shall not decode the 8 bits used for frame skipping as they do not represent an actual codeword. In main profile, if the
sequence level syntax element MAXBFRAMES > 0 (Annex J.1.18), a frame shall not be coded as a skipped frame.

SMPTE 421M

© 2006 SMPTE 137

In advanced profile, a skipped frame is signaled by the PTYPE syntax element (7.1.1.4) in the picture header. If a frame
is signaled as skipped then it represents a P frame which is identical to the reference frame. Therefore, the
reconstruction of the skipped frame pixel data shall be a copy of the reference frame pixel data.

8.3.2 Out-of-bounds Reference Pixels
The previously decoded anchor frame shall be used as the reference for motion-compensated predictive coding of the
current P frame. The motion vectors used to locate the predicted blocks in the reference frame may include pixel
locations that are outside the boundary of the reference frame. In these cases, the out-of-bounds pixel values shall be
the replicated values of the edge pixel. Figure 49 illustrates pixel replication for the upper-left corner of the frame. In
the advanced profile, “frame edge”, “frame corner” and “outside the boundary” shall refer to the true frame
dimensions, not the dimensions right or bottom justified to the edge of the macroblock. In other words, the right and
bottom pixels that are repeated to infinity for a 300 x 200 image shall begin at column 304 and row 208 for the simple
and main profiles. However, for the advanced profile, these shall begin respectively at column 300 and row 200.

The reference frames in advanced profile shall have the vertical boundary pixels replicated in a manner which is
dependent on the reference frame coding type. If the reference frame was coded as progressive, then the top row of
pixels shall be replicated upward as shown in the middle diagram of Figure 49. Similarly, the bottom row of pixels shall
be replicated downward.

If the reference frame was coded as interlaced, i.e. either frames coded as interlace frame picture or as interlace field
picture, then the top line shall be replicated upward in every other line of the frame and the second-to-top line shall be
replicated upward in every other line of the frame as shown in the right diagram of Figure 49. The bottom row of pixels
shall be replicated downward in a similar manner.

Reference pixels that are out-of-bounds along both axes shall be determined by horizontal pixel replication to an
appropriate width, followed by vertical pixel replication to an appropriate height. For progressive frames, such out-of-
bound pixels shall be identical to the closest frame corner pixel. For interlace frames (frames coded as interlace frame
picture or as interlace field picture), such out-of-bound pixels shall be either the frame corner pixel, or the in-bounds
pixel to the immediate top or bottom of the frame corner pixel, depending on the polarity of the field line.

See Annex K.2 for additional information on internal representation of a frame.

Figure 49: Horizontal and vertical pixel replication for out-of-bounds reference

8.3.3 P Picture Types
P pictures shall be one of 2 types: 1-MV and Mixed-MV. The following sections describe each P picture type.

8.3.3.1 1-MV P Picture

In 1-MV P pictures, a single motion vector shall be used to indicate the displacement of the predicted blocks for all 6
blocks in the macroblock. The 1-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax
elements as described in section 8.3.4.3.

SMPTE 421M

© 2006 SMPTE 138

8.3.3.2 Mixed-MV P Picture

In Mixed-MV P pictures, each macroblock may be decoded as a 1-MV or a 4-MV macroblock. In 4-MV macroblocks,
each of the 4 luma blocks shall have a motion vector associated with it. The 1-MV or 4-MV mode for each macroblock
is indicated by the MVTYPEMB bitplane syntax element in the picture layer as described in section 8.3.4.3. The
Mixed-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section
8.3.4.3.

8.3.4 P Picture Layer Decode
Figure 16 shows the elements that make up the progressive P picture layer header. The following sections provide extra
detail for those elements that are not self-explanatory.

8.3.4.1 Picture-level Quantizer Scale (PQUANT)

The picture level quantizer scale PQUANT is decoded from the 5-bit picture layer syntax element PQINDEX as
described in section 7.1.1.6. PQUANT shall specify the picture level quantizer scale (a value between 1 and 31) for the
macroblocks in the current picture. When the sequence header DQUANT == 0, then PQUANT shall be used as the
quantization step size for every macroblock in the current picture. When DQUANT != 0, then PQUANT shall be used
as described in section 7.1.1.31. The PQINDEX syntax element shall also specify whether the uniform or non-uniform
quantizer is used for all macroblocks in the frame.

8.3.4.2 Picture Resolution Index (RESPIC)

The RESPIC syntax element (7.1.1.10) in P pictures shall carry the same resolution as the RESPIC syntax element of
the closest temporally preceding I frame. In other words, the resolution of an I picture determines the resolution of all
subsequent P pictures until the next I picture. For example, if an I picture specifies a resolution index of 1 (full vertical
resolution, half horizontal resolution), then all subsequent P pictures specify the same resolution until the next I picture.

All P pictures that are coded at less than full resolution may be up-sampled to full resolution prior to display. This up-
sampling process is outside the reconstruction loop. The spatial alignment of video samples of the down-sampled frame
with respect to the video samples of the original frame is described in Annex B.

8.3.4.3 Picture Layer Motion Compensation and Intensity Compensation Decoding

The P picture layer contains syntax elements that control the motion compensation mode and intensity compensation
for the frame. The MVMODE syntax element (7.1.1.32) is a variable sized value that signals either:

1) one of four motion vector modes for the frame or

2) that intensity compensation is used in the frame.

If intensity compensation is signaled, then the MVMODE2 (7.1.1.33), LUMSCALE (7.1.1.34) and LUMSHIFT
(7.1.1.35) syntax elements shall follow in the picture layer. In this case, MVMODE2 shall signal the motion vector
mode and LUMSCALE and LUMSHIFT are 6-bit values which shall specify parameters used in the intensity
compensation process. Refer to section 8.3.8 for a definition of intensity compensation decode.

Table 46 and Table 47 define the code tables used to decode the MVMODE syntax element. Table 46 shall be used if
PQUANT is > 12 and Table 47 shall be used if PQUANT is <= 12. In a similar fashion, Table 49 and Table 50 shall be
used to decode the MVMODE2 syntax element. Either MVODE or MVMODE2 signal one of four motion vector
modes.

If the motion vector mode is ‘Mixed-MV’ mode, then the MVTYPEMB syntax element (7.1.1.36) is present in the
picture layer. MVTYPEMB is a bitplane coded syntax element that indicates the 1-MV/4-MV motion vector status for
each macroblock in the picture. The decoded bitplane represents the motion vector status for each macroblock as a
syntax element of 1-bit values from upper left to lower right. Refer to section 8.7 for a definition of the bitplane coding.
A value of 0 shall indicate that the macroblock is coded in 1-MV mode. A value of 1 shall indicate that the macroblock
is coded in 4-MV mode. Refer to section 8.3.5.2.1 for a description of the motion vector decoding process.

8.3.4.4 Skipped Macroblock Decoding (SKIPMB)

The P picture layer contains the SKIPMB syntax element (7.1.1.37) which is a bitplane coded syntax element that
defines the skipped/not-skipped status of each macroblock in the picture. The decoded bitplane represents the

SMPTE 421M

© 2006 SMPTE 139

skipped/not-skipped status for each macroblock as a syntax element of 1-bit values from upper left to lower right. Refer
to section 8.7 for a definition of the bitplane coding. A value of 0 shall indicate that the macroblock is not skipped. A
value of 1 shall indicate that the macroblock is coded as skipped.

A skipped macroblock shall not contain any prediction error information. A skipped status for a macroblock means that
the macroblock may only contain the HYBRIDPRED syntax element as a qualifier to the predicted motion vector(s).
Refer to section 8.3.5.3.5 for a description of how the HYBRIDPRED syntax element (7.1.3.9) is used in the decoding
process.

8.3.4.5 Motion Vector Table (MVTAB)

The table used to decode the motion vector differentials is indicated by the MVTAB syntax element as described in
section 7.1.1.38. Refer to section 8.3.5.2.1 for a description of the motion vector decoding process.

8.3.4.6 Macroblock-level Quantizer Mode

See section 7.1.1.31.

8.3.4.7 Macroblock-level Transform Type Flag (TTMBF)

TTMBF (7.1.1.40) is a one-bit syntax element that signals whether transform type coding is enabled at the frame or
macroblock level. If TTMBF == 1, then the same transform type shall be used for all blocks in the frame. In this case,
the transform type shall be signaled in the TTFRM syntax element (7.1.1.41) that follows. If TTMBF == 0, then the
transform type may vary throughout the frame and shall be signaled at either the macroblock or block levels.

8.3.4.8 Frame-level Transform Type (TTFRM)

TTFRM (7.1.1.41) is a variable-length syntax element that shall be present in the picture layer if TTMBF == 1. TTFRM
shall be decoded using Table 53 and shall signal the Transform type used to transform the 8x8 pixel error signal in
predicted blocks. The 8x8 error blocks may be transformed using an 8x8 Transform, two 8x4 Transforms, two 4x8
Transforms or four 4x4 Transforms.

8.3.4.9 Frame-level Transform AC Coding Set Index (TRANSACFRM)

TRANSACFRM (7.1.1.11) is a variable-length syntax element that shall be present in the picture layer. This syntax
element indexes the coding set used to decode the Transform AC coefficients for the intra- and inter-coded blocks.
Table 39 is used to decode the TRANSACFRM syntax element.

8.3.4.10 Intra Transform DC Table (TRANSDCTAB)

The TRANSDCTAB syntax element (7.1.1.13) shall have the same meaning as the TRANSDCTAB syntax element in I
pictures. See section 8.1.1.2 for its definition.

8.3.4.11 Range Reduction Frame - P Frame (RANGEREDFRM)

The RANGEREDFRM is only signaled when RANGERED == 1.

When RANGEREDFRM == 1 for the current P frame, the pixels of the current decoded frame shall be scaled up
similar to the scaling of the pixels of the I frame (described in section 8.1.1.4), while keeping the current reconstructed
frame intact. The pixels shall be scaled up according to the following formula:
Y[n] = clip((Y[n] – 128) * 2 + 128);
Cb[n] = clip((Cb[n] – 128) * 2 + 128);
Cr[n] = clip((Cr[n] – 128) * 2 + 128);

In addition, the pixels of the previously reconstructed anchor frame shall be scaled prior to using them for motion
compensation if the current frame and previous frame are operating at different range. The process shall be applied to
the pixels of the reconstructed frame as the first stage of decoding prior to Intensity compensation, motion
compensation, and macroblock level decoding.

More specifically, there are two cases that require scaling of the pixels of the previous reconstructed frame.

• The current frame’s RANGEREDFRM is signaled and the previous frame’s RANGEREDFRM is not
signaled. In this case, the pixels of the previously reconstructed frame shall be scaled down as follows:

SMPTE 421M

© 2006 SMPTE 140

Y[n] = ((Y[n] – 128) >> 1) + 128;
Cb[n] = ((Cb[n] – 128) >> 1) + 128;
Cr[n] = ((Cr[n] – 128) >> 1) + 128;

• The current frame’s RANGEREDFRM is not signaled and the previous frame’s RANGEREDFRM is
signaled. In this case, the pixels of the previous reconstructed frame shall be scaled as follows:
Y[n] = clip((Y[n] – 128) * 2 + 128);
Cb[n] = clip((Cb[n] – 128) * 2 + 128);
Cr[n] = clip((Cr[n] – 128) * 2 + 128);

8.3.5 Macroblock Layer Decoding
This section defines the Macroblock layer decoding for progressive P-frame pictures for simple, main and advanced
profiles.

8.3.5.1 Macroblock Types

Macroblocks in P pictures shall be one of 3 types: 1-MV, 4-MV, or Skipped. The macroblock type is indicated by a
combination of picture and macroblock layer syntax elements. The following sub-sections describe each type and how
they are signaled.

8.3.5.1.1 1-MV Macroblocks

1-MV macroblocks may occur in 1-MV and Mixed-MV P pictures. In a 1-MV macroblock, a single MVDATA syntax
element (7.1.3.8) is associated with all blocks in the macroblock. The MVDATA syntax element signals whether the
blocks are coded as Intra or Inter type. If they are coded as Inter, then the MVDATA syntax element shall also indicate
the motion vector differential. See section 8.3.6.1 for a description of how to decode Intra blocks in P pictures and see
section 8.3.6.2 for a description of how to decode Inter blocks in P pictures.

If the P picture is of type 1-MV, then all the macroblocks in the picture are of type 1-MV and the macroblock type is
not signaled.

If the P picture is of type Mixed-MV, then the macroblocks in the picture may be of type 1-MV or 4-MV. In this case
the macroblock type (1-MV or 4-MV) is signaled in the MVTYPEMB syntax element (7.1.1.36) in the picture layer.
See section 8.3.4.3 for a definition of how the MVTYPEMB syntax element signals the 1-MV/4-MV macroblock type.

8.3.5.1.2 4-MV Macroblocks

4-MV macroblocks shall only occur in Mixed-MV P pictures. A 4-MV macroblock shall be indicated by signaling that
the macroblock is 4-MV in the MVTYPEMB (7.1.1.36) picture layer syntax element, or in the MVMODEBIT (7.1.3.6)
macroblock layer syntax element. Individual blocks within a 4-MV macroblock may be coded as Intra blocks. For the 4
luma blocks, the Intra/Inter state shall be signaled by the BLKMVDATA syntax element (7.1.3.11) associated with that
block. The CBPCY syntax element (7.1.3.1) shall indicate which blocks have BLKMVDATA syntax elements present
in the bitstream. See section 8.3.5.5.2 for a definition of how the CBPCY syntax element is used in 4-MV macroblocks.

The Inter/Intra state for the color-difference blocks shall be derived from the luma Inter/Intra states. If 3 or 4 of the
luma blocks are coded as Intra, then the color-difference blocks shall also be coded as Intra. Otherwise, the color-
difference shall be coded as Inter.

8.3.5.1.3 Skipped Macroblocks

Skipped macroblocks can occur in both 1-MV and Mixed-MV P pictures. In all cases, a skipped macroblock shall be
signaled by the SKIPMB (7.1.1.37) bitplane syntax element in the picture layer, or by the SKIPMBBIT macroblock
layer syntax (7.1.3.7). See section 8.3.4.4 for a definition of the SKIPMB syntax element.

8.3.5.2 Macroblock Decoding Process

The following sub-sections describe the macroblock layer decoding process for P picture macroblocks.

SMPTE 421M

© 2006 SMPTE 141

Refer to section 8.3.6.3 for a description of the inverse quantization process.

8.3.5.2.1 Decoding Motion Vector Differential

The MVDATA (7.1.3.8) or BLKMVDATA (7.1.3.11) syntax elements are used to decode motion information for the
blocks in the macroblock. 1-MV macroblocks have a single MVDATA syntax element, and 4-MV macroblocks may
have between zero and four BLKMVDATA syntax elements (see section 8.3.5.5.2 for a definition of how the CBPCY
syntax element is used to decode the number of MVDATA syntax elements in 4-MV macroblocks).

Each MVDATA or BLKMVDATA syntax element in the macroblock layer jointly codes three parameters:

1) the horizontal motion vector differential component,

2) the vertical motion vector differential component and

3) a binary flag indicating whether any Transform coefficients are present.

Whether the macroblock (or block for 4-MV) is Intra or Inter-coded is coded as one of the horizontal/vertical motion
vector possibilities, i.e., one of the VLC entries for differential MV values indicates that the block is actually intra-
coded.

The MVDATA and BLKMVDATA syntax elements are each a variable length codeword followed by a fixed length
codeword. The value of the variable length codeword determines the size of the fixed length codeword. The MVTAB
syntax element in the picture layer specifies the code table used to decode the variable sized codeword.

The pseudo-code of Figure 50 shall define how the motion vector differential, Inter/Intra type and ‘more_present flag’
information shall be decoded.

Note: The motion vector differentials decoded in this pseudo-code are modulo differentials. The computation of motion
vectors from these differentials is shown in section 8.3.5.4.

The values: ‘more_present flag’, intra_flag, dmv_x and dmv_y are computed in the pseudo-code of Figure 50. The
values are defined as follows:

‘more_present flag’: a binary flag indicating whether any Transform coefficients are present (1 = coefficients present,
0 = coefficients not present)

intra_flag: a binary flag indicating whether the block or macroblock is intra-coded (0 = inter-coded, 1 = intra-coded)

dmv_x: the differential horizontal motion vector component

dmv_y: the differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.9) and shall be set
according to Table 75, where range_x and range_y are the motion vector ranges, in quarter pixel units, in horizontal and
vertical directions respectively.

Table 75: k_x and k_y specified by MVRANGE

MVRANG
E

k_
x

k_
y

range_
x

range_
y

0 (default) 9 8 256 128

10 10 9 512 256

110 12 10 2048 512

111 13 11 4096 1024

The value halfpel_flag is a binary value indicating whether half-pel or quarter-pel precision is used for the picture. The
value of halfpel_flag is determined by the picture layer syntax element MVMODE (see section 8.3.4.3). If MVMODE
specifies the mode as 1-MV or Mixed-MV, then halfpel_flag = 0 and quarter-pel precision shall be used. If MVODE

SMPTE 421M

© 2006 SMPTE 142

specifies the mode as 1-MV Half-pel or 1-MV Half-pel Bilinear, then halfpel_flag = 1 and half-pel precision shall be
used.

size_table and offset_table are arrays defined as follows:
size_table[6] = {0, 2, 3, 4, 5, 8}
offset_table[6] = {0, 1, 3, 7, 15, 31}

index = vlc_decode() // Use the table indicated by MVTAB in the picture layer
index = index + 1
if (index >= 37)
{
 ‘more_present flag’ = 1
 index = index - 37
}
else
 ‘more_present flag’ = 0

intra_flag = 0
if (index == 0)
{
 dmv_x = 0
 dmv_y = 0
}
else if (index == 35)
{
 dmv_x = get_bits(k_x – halfpel_flag)
 dmv_y = get_bits(k_y – halfpel_flag)
}
else if (index == 36)
{
 intra_flag = 1
 dmv_x = 0
 dmv_y = 0
}
else
{

index1 = index % 6
if (halfpel_flag == 1 && index1 == 5)
 hpel = 1
else
 hpel = 0

 val = get_bits (size_table[index1] - hpel)
 sign = 0 - (val & 1)
 dmv_x = sign ^ ((val >> 1) + offset_table[index1])
 dmv_x = dmv_x - sign

index1 = index / 6

SMPTE 421M

© 2006 SMPTE 143

if (halfpel_flag == 1 && index1 == 5)
 hpel = 1
else
 hpel = 0

 val = get_bits (size_table[index1] - hpel)
 sign = 0 - (val & 1)
 dmv_y = sign ^ ((val >> 1) + offset_table[index1])
 dmv_y = dmv_y - sign
}

Figure 50: Decoding MV Differential in Progressive Pictures: Pseudo-code

8.3.5.3 Motion Vector Predictors

Motion vectors shall be computed by adding the motion vector differential computed in section 8.3.5.2.1 to a motion
vector predictor. All of these computations shall be performed in quarter-pixel units even if the actual motion vector
was transmitted in half-pel mode. Motion vectors expressed in half-pel mode are converted to quarter-pel units by
multiplying them by 2. The predictor shall be computed from three neighboring motion vectors. If a neighboring block
is intra-coded, its motion vector shall be set to be zero for the purpose of prediction. The following sections describe
how the predictors are calculated for macroblocks in 1-MV P pictures, and Mixed-MV P pictures.

Note: Predictor candidate MVs can be out of bounds as defined in 8.3.5.3.3.

8.3.5.3.1 Motion Vector Predictors In 1-MV P Pictures

Figure 51 shows the three motion vectors used to predict the motion vectors for the current macroblock within a
picture. As the figure shows, the predictor shall be taken from the left, top and top-right macroblocks, except in the case
where the macroblock is the last macroblock in the row. In this case, Predictor B shall be taken from the top-left
macroblock instead of the top-right.

For the special case where the frame is one macroblock wide, the predictor shall always be Predictor A (the top
predictor).

Figure 51: Candidate Motion Vector Predictors in 1-MV P Pictures

8.3.5.3.2 Motion Vector Predictors In Mixed-MV P Pictures

Figure 52 and Figure 53 show the 3 candidate motion vectors for 1-MV and 4-MV macroblocks in Mixed-MV P
pictures. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block
boundaries.

For the special case where the frame is one macroblock wide, the predictor shall always be Predictor A (the top
predictor).

SMPTE 421M

© 2006 SMPTE 144

Figure 52: Candidate Motion Vectors for 1-MV Macroblocks in Mixed-MV P Pictures

Figure 52 shows the candidate motion vectors for 1-MV macroblocks. The neighboring macroblocks are either 1-MV
or 4-MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4-MV (i.e., predictor
A is the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1
in the macroblock immediately to the left of the current). If any of the neighbors are 1-MV macroblocks, then the
motion vector predictors shown in Figure 52 shall be taken to be the vectors for the entire macroblock. As the figure
shows, if the macroblock is the last macroblock in the row, then Predictor B shall be from block 3 of the top-left
macroblock instead of from block 2 in the top-right macroblock as is the case otherwise.

SMPTE 421M

© 2006 SMPTE 145

Figure 53: Candidate Motion Vectors for 4-MV Macroblocks in Mixed-MV P Pictures

Figure 53 shows the predictors for each of the 4 luma blocks in a 4-MV macroblock. For the case where the
macroblock is the first macroblock in the row, Predictor B for block 0 shall be handled differently than the remaining
blocks in the row. In this case, Predictor B shall be taken from block 3 in the macroblock immediately above the current
macroblock instead of from block 3 in the macroblock above and to the left of current macroblock as is the case
otherwise. Similarly, for the case where the macroblock is the last macroblock in the row, Predictor B for block 1 is
handled differently. In this case, the predictor shall be taken from block 2 in the macroblock immediately above the
current macroblock instead of from block 2 in the macroblock above and to the right of the current macroblock as is the
case otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 shall be set to
0.

8.3.5.3.3 Calculating the Preliminary Motion Vector Predictor

Given the 3 motion vector predictor candidates, the pseudo-code of Figure 54 shall specify the process for calculating
the preliminary motion vector predictors. These preliminary motion vector predictors are used in the next section to
compute the actual motion vector predictors.

In the pseudo-code, a motion vector predictor candidate shall be considered to be out of bounds, if either the
corresponding block is outside the frame boundary, or if the corresponding block is part of a different slice. A predictor
candidate that is out of bounds shall be set to zero.

// The preliminary predicted motion vector is (predictor_pre_x, predictor_pre_y)

SMPTE 421M

© 2006 SMPTE 146

if (predictorC is out of bound || predictorC is intra) {
 predictorC_x = predictorC_y = 0;
}
if (predictorA is out of bound || predictorA is intra) {
 predictorA_x = predictorA_y = 0;
}
if (predictorB is out of bound || predictorB is intra) {
 predictorB_x = predictorB_y = 0;
}
if (predictorA is not out of bound) {
 if (predictorC is out of bound && predictorB is out of bound) {
 // This condition is true only if the CodedWidth is less than or equal to 16.
 predictor_pre_x = predictorA_x;
 predictor_pre_y = predictorA_y;

} else {
 // calculate predictor from A, B and C predictor candidates
 predictor_pre_x = median3(predictorA_x, predictorB_x, predictorC_x);
 predictor_pre_y = median3(predictorA_y, predictorB_y, predictorC_y);
 }
} else if (predictorC is not out of bound) {
 predictor_pre_x = predictorC_x;
 predictor_pre_y = predictorC_y;
} else {
 predictor_pre_x = predictor_pre_y = 0;
}

Figure 54: Calculating Preliminary MV Predictor: Pseudo-code

8.3.5.3.4 Pullback of the Preliminary Motion Vector Predictor

After the preliminary predicted motion vectors (predictor_pre_x, predictor_pre_y) are computed, a “pull-back’
operation is performed, if necessary, on its values. The pull-back operation can be understood as follows: The
preliminary predicted motion vector is applied as if it is the motion vector of the current macroblock or block. The
preliminary predicted motion vector is checked to see if the block/macroblock referenced by it lies entirely outside of
the reference frame. If the referenced region is entirely outside of the frame boundaries, the preliminary predictor
motion vectors are clipped such that at least one pixel of the reference frame is inside the block/macroblock referenced
by the predictor.

The pull-back operation shall be implemented as follows:

Let X = 16 * ((CodedWidth + 15) / 16) * 4 – 4, and

Y = 16 * ((CodedHeight + 15) / 16) * 4 – 4.

Pull-back of Motion Vector Predictor of Macroblock: Let (MBx, MBy) be the current macroblock in the frame with
preliminary predicted motion vector (predictor_pre_x, predictor_pre_y). Let the values qx and qy represent the quarter
pixel coordinates of the top left corner of the macroblock as qx = MBx * 16 * 4, qy = MBy * 16 * 4.

• If qx + predictor_pre_x < –60, then predictor_pre_x shall be set to the value (–60 – qx).
• If qx + predictor_pre_x > X, then predictor_pre_x shall be set to the value X – qx.
• If qy + predictor_pre_y < –60, then predictor_pre_y shall be set to the value (–60 – qy).
• If qy + predictor_pre_y >Y, then predictor_pre_y shall be set to the value Y – qy.

SMPTE 421M

© 2006 SMPTE 147

Pull-back of Motion Vector Predictor of block: Let (Bx, By) be the coordinates of the top left corner of the current
block in the frame with preliminary predicted motion vector (predictor_pre_x, predictor_pre_y). Let the values qx and
qy represent the quarter pixel coordinates of the top left corner of the block as qx = Bx * 8 * 4, qy = By * 8 * 4.

• If qx + predictor_pre_x < –28, then predictor_pre_x shall be set to the value (–28 – qx).
• If qx + predictor_pre_x > X, then predictor_pre_x shall be set to the value X – qx.
• If qy + predictor_pre_y < –28, then predictor_pre_y shall be set to the value (–28 – qy).
• If qy + predictor_pre_y > Y, then predictor_pre_y shall be set to the value Y – qy.

8.3.5.3.5 Hybrid Motion Vector Prediction (HYBRIDPRED)

 In the P picture, the motion predictor calculated in the previous section shall be tested relative to the A and C
predictors to see if the predictor is explicitly coded in the bitstream. If so, then the HYBRIDPRED syntax element
(7.1.3.9) shall be decoded, and this syntax element shall specify whether to use predictor A or predictor C as the motion
vector predictor. Hybrid motion vectors may exist even for skipped MBs, i.e. macroblocks which have zero differential
motion vectors. The pseudo-code of Figure 55 shall specify the decoding of HYBRIDPRED using get_bits(), and
shall also specify hybrid motion vector prediction.

The variables are defined as follows:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section
predictor_pre_y: The vertical motion vector predictor as calculated in the above section
predictor_post_x: The horizontal motion vector predictor after checking for hybrid motion vector prediction
predictor_post_y: The vertical motion vector predictor after checking for hybrid motion vector prediction

if ((predictorA is out of bounds) || (predictorC is out of bounds))
{
 predictor_post_x = predictor_pre_x
 predictor_post_y = predictor_pre_y
}
else
{
 if (predictorA is intra)
 sum = abs(predictor_pre_x) + abs(predictor_pre_y)
 else
 sum = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)
 if (sum > 32)
 {
 // read next bit to see which predictor candidate to use
 if (get_bits(1) == 1) // HYBRIDPRED syntax element
 {
 // use top predictor
 predictor_post_x = predictorA_x
 predictor_post_y = predictorA_y
 }
 else
 {
 // use left predictor
 predictor_post_x = predictorC_x
 predictor_post_y = predictorC_y
 }

SMPTE 421M

© 2006 SMPTE 148

 }
 else
 {
 if (predictorC is intra)
 sum = abs(predictor_pre_x) + abs(predictor_pre_y)
 else
 sum = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)
 if (sum > 32)
 {
 // read next bit to see which predictor candidate to use
 if (get_bits(1) == 1)
 {
 // use top predictor
 predictor_post_x = predictorA_x
 predictor_post_y = predictorA_y
 }
 else
 {
 // use left predictor
 predictor_post_x = predictorC_x
 predictor_post_y = predictorC_y
 }
 }
 else
 {
 predictor_post_x = predictor_pre_x
 predictor_post_y = predictor_pre_y
 }
 }
}

Figure 55: Hybrid Motion Vector: Preliminary Prediction

8.3.5.3.6 Motion Vector Predictors in Skipped Macroblocks

If a macroblock is coded as skipped, then the predicted motion vector computed as described above shall be used as the
motion vector for the block (in a 4-MV skipped macroblock), or macroblock (in a 1-MV skipped macroblock). The
block or macroblock referenced by the motion vector shall be used as the current block or macroblock in the current
picture. The HYBRIDPRED syntax element (7.1.3.9) may be present in the macroblock layer indicating which of the
predictor candidates to use. A skipped macroblock with 4 motion vectors may have up to 4 hybrid motion predictor
(HYBRIDPRED) syntax elements, i.e. up to 4 bits.

8.3.5.4 Reconstructing Motion Vectors

The following sections describe how to reconstruct the luma and color-difference motion vectors for 1-MV and 4-MV
macroblocks.

The flowchart defining the reconstruction of the luma motion vectors in is shown in Figure 56.

SMPTE 421M

© 2006 SMPTE 149

MVTYPEMB
=1MV?

SKIPMB? SKIPMB?

Decode MV Decode CBPCY
Set i = 0

MVDATA =
Intra?

Decode MV for block i

MVDATA =
Intra?

Yes No

YesYes

Yes

Yes

No

No

No

No

Yes

No

Intra MB Inter MB
Block i
is IntraBlock i

is Inter

dmv_x = dmv_y = 0 for
motion vector(s);

skipped MB

Is CBPCY set
for block i ?

dmv_x = dmv_y = 0
for motion vector of

block i

i = i+ 1

Is i <4?
Yes

No

Figure 56: Flowchart depicting luma motion vector reconstruction

8.3.5.4.1 Luma Motion Vector Reconstruction

In all cases (1-MV and 4-MV macroblocks) the luma motion vector shall be reconstructed by adding the differential to
the predictor as follows:

mv_x = (dmv_x + predictor_post_x) smod range_x
mv_y = (dmv_y + predictor_post_y) smod range_y

The smod operator ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x
(motion vector range in the horizontal direction) and range_y (motion vector range in the vertical direction) depend on
MVRANGE (7.1.1.9) and shall be as specified in Table 75.

If half pixel mode is used for signaling motion vectors, dmv_x and dmv_y shall be multiplied by 2 to convert them to
quarter-pixel units before this operation.

The following subsections define luma motion vector constraints in 1-MV and 4-MV macroblocks.

SMPTE 421M

© 2006 SMPTE 150

1-MV Macroblock

In 1-MV macroblocks there is a single motion vector for all the 4 blocks that make up the luma component of the
macroblock (see 8.3.5.1.1).

If the SKIPMB (7.1.1.37) syntax element in the picture layer indicates that the macroblock is skipped, then dmv_x = 0
and dmv_y = 0 (mv_x = predictor_post_x and mv_y = predictor_post_y).

If the macroblock is not skipped, and the MVDATA syntax element (7.1.3.8) shall be decoded to indicate (via the
intra_flag) whether the macroblock is Intra-coded (as described in the section 8.3.5.2.1 above).

4-MV Macroblock

Each of the Inter-coded luma blocks in a macroblock has its own motion vector. Therefore, there are between 0 and 4
luma motion vectors in each 4-MV macroblock.

If the SKIPMB syntax element in the picture layer indicates that the macroblock is skipped, then dmv_x = 0 and dmv_y
= 0 (mv_x = predictor_post_x and mv_y = predictor_post_y) for each block in the macroblock.

If the macroblock is not skipped, the CBPCY syntax element (described in section 8.3.5.5) in the macroblock shall
indicate whether the block is not coded. If a block is not coded, then dmv_x = 0 and dmv_y = 0 (thus mv_x =
predictor_post_x and mv_y = predictor_post_y for each block in the macroblock).

8.3.5.4.2 Color-Difference Motion Vector Reconstruction

The color-difference motion vectors are derived from the luma motion vectors. Also, for 4-MV macroblocks, the
decision of whether the color-difference blocks are coded as Inter or Intra shall be made based on the inter-coded status
of the luma blocks as defined in section 8.3.5.4.4. The following sections describe how to reconstruct the color-
difference motion vectors for 1-MV and 4-MV macroblocks. The color-difference vectors are reconstructed in two
steps.

1. As a first step, the nominal color-difference motion vector shall be obtained by combining and scaling the
luma motion vectors appropriately as defined in sections 8.3.5.4.3 and 8.3.5.4.4.

Note: The scaling is performed in such a way that half-pixel offsets are preferred over quarter pixel locations.
2. In the second step, the 1-bit syntax element FASTUVMC syntax element (6.2.6, Annex J) is used to determine

if further rounding of color-difference motion vectors is necessary. If FASTUVMC == 0, no rounding shall be
performed in the second stage. If FASTUVMC == 1, the color-difference motion vectors that are at quarter pel
offsets shall be rounded to the nearest half or full pel positions as defined in Section 8.3.5.4.5.

Note: The purpose of this mode is speed optimization of the decoder.

Only bilinear filtering shall be used for all color-difference interpolation (see section 8.3.6.5.1).

In the sections that follow, cmv_x and cmv_y denote the color-difference motion vector components and lmv_x and
lmv_y denote the luma motion vector components.

8.3.5.4.3 First-stage Color-Difference Motion Vector Reconstruction – 1-MV Color-Difference Motion Vector
Case:

In a 1-MV macroblock, the color-difference motion vectors shall be derived from the luma motion vectors as follows:
// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
cmv_x = (lmv_x + s_RndTbl[lmv_x & 3]) >> 1
cmv_y = (lmv_y + s_RndTbl[lmv_y & 3]) >> 1
where the luma motion vector is (lmv_x, lmv_y) and the chroma motion vector is (cmv_x, cmv_y),
and s_RndTbl[] is the rounding value table defined below.

8.3.5.4.4 First-stage Color-difference Motion Vector Reconstruction – 4-MV Color-difference Motion Vector
Case:

SMPTE 421M

© 2006 SMPTE 151

The pseudo-code of Figure 57 defines how the color-difference motion vectors shall be derived from the motion
information in the 4 luma blocks in 4-MV macroblocks. In this section, ix and iy are temporary variables.

int ix, iy // local vars
if (all 4 luma blocks are Inter-coded)
{
 // lmv0_x, lmv0_y is the motion vector for block 0
 // lmv1_x, lmv1_y is the motion vector for block 1
 // lmv2_x, lmv2_y is the motion vector for block 2
 // lmv3_x, lmv3_y is the motion vector for block 3
 ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)
 iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)
}
else if (3 of the luma blocks are Inter-coded)
{
 // lmv0_x, lmv0_y is the motion vector for the first Inter-coded block
 // lmv1_x, lmv1_y is the motion vector for the second Inter-coded block
 // lmv2_x, lmv2_y is the motion vector for the third Inter-coded block
 ix = median3(lmv0_x, lmv1_x, lmv2_x)
 iy = median3(lmv0_y, lmv1_y, lmv2_y)
}
else if (2 of the luma blocks are Inter-coded)
{
 // lmv0_x, lmv0_y is the motion vector for the first Inter-coded block
 // lmv1_x, lmv1_y is the motion vector for the second Inter-coded block
 ix = (lmv0_x + lmv1_x) / 2
 iy = (lmv0_y + lmv1_y) / 2
}
else
 Color-difference blocks are coded as Intra

// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
cmv_x = (ix + s_RndTbl[ix & 3]) >> 1
cmv_y = (iy + s_RndTbl[iy & 3]) >> 1

Figure 57: Color-difference MV Reconstruction for Progressive: Pseudo-Code

8.3.5.4.5 Second Stage Color-difference Rounding

If the bit FASTUVMC == 1, then a second level of rounding shall be done on the color-difference motion vectors as
follows:

 // RndTbl[-1] = +1, RndTbl[0] = 0, RndTbl[1] = -1
 cmv_x = cmv_x + RndTbl[cmv_x % 2];

 cmv_y = cmv_y + RndTbl[cmv_y % 2];

In the above, cmv_x and cmv_y represent the x and y coordinates of the color-difference motion vector in units of
quarter pels. Thus, when cmv_x (or cmv_y) is divisible by 4, there is an integer pel offset; when cmv_x % 4 == +/-2,
there is a half pel offset, and when cmv_x % 2 == +/-1 there is a quarter pel offset. As may be seen by the above re-

SMPTE 421M

© 2006 SMPTE 152

mapping operation, the quarter pel positions shall be disallowed by rounding the color-difference motion vector to the
nearest integer or half pel position towards zero (half pel positions are left unaltered).

This forces the color-difference co-ordinates to be remapped to integer and half pel positions. Second stage rounding
shall not be performed if FASTUVMC == 0.

8.3.5.5 Coded Block Pattern

Figure 25 shows the position of the CBPCY syntax element (7.1.3.1) within the P picture macroblock layer. The
CBPCY syntax element is a variable-length code that decodes to a 6-bit syntax element.

The code table used to decode CBPCY is specified by the CBPTAB syntax element in the picture layer.

The CBPCY syntax element is used differently depending on whether the macroblock is 1-MV or 4-MV. The following
sub-sections define how CBPCY is used for each macroblock type.

8.3.5.5.1 CBPCY in 1-MV Macroblocks

The CBPCY syntax element shall be present in the 1-MV macroblock layer if the MVDATA syntax element (7.1.3.8)
indicates that at least one block contains coefficient information. This is indicated by the ‘more_present flag’ value
decoded from MVDATA. See section 8.3.5.2 for a description of MVDATA decoding.

If the CBPCY syntax element is present, then it shall decode to a 6-bit syntax element indicating which of the blocks
contains at least one non-zero coefficient. Table 70 shall define how the bit positions in the CBPCY syntax element
correspond to the block numbers.

A ‘1’ in one of the positions shall define that the corresponding block has at least one non-zero AC coefficient if the
macroblock is Intra-coded or has at least one non-zero DC or AC coefficient if the macroblock is Inter-coded.

A ‘0’ in one of the positions shall define that the corresponding block does not contain any non-zero AC coefficients if
the macroblock is Intra-coded nor contain any non-zero DC or AC coefficients if the macroblock is Inter-coded.

8.3.5.5.2 CBPCY in 4-MV Macroblocks

The CBPCY syntax element shall always be present in the 4-MV macroblock layer. The CBPCY bit positions, defined
in Table 70, for the luma blocks (bits 2-5) have a different meaning than the bit positions for color-difference blocks
(bits 0 and 1) as defined next.

For the luma blocks:

A ‘0’ defines that the corresponding block shall not contain motion vector information or any non-zero
coefficients. In this case, the BLKMVDATA syntax element (7.1.3.11) shall not be present for that block and the
predicted motion vector shall be used as the motion vector and there shall be no residual data. If the motion vector
predictors indicate that hybrid motion vector prediction is used, then the HYBRIDPRED syntax element shall be
present indicating the motion vector predictor candidate to use. Refer to section 8.3.5.3 for a description of
computing the motion vector predictor.

A ‘1’ defines that the BLKMVDATA syntax element shall be present for the block. The BLKMVDATA syntax
element shall indicate whether the block is Inter or Intra-coded and whether coefficient data shall be present for the
block. If it is Inter coded, the BLKMVDATA syntax element shall also contain the motion vector differential. If
the ‘more_present flag’ decoded from BLKMVDATA (described in section 8.3.5.2.1) decodes to 0, then no AC
coefficient information shall be present if the block is Intra-coded or no DC or AC coefficient shall be present if
the block is Inter-coded. If the ‘more_present flag’ decodes to 1, then there shall at least be one non-zero AC
coefficient if the block is Intra-coded or at least one non-zero DC or AC coefficient if the block is Inter-coded.

For the color-difference blocks:

A ‘0’ defines that the block shall not contain any non-zero AC coefficients if the block is Intra-coded or any non-
zero DC or AC coefficients if the block is Inter-coded.

A ‘1’ defines that the corresponding block shall have at least one non-zero AC coefficient if the block is Intra-
coded or at least one non-zero DC or AC coefficient if the block is Inter-coded.

SMPTE 421M

© 2006 SMPTE 153

8.3.5.6 MB-level Transform Type

The TTMB syntax element (7.1.3.10) is present only in Inter macroblocks. As described in section 7.1.3.10 TTMB
codes the transform type, the signaling mode and the transform subblock pattern.

If the signaling mode is macroblock signaling, then the transform type decoded from the TTMB syntax element shall be
the same for all blocks in the macroblock. If the transform type is 8x4 or 4x8, then the subblock pattern shall also be
decoded from the TTMB syntax element. In this case, the subblock pattern shall apply to the first coded block in the
macroblock. If the transform type is 4x4, then the subblock pattern is decoded in the SUBBLKPAT syntax element
(7.1.4.17) at the block level (in each coded block). If the transform type is 8x4 or 4x8, then the subblock patterns for all
the coded blocks after the first one shall be decoded in the SUBBLKPAT syntax element at the block level.

If the signaling mode is block signaling, then the transform type decoded from the TTMB syntax element shall be
applied to the first coded block in the macroblock and the TTBLK syntax element shall not be present for the first
coded block. For the remaining coded blocks, the TTBLK syntax element shall indicate the transform type for that
block. If TTMB syntax element indicates that the first transform type is 8x4 or 4x8, then a subblock pattern shall also
be decoded from the TTMB syntax element. In this case, the subblock pattern shall apply to the first coded block in the
macroblock. If the transform type is 4x4 for a block, then the subblock pattern shall be decoded in the SUBBLKPAT
syntax element at the block.

8.3.6 Block Layer Decode
This section defines the Block layer decoding for progressive P-frame pictures for simple, main and advanced profiles.

8.3.6.1 Intra Coded Block Decode

The process for decoding Intra blocks in P pictures shall be identical to the process for decoding Intra blocks in I
pictures defined with section 8.1.3 with the following differences.

8.3.6.1.1 Coefficient Scaling

The process for coefficient scaling is identical to the process defined in section 8.1.3.9.

8.3.6.1.2 DC Prediction

The process of DC prediction is defined in section 8.1.3.2. The procedure specified in Figure 40 shall be used for
calculating the DC predictor and the prediction direction. If the macroblock quantizer is different from those of the
predictor blocks, the DC components shall be scaled as specified in section 8.1.3.9 before selection of the DC predictor
and the prediction direction.

8.3.6.1.3 AC Prediction in Intra blocks in 4-MV macroblocks.

Refer to section 8.1.3.7 for a description of AC prediction. AC prediction in Intra-coded blocks within 4-MV
macroblocks is identical except for the differences defined in the remainder of this section.

If the top predictor is selected, then the top row of AC coefficients from the block above the current block shall be used
as the predictors for the top row of AC coefficients from the current block. If the left predictor is selected, then the first
column of AC coefficients from the block to the left of the current block shall be used as the predictors for the left
column of AC coefficients from the current block. As defined in section 7.1.2, with respect to prediction, the first row
of macroblocks in the slice shall be considered to be the first row of macroblocks in the picture.

The pseudo-code of Figure 58 shall specify the process for deciding the AC predictors in Intra blocks in 4-MV
macroblocks.

In the pseudo-code, predictorA is the block located immediately above the current block, predictorC is the block
located immediately to the left of the current block and predictorB is the block immediately above and to the left of the
current block. The result of the pseudo-code is that the variable use_ac_prediction shall determine whether AC
prediction is used and prediction_direction shall determine which block is used as the predictor.

Note: In the pseudo-code, the coefficients in the predictor blocks are scaled if the macroblock quantizer scales are
different. Section 8.1.3.9 defines the scaling operation.

SMPTE 421M

© 2006 SMPTE 154

// prediction_direction TOP refers to the top predictor
// prediction_direction LEFT refers to the left predictor
use_ac_prediction = FALSE
is_nonzero_predictor = FALSE
if ((predictorA is Intra) && (predictorC is Intra))
{
 is_nonzero_predictor = TRUE;
 if (predictorB is not intra)
 {
 set predictorB’s DC coefficient to be the default predictor which is zero.
 }

 if (abs(predictorB’s DC coefficient – predictorC’s DC coefficient) <
 abs(predictorB’s DC coefficient – predictorA’s DC coefficient))
 {
 prediction_direction = TOP
 }
 else
 prediction_direction = LEFT
}
else if ((predictorA is Intra) || (predictorC is Intra))
{
 is_nonzero_predictor = TRUE
 if (predictorA is Intra)
 prediction_direction = TOP
 else
 prediction_direction = LEFT
}

Figure 58: Calculating DC Predictor Direction: Pseudo-Code

After all the (up to six) predictors are computed (for the up to six intra blocks in the 4-MV macroblock), and only when
at least one of the blocks has the flag is_nonzero_predictor set to the value TRUE, the one bit element defining
ACPRED shall be decoded.
 if (get_bits(1) == 1) // ACPRED syntax element
 use_ac_prediction = TRUE

The rule to apply AC prediction is described in the next section.

8.3.6.1.4 AC Prediction in Intra blocks in 1-MV macroblocks

AC prediction in Intra blocks within 1-MV macroblocks shall be the same as AC prediction in Intra blocks of I pictures
as defined in section 8.1.3.7, except as follows. If the top predictor block and left predictor block are not Intra-coded,
then AC prediction shall not be used, even if ACPRED == 1 in the macroblock layer. If just one of the predictors is
Intra coded (either the top or the left), then it shall be used as the predictor. If both are Intra-coded, then the method
described in section 8.1.3.7 shall be used. In this case, if the top-left block is not Intra, then the DC value of the top-left
block shall be assumed to be 0.

8.3.6.1.5 Zigzag Scan

SMPTE 421M

© 2006 SMPTE 155

The zigzag scan order used to scan the run-length decoded Transform coefficients into the 8x8 array shall be the same
as that used for the 8x8 Inter block as described in section 8.3.6.2.5. This differs from Intra blocks in I pictures which
use one of three zigzag scans depending on the prediction direction. The process of scanning out coefficients is defined
in Figure 43.

8.3.6.1.6 Coding Sets

The TRANSACFRM syntax element (7.1.1.11) shall be used to specify the coding set index used for decoding the Y,
Cb, and Cr AC coefficients (see section 8.1.3.4 for a definition of the AC coding sets). The index decoded from the
TRANSACFRM syntax element shall be used to select the intra coding set used to decode the Y blocks and shall be
used to select the inter coding set used to decode the Cb and Cr blocks. This differs from the process used for I pictures
where the TRANSACFRM specifies the index for the inter coding set and the TRANSACFRM2 syntax element
(7.1.1.12) specifies the index for the intra coding set. The P picture header shall not contain the TRANSACFRM2
syntax element. The correspondence between the coding set index and the coding set depends on the value of
PQINDEX. Table 76 and Table 77 below shall specify the correspondence for PQINDEX <= 8 and PQINDEX > 8
(7.1.1.6). Section 11.8 contains the table information that shall be used.

Table 76: Index/Coding Set Correspondence for PQINDEX <= 8

Y blocks Cb and Cr blocks

Inde
x

Table Table

0 High Rate Intra
(Table 219-Table
225)

High Rate Inter
(Table 226- Table

232)

1 High Motion Intra
(Table 177-Table
183)

High Motion Inter
(Table 184-Table

190)

2 Mid Rate Intra
(Table 205-Table
211)

Mid Rate Inter (Table
212-Table 218)

Table 77: Index/Coding Set Correspondence for PQINDEX > 8

Y blocks Cb and Cr blocks

Inde
x

Table Table

0 Low Motion Intra
(Table 191-Table
197)

Low Motion Inter
(Table 198-Table

204)

1 High Motion Intra
(Table 177-Table
183)

High Motion Inter
(Table 184-Table

190)

2 Mid Rate Intra
(Table 205-Table
211)

Mid Rate Inter (Table
212-Table 218)

8.3.6.1.7 Inverse Transform

After reconstruction of the transform coefficients, the resulting 8 × 8 blocks shall be processed by a separable
two-dimensional inverse transform of size 8 by 8, and shall comply with Annex A. The inverse transform output has a

SMPTE 421M

© 2006 SMPTE 156

dynamic range of 10 bits, as a signed integer. Finally, the constant value of 128 shall be added to the reconstructed intra
block and the result shall be clamped to the range [0 255] and shall form the reconstruction prior to loop filtering.

8.3.6.2 Inter Coded Block Decode

Figure 59 shows the steps required reconstructing Inter blocks. For illustration, the figure shows the reconstruction of a
block whose 8x8 error signal is coded with two 8x4 transforms. The 8x8 error block may also be transformed with two
4x8 Transforms or one 8x8 transform. The steps required to reconstruct an inter-coded block include: 1) transform type
selection (8.3.6.2.1), 2) sub-block pattern decode (8.3.6.2.2), 3) coefficient decode (8.3.6.2.3, 8.3.6.2.4, 8.3.6.2.5,
8.3.6.3), 4) inverse transform (8.3.6.4), 5) obtain predicted block by motion compensation (8.3.6.5.1, 8.3.6.5.2) and 6)
adding predicted and error blocks (8.3.6.5.3). The following sections define these steps.

Figure 59: Inter block reconstruction

Note: The steps shown in Figure 59 for inter block reconstruction apply to interlace field P pictures as well as
progressive P pictures.

8.3.6.2.1 Transform Type Selection

.......

RLD
Inverse
zigzag
scan

Inverse
quant/ 8x4

ITrans

Quantized 8x4
Trans

coefficients

Top 8x4 Error
block

VLD

.......

RLD
Inverse zig-

zag scan

Inverse
quant/

8x4 ITrans

Quantized 8x4
Trans

coefficients

Bottom 8x4
Error block

VLD

Run Level Last

Run Level Last

Motion vector
(specifies

displacement
predicted block in
reference

Predicted 8x8
block

MVx,

reconstructed
block

SMPTE 421M

© 2006 SMPTE 157

Figure 60: Transform Types

If variable-sized transform coding is enabled (signaled by the syntax element VSTRANSFORM == 1) (6.2.9, Annex
J.1.14), then the 8x8 error block may be transformed using one 8x8 transform, it may be divided horizontally and
transformed with two 8x4 transforms or divided vertically and transformed with two 4x8 transforms or divided into 4
quadrants and transformed with 4 4x4 transforms as shown in Figure 60. The transform type is signaled at the picture,
macroblock or block level. If TTMB (7.1.3.10) indicates that the signal level is ‘Block’, then the transform type shall be
signaled at the block level and the TTBLK syntax element (7.1.4.16) shall be present within the bitstream as shown in
Figure 28. This syntax element shall define the transform type used for the block as indicated by 7.1.4.16 (Table 62,
Table 63 and Table 64).

If variable-sized transform coding is not enabled, then the 8x8 transform shall be used for all blocks.

8.3.6.2.2 Subblock Pattern Decode

If the transform type is 8x4, 4x8 or 4x4, then the decoder shall be given information about which of the subblocks have
non-zero coefficients. For 8x4 and 4x8 transform types, the subblock pattern shall be decoded as part of the TTMB or
TTBLK syntax element. If the transform type is 4x4, then the SUBBLKPAT syntax element (7.1.4.17) shall be present
in the bitstream as shown in Figure 28.

If the subblock pattern indicates that no non-zero coefficients are present for the subblock, then no other information
for that subblock shall be present in the bitstream. For the 8x4 transform type, the data for the top subblock (if present)
shall be coded first followed by the bottom subblock. For the 4x8 transform type, the data for the left subblock (if
present) shall be coded first followed by the right subblock. For the 4x4 transform type, the data for the upper left
subblock shall be coded first followed, in order, by the upper right, lower left and lower right subblocks.

8.3.6.2.3 Coefficient Bitstream Decode

The first step in reconstructing the inter-coded block is to reconstruct the transform coefficients. The process for
decoding the bitstream to obtain the run, level and last_flag for each non-zero coefficient in the block or sub-block is
nearly identical to the process described in section 8.1.3.4 for decoding the AC coefficients in intra blocks. The two
differences are:

1) Unlike the decoding process for intra blocks, the DC coefficient is not differentially coded. No distinction is
made between the DC and AC coefficients and all coefficients shall be decoded using the same method
(defined in section 8.1.3.4).

2) Unlike the decoding process for intra blocks in I pictures (defined in section 8.1.3.4) where the Y block
coefficients are decoded using one of the three intra coding sets and the Cb and Cr block coefficients are
decoded using one of the three inter coding sets, the Y, Cb and Cr inter blocks shall all use the same inter
coding set (defined in Table 78 and Table 79).

3) The correspondence between the coding set index and the coding set depends on the value of PQINDEX.
Table 78 and Table 79 shall define the correspondence for PQINDEX <= 8 and PQINDEX > 8 respectively.

Table 78: Index/Coding Set Correspondence for PQINDEX <= 8

Y, Cb and Cr blocks

Inde
x

Table

0 High Rate Inter

8x8 Trans 8x4 Trans 4x8 Trans 4x4 Trans

SMPTE 421M

© 2006 SMPTE 158

(Table 226- Table
232)

1 High Motion Inter
(Table 184-Table
190)

2 Mid Rate Inter
(Table 212-Table
218)

Table 79: Index/Coding Set Correspondence for PQINDEX > 8

Y, Cb and Cr blocks

Inde
x

Table

0 Low Motion Inter
(Table 198-Table
204)

1 High Motion Inter
(Table 184-Table
190)

2 Mid Rate Inter
(Table 212-Table
218)

8.3.6.2.4 Run-level Decode

The process for decoding the run-level pairs obtained in the coefficient decoding process described above shall be the
same as described in section 8.1.3.5, except as described here. The difference is that because all coefficients are run-
level encoded (not just the AC coefficients as in intra blocks) the run-level decode process produces a 16-element array
in the case of 4x4 Transform, a 32-element array in the case of 8x4 or 4x8 Transform blocks or a 64-element array in
the case of 8x8 Transform blocks.

8.3.6.2.5 Zigzag Scan of Coefficients

The one-dimensional array of quantized coefficients produced in the run-level decode process described above shall be
scanned out into a two-dimensional array in preparation for the Inverse Transform. The process shall be the same as
that described in section 8.1.3.6 for intra blocks, except:

1) Each Transform type shall have an associated zigzag scan array.

2) The zigzag scan arrays for some transform types are different between the interlace mode and progressive
mode of the advanced profile.

3) Unlike the zigzag scanning process for intra blocks where one of three arrays is used depending on the DC
prediction direction, only one array (as defined below) shall be used for inter blocks.

The zigzag scan arrays for Inter blocks in simple and main profiles shall be as defined by Table 236 to Table 239,
respectively. The scan arrays in the advanced profile depend on whether interlace or progressive mode is used. The
process of scanning out coefficients is defined in Figure 43.

In progressive mode of advanced profile, the scan arrays for Inter 8x8 and 4x4 blocks shall be identical to those for
simple and main profiles, and shall be defined by Table 236 and Table 239 respectively. The scan arrays for Inter 8x4
and 4x8 blocks shall be as defined by Table 240 and Table 241 respectively. In interlaced mode of the advanced profile,
the scan arrays for Inter 8x8, 8x4, 4x8 and 4x4 blocks shall be as defined by Table 242 to Table 245 respectively.

SMPTE 421M

© 2006 SMPTE 159

8.3.6.3 Inverse Quantization

The non-zero quantized coefficients reconstructed as described in the sections above shall be inverse quantized as
described in section 8.1.3.8.

8.3.6.4 Inverse Transform

After reconstruction of the transform coefficients, the resulting 8x8, 8x4, 4x8 or 4x4 blocks shall be processed by the
appropriate two-dimensional inverse transforms. The 8x8 blocks shall be transformed using the 8x8 two-dimensional
inverse transform, the 8x4 blocks shall be transformed using the 8x4 two-dimensional inverse transform, the 4x8 blocks
shall be transformed using the 4x8 two-dimensional inverse transform and the 4x4 blocks shall be transformed using
the 4x4 two-dimensional inverse transform.

The two-dimensional inverse transform shall comply with Annex A.

8.3.6.5 Motion Compensation

The 8x8, 8x4, 4x8 or 4x4 error block or blocks shall be added to the predicted 8x8 block to produce the reconstructed
block. The motion vector decoded in the macroblock header (described in section 8.3.5.2) shall be used to obtain the
predicted block in the reference frame.

The horizontal and vertical motion vector components represent the displacement between the block currently being
decoded and the corresponding location in the reference frame. Positive values represent locations that are below and to
the right of the current location. Negative values represent locations that are above and to the left of the current
location. The actual reconstructed motion vector shall be used by subsequent macroblocks as a reference for motion
vector predictor calculation.

For simple and main profile, the reconstructed motion vectors points shall be adjusted as necessary prior to motion
compensation as defined by the pseudo-code in Figure 61 for luma motion vectors, and Figure 62 for color-difference
motion vectors.

The following operation shall be applied to adjust the luma motion vector for simple and main profile:

Let iXCoord, iYCoord be the spatial location of the top left corner of the current macroblock (e.g. if the current
macroblock is located on the 3rd column and 2nd row, then iXCoord = 2 * 16 and iYCoord = 1 * 16).

Let iMvX, iMvY be the reconstructed luma motion vector in quarter pixel unit.

Let iNumMBX, iNumMBY be the number of macroblocks in a row and a column, respectively.

Then the adjusted luma motion vector iMvXComp, iMvYComp for motion compensation shall be computed
according to the pseudo-code of Figure 61.

 int iPosX = iXCoord + (iMvX >> 2);
 int iPosY = iYCoord + (iMvY >> 2);
 iMvXComp = iMvX;
 iMvYComp = iMvY;
 if (iPosX < -16) {
 iMvXComp = ((-16 – iXCoord)<<2) + (iMvX & 3);
 } else if (iPosX > iNumMBX * 16) {
 iMvXComp = ((iNumMBX * 16 – iXCoord)<<2) + (iMvX & 3);
 }
 if (iPosY < -16) {
 iMvYComp = ((-16 – iYCoord)<<2) + (iMvY & 3);
 } else if (iPosY > iNumMBY * 16) {
 iMvYComp = ((iNumMBY * 16 – iYCoord)<<2) + (iMvY & 3);
 }

Figure 61: Adjusting Reconstructed Luma Motion Vector in Simple/Main Profile

SMPTE 421M

© 2006 SMPTE 160

Similarly, the following operation shall be applied to adjust the color-difference motion vector for simple and main
profile:

Let iCMvX, iCMvY be the reconstructed color-difference motion vector.

Let iCXCoord, iCYCoord be the spatial location of the top left corner of the current color-difference block (e.g.
if the current block is located on the 3rd column and 2nd row, then iCXCoord = 2 * 8 and iCYCoord = 1 * 8).

Then the adjusted color-difference motion vector iCMvXComp, iCMvYComp for motion compensation shall be
computed according to the pseudo-code of Figure 62.

 iPosX = iCXCoord + (iCMvX >> 2);
 iPosY = iCYCoord + (iCMvY >> 2);
 iCMvXComp = iCMvX;
 iCMvYComp = iCMvY;
 if (iPosX < -8) {
 iCMvXComp = ((-8 – iCXCoord)<<2) + (iCMvX & 3);
 } else if (iPosX > iNumMBX * 8) {
 iCMvXComp = ((iNumMBX * 8 – iCXCoord)<<2) + (iCMvX & 3);
}
 if (iPosY < -8) {
 iCMvYComp = ((-8 – iCYCoord)<<2) + (iCMvY & 3);
 } else if (iPosY > iNumMBY * 8) {
 iCMvYComp = ((iNumMBY * 8 – iCYCoord)<<2) + (iCMvY & 3);
 }

Figure 62: Adjusting Reconstructed Color-difference Motion Vector in Simple/Main Profile

If the picture layer syntax element MVMODE (see section 7.1.1.32) indicates that 1-MV Halfpel or 1-MV Halfpel
Bilinear is used as the motion compensation mode, then the decoded motion vector differential shall be expressed in
half-pixel resolution. The motion vector reconstruction process described in these sections assumes that the delta
motion vector and the predicted motion vector are in quarter pixel units. Therefore, for the case where the MVMODE
indicates that the motion vector use half-pixel precision, the delta motion vectors shall be multiplied by 2 to obtain the
equivalent quarter pixel representation.

For example, a horizontal motion component of 4 indicates a position 2 pixels to the right of the current position and a
value of 5 indicates a position of 2 ½ pixels to the right. If the picture layer syntax element MVMODE (see section
7.1.1.32) indicates that 1-MV or Mixed-MV is used as the motion compensation mode, then all motion vectors shall be
expressed in quarter-pixel resolution. For example, a horizontal motion component of 4 indicates a position 1 pixel to
the right of the current position and a value of 5 indicates a position of 1 1/4 pixels to the right.

Integer pixel motion vectors do not require the computation of interpolated pixels. In 1-MV Halfpel Bilinear mode, all
non-integer pixel motion vector offsets shall use a bilinear filter to compute the interpolated pixels. In all other
modes, all non-integer pixel motion vector offsets shall use a bicubic filter to compute the interpolated pixels. The
repeat pad operation shall be performed before the subpixel interpolation.

8.3.6.5.1 Bilinear Interpolation

The following sections describe the bilinear filter operations. The bilinear filter shall operate as shown in Figure 63.

SMPTE 421M

© 2006 SMPTE 161

Case 3

Case 6

Case 2

Case 1

Case 4

Case 5

Integer locations Case 7Case 8

Figure 63: Bilinear filter cases

Figure 63 shows all the possible unique interpolated positions. They are:

Case 1: full-pel horizontal, half-pel vertical

Case 2: half-pel horizontal, full-pel vertical

Case 3: half-pel horizontal, half-pel vertical

Case 4: full-pel horizontal, quarter-pel vertical

Case 5: quarter-pel horizontal, full-pel vertical

Case 6: quarter-pel horizontal, quarter-pel vertical

Case 7: quarter-pel horizontal, half-pel vertical

Case 8: half-pel horizontal, quarter-pel vertical

Note: The other possible interpolated positions are identical to one of the cases 1-8, and hence are not shown in Figure
63.

Although the bilinear interpolator is defined for quarter pixel motion vector resolution, only half pixel motion shall be
allowed for the luma blocks. In other words, in Figure 63, only cases 1, 2 and 3 shall be permitted for luma. Cases 4
through 8 shall be used only for color-difference.

For a non-integer pixel motion vector value, the value of the interpolated pixel shall be computed from the four closest
integer pixel motion vector locations in the reference picture. In Figure 63, the relative positions of these reference
integer pixel locations are: a (bottom-left), b (top-left), c (top-right), d (bottom-right).

For the cases 1, 2 and 3, the interpolated pixel p shall be derived by the following equations:
p = (a + b + 1 – RND) >> 1 :case 1
p = (a + d + 1 – RND) >> 1 :case 2
p = (a + b + c + d + 2 – RND) >> 2 :case 3

where RND is the frame level rounding control value as described in section 8.3.7.

The general rule that applies to all cases is shown below. The indices x and y are the sub-pixel shifts in the horizontal
(left to right) and vertical (bottom to top) directions, multiplied by 4. Their values range from 0 through 4 within the
area bounded by the four pixels shown in Figure 63, with the origin located at a. Arrays F and G are the filter
coefficients. F[] = { 4, 3, 2, 1, 0 } and G[] = { 0, 1, 2, 3, 4 }. The interpolated value p shall be given by:

p = (F[x] F[y] a + F[x] G[y] b + G[x] G[y] c + G[x] F[y] d +8 – RND) >> 4

For example, consider case 8. The subpixel shifts for case 8 are x=2, y=1. p is therefore:
p = (6 a + 2 b + 2 c + 6 d + 8 – RND) >> 4

The above expression is identical to
p = (3 a + b + c + 3 d + 4 – RND) >> 3

when RND is 0 or 1, which is the case with the rounding control value.

SMPTE 421M

© 2006 SMPTE 162

Note: It can be shown that cases 1 through 3 simplify to their earlier definitions.

8.3.6.5.2 Bicubic Interpolation

The following section describes the bicubic filter operations.

Case 3

Case 6

Case 2

Case 1

Case 4

Case 5

Integer locations Case 7Case 8

Figure 64: Bicubic filter cases

Figure 64 shows all the possible unique interpolated positions. They are:

Case 1: full-pel horizontal, half-pel vertical

Case 2: half-pel horizontal, full-pel vertical

Case 3: half-pel horizontal, half-pel vertical

Case 4: full-pel horizontal, quarter-pel vertical

Case 5: quarter-pel horizontal, full-pel vertical

Case 6: quarter-pel horizontal, quarter-pel vertical

Case 7: quarter-pel horizontal, half-pel vertical

Case 8: half-pel horizontal, quarter-pel vertical

Note: The other possible interpolated positions are identical to one of the cases 1-8, and hence are not shown in Figure
64.

In Figure 64, the relative position of the integer pixel locations: a (bottom-left), b (top-left), c (top-right), d (bottom-
right).

Bicubic Filter Coefficients for different shift locations

Figure 65 shows the pixels that shall be used to compute the interpolated pixels for each case. S denotes the sub-pixel
position. P1, P2, P3 and P4 represent the integer pixel positions. The figure shows horizontal interpolation but the same
operation shall apply to vertical interpolation.

SMPTE 421M

© 2006 SMPTE 163

½ Pixel Shift

¼ Pixel Shift

¾ Pixel Shift

Figure 65: Pixel Shifts

The following filters shall be used for the possible shift locations of interpolated pixel:

½ pel shift F1: [-1 9 9 -1]

¼ pel shift F2: [-4 53 18 -3]

¾ pel shift F3: [-3 18 53 -4]

The following equations shall specify the filtered result, S, for the possible shift locations of the interpolated pixel:
 S = (-1*P1 + 9*P2 + 9*P3 -1*P4) (1/2 pixel shift)
 S =(-4*P1 + 53*P2 + 18*P3 – 3*P4) (1/4 pixel shift)
 S = (-3*P1 + 18*P2 + 53*P3 -4*P4) (3/4 pixel shift)

One-dimensional Bicubic Interpolation (Cases 1, 2, 4 and 5)

In Figure 64, cases 1, 2, 4 and 5 represent the cases where interpolation occurs in only one dimension – either
horizontal or vertical

The following rounding shall be applied after the filtering operation for each case:

 (S + 8 – r) >> 4 (1/2 pixel shift)
 (S + 32 – r) >> 6 (1/4 pixel shift)
 (S +32 – r) >> 6 (3/4 pixel shift)
where S is the filtered result after applying the filter appropriate for the location of the interpolated pixel.

The value r in the equations above depends on RND, the frame-level round control value (see section 8.3.7 for a
description) and the interpolation direction as follows:

⎩
⎨
⎧

−
−−

=
)52(
)41(1

andcasesdirectionhorizontalRND
andcasesdirectionverticalRND

r

Two-dimensional Bicubic Interpolation

In Figure 64, cases 3, 6, 7 and 8 are the cases where interpolation occurs in both the horizontal and vertical directions.

Two-dimensionally interpolated pixel locations shall first interpolate along the vertical direction, and then along the
horizontal direction using the appropriate filter in each direction among F1, F2 and F3 specified above. Rounding

⎧

SMPTE 421M

© 2006 SMPTE 164

shall be applied separately after vertical filtering and after horizontal filtering. The output of the vertical filtering after
rounding shall be used as the input for the horizontal filtering.

For example, the two-dimensional interpolation for case 8, which has a quarter-pel shift vertically and a half-pel shift
horizontally, uses the filter F2 for interpolation along the vertical direction and F1 for interpolation along the horizontal
direction.

The rounding rule after vertical filtering shall be defined as
(S + rndCtrlV) >> shiftV

where

S = vertically filtered result after applying the filter appropriate for the vertical shift location of the interpolated pixel,
i.e. -1*P1 + 9*P2 + 9*P3 -1*P4 for ½ pixel shift

shiftV = { 1, 5, 3, 3 } for cases 3, 6, 7 and 8 respectively.

rndCtrlV = 2shiftV-1 - 1 + RND (see section 8.3.7 for a description of RND)

The rounding rule after horizontal filtering shall be defined as:

(S + 64 – RND) >> 7.

where

S = horizontally filtered result after applying the filter appropriate for the horizontal shift location of the interpolated
pixel,

RND = frame level round control value (see section 8.3.7)

All of the bicubic filtering cases potentially produce an interpolated pixel whose value is negative, or larger than the
maximum range (255). In these cases, the clip() operator shall be applied so that the output lies within the range.

8.3.6.5.3 Adding Error and Predictor

The 8x8 predicted block is added to the 8x8 error block to form the reconstructed 8x8 block. The pseudo-code in Figure
66 shall specify this process.

// predblock[8][8] represents 8x8 predicted block
// errorblock[8][8] represents 8x8 error block
// reconblock[8][8] represents reconstructed 8x8 block
for (row= 0; row < 8; row++)
{

for (col = 0; col < 8; col++)
 reconblock[row][col] = clip(predblock[row][col] + errorblock[row][col])
}

Figure 66: Inter block reconstruction pseudo-code

8.3.7 Rounding Control (RND)
Section 8.3.6.2 defines the interpolation operations used to generate subpixel values in the reference blocks. Rounding
is controlled by a value RND called the rounding control value.

In simple and main profiles, RND is derived as follows:
• For each I or BI frame, the value of RND shall be set to 1.

SMPTE 421M

© 2006 SMPTE 165

• For each P Frame, the value of RND shall toggle back and forth between 0 and 1. Thus, the value of RND for
the first P frame following an I frame is 0.

• For each B frame or a skipped frame, the value of RND shall remain the same as that of the closest I, BI or P
frame which was decoded prior to the B frame.

In advanced profile, the value of RND shall be decoded from the RNDCTRL syntax element in the picture header.

8.3.8 Intensity Compensation
If the picture layer syntax element MVMODE (7.1.1.32) indicates that intensity compensation is used for the frame,
then the pixels in the reference frame shall be remapped prior to using them as predictors for the current frame. As
defined by section 8.3.4.3, when intensity compensation is used, the LUMSCALE (7.1.1.34) and LUMSHIFT
(7.1.1.35) syntax elements are present in the picture bitstream. The pseudo-code of Figure 67 shall define how the
LUMSCALE and LUMSHIFT values shall be used to build the lookup table used to remap the reference frame pixels.

// As defined in section 8.3.8, LUTY and LUTUV are lookup tables used to
// remap the Y component, and the Cb and Cr component of the reference frame.

int iScale, iShift
if (LUMSCALE == 0)
{
 iScale = - 64
 iShift = 255 * 64 - LUMSHIFT *2 * 64
 if (LUMSHIFT > 31)
 iShift += 128 * 64;
}
else {
 iScale = LUMSCALE + 32
 if (LUMSHIFT > 31)
 iShift = LUMSHIFT * 64 - 64 * 64;
 else
 iShift = LUMSHIFT * 64;
 }

// build LUTs
for (i = 0; i < 256; i++)
{
 j = (iScale * i + iShift + 32) >> 6
 if (j > 255)
 j = 255
 else if (j < 0)
 j = 0
 LUTY[i] = j
 j = (iScale * (i - 128) + 128 * 64 + 32) >>6
 if (j > 255)
 j = 255
 else if (j < 0)
 j = 0
 LUTUV[i] = j
}

SMPTE 421M

© 2006 SMPTE 166

Figure 67: Intensity Compensation pseudo-code

The Y component of the reference frame shall be remapped using the LUTY[] table generated above, and the Cb and Cr
components of the reference frame shall be remapped using the LUTUV[] table as follows:

][YY pLUTYp =

][UVUV pLUTUVp =

Where Yp is the original luma pixel value in the reference frame and Yp is the remapped luma pixel value in the

reference frame and UVp is the original Cb or Cr pixel value in the reference frame and UVp is the remapped Cb or Cr
pixel value in the reference frame. The remapped reference frame shall also be used for prediction of all subsequent B
frames.

8.4 Progressive B Frame Picture Decoding
B frames are coded as bidirectional predicted frames and both forward and backward frames are needed for motion
compensation. Progressive BI frame pictures are defined above in section 8.2. B Frames are permitted only in main and
advanced profile.

Unlike P frames there shall be no “4-MV” motion compensation mode in B Frames. At the frame level, only two
choices for motion vector resolution are permitted – quarter pel bicubic and half pel bilinear.

The following sections describe the process for decoding progressive B frame pictures. Section 8.4.1 defines the
handling of skipped anchor frames, section 8.4.2 defines the handling of out-of-bounds reference pixels, section 8.4.3
defines the B picture types, section 8.4.4 defines the picture layer decoding, section 8.4.5 defines macroblock layer
decoding, and section 8.4.6 defines block layer decoding.

8.4.1 Skipped Anchor Frames
If an anchor frame is coded as a skipped frame then it shall be treated as a P frame which is identical to its reference
frame. In this case, both anchor frames shall be identical for the intervening B frames. For example, if the frames are
coded as follows in display order:

I0 B1 P2 B3 P4 B5 S6 (I0 P2 B1 P4 B3 S6 B5 in coding order) where S6 is the skipped frame

then this is treated effectively as:

I0 B1 P2 B3 P4 B5 P4

because the skipped frame (S6) is treated as being identical to its reference (P4).

The motion vectors for the skipped anchor frame shall be set to zero.

Note: This is used for computation of direct mode motion vectors when the subsequent anchor is a skipped frame.

See section 8.3.1 for a description of skipped frames.

8.4.2 Out-of-bounds Reference Pixels
These shall be treated the same way as in progressive P frame pictures. Refer to section 8.3.2.

8.4.3 Progressive B Frame Picture Types
All B pictures are 1-MV type. Mixed-MV shall not be used with progressive B pictures.

8.4.4 Progressive B Frame Picture Layer Decode
Some B frame specific information is transmitted at the picture level. Apart from the syntax element PTYPE (7.1.1.4),
BFRACTION syntax element (7.1.1.14) shall be present in the picture header. For main profile BFRACTION shall
indicate whether it is a BI frame, or the scaling factor used to derive the direct motion vectors (explained in section

SMPTE 421M

© 2006 SMPTE 167

7.1.1.14). For advanced profile, BFRACTION shall only indicate the scaling factor. The details of B picture layer
decoding are provided in the following sub-sections.

8.4.4.1 Picture-level Quantizer Scale (PQUANT)

This shall be identical to P pictures defined in 8.3.4.1.

8.4.4.2 Motion Compensation Mode (MVMODE)

The MVMODE syntax element (7.1.1.32) shall only take the values 0 or 1 in progressive B pictures. If MVMODE is 1,
then the picture shall use 1-MV with quarter pel bicubic motion compensation and if it is 0 then it shall use 1-MV with
half pel bilinear motion compensation. Intensity compensation shall not be signaled in B pictures (LUMSCALE,
LUMSHIFT are not present).

8.4.4.3 Skipped Macroblock Decoding (SKIPMB)

The B picture layer contains the SKIPMB syntax element (7.1.1.37), and this shall be signaled the same way as with P
pictures as defined in section 8.3.4.4. When a macroblock is skipped, then it may only contain the BMVTYPE syntax
element to signal the prediction type (i.e. forward, backward, or interpolated is signaled by BMVTYPE).

Note: Hybrid MVs (HYBRIDPRED) are not used in B pictures.

8.4.4.4 Motion Vector Table (MVTAB)

These shall be identical to P pictures as defined in section 8.3.4.5.

8.4.4.5 Coded Block Pattern Table (CBPTAB)

The table used to decode the coded block pattern is indicated by the CBPTAB syntax element as described in section
7.1.1.39, and its use shall be identical to P pictures as defined in section 8.3.5.5.

8.4.4.6 Macroblock-level Transform Type Flag (TTMBF)

This shall be identical to P pictures as defined in section 8.3.4.7.

8.4.4.7 Frame-level Transform Type (TTFRM)

This shall be identical to P pictures as defined in section 8.3.4.8.

8.4.4.8 Frame-level Transform AC Coding Set Index (TRANSACFRM)

This shall be identical to P pictures as defined in section 8.3.4.9.

8.4.4.9 Intra Transform DC Table (TRANSDCTAB)

This shall be identical to P pictures as defined in section 8.3.4.10.

8.4.4.10 Bitplane Coding

As in P frames, some information is coded as a bitplane that is sent at the frame level. For progressive B frames, two
such bitplanes are sent – one denoting skipped macroblocks (refer to section 8.3.4.4) and the other denoting
macroblocks coded in Direct mode. This information shall be sent at the macroblock level when the chosen coding
mode is ‘Raw’. See section 8.7 for a description of bitplane coding.

8.4.4.11 Rounding Control (RND)

The rounding control parameter used by B frames shall be as described in 8.3.7.

8.4.4.12 Sync Markers

B frames shall not contain sync markers (see section 8.8).

8.4.4.13 Picture Resolution (RESPIC

If variable resolution coding is enabled for the sequence (signaled by the MULTIRES flag in the sequence header) then
the resolution of the B frame shall be equal to the resolution of the two reference frames. See section 8.1.1.3 for a
definition of how the current resolution is signaled. The two reference frames shall always have the same resolution.

SMPTE 421M

© 2006 SMPTE 168

This restriction means that B frames shall not occur temporally between an I and P or two I frames where the I frame
has a different resolution to the preceding I or P frame.

Note: This restriction is always satisfied for B frames that occur temporally between two P frames since a resolution
change can only occur at I frames (see 8.1.1.3).

8.4.4.14 Range Reduction Frame (RANGEREDFRM)

The RANGEREDFRM syntax element (7.1.1.3) shall only be present when RANGERED == 1 at the sequence level.
RANGEREDFRM shall have the same value as the RANGEREDFRM syntax element of the temporally subsequent (in
display order) anchor frame. This implies that no scaling shall be performed for performing motion compensation from
the temporally subsequent (in display order) frame. However, scaling may be required for prediction from the
temporally preceding anchor frame. This scaling shall be identical to the scaling performed for predicting P frames, and
shall be as described in section 8.3.4.11. When RANGEREDFRM == 1 for the current B frame, the current decoded
frame shall be scaled up similar to the scaling of the P frame, and shall be as described in section 8.3.4.11.

8.4.5 B Frame Macroblock Layer Decode

8.4.5.1 Macroblock Types

Macroblocks in B frames shall belong to one of four prediction modes: backward, forward, direct and interpolated.
The direct mode is signaled by the DIRECTMB bitplane (defined in section 7.1.1.42), or DIRECTBBIT (defined in
section 7.1.3.12). The other three modes are signaled in BMVTYPE (defined in 7.1.3.14). The forward mode is akin to
conventional P picture prediction. Additionally, each macroblock may also be intra-coded (signaled by BMV1
element) or skipped. If the current macroblock is inter-coded, then the BMV1 syntax element shall also specify the
motion vector differential as in P pictures. The decoding procedure for BMV1 shall be identical to the procedure for
MVDATA, and shall be as described in section 8.3.5.2.1. All macroblocks in progressive B pictures shall only use 1-
MV mode, i.e. 4-MV is not permitted. In the forward mode, the B macroblock shall be motion compensated from its
temporally previous anchor frame only. Likewise, backward mode macroblocks shall be motion compensated from
their temporally subsequent (in display order) anchor frame.

8.4.5.1.1 Skipped Macroblocks

Skipped macroblocks shall be signaled the same way as in P pictures (defined in section 8.3.5.1.3). Even if a
macroblock is skipped, the prediction mode shall be decoded.

Note: The prediction mode of a macroblock is signaled by DIRECTMB bitplane or DIRECTBBIT, and if not direct, by
BMVTYPE as described in 8.4.5.1.

8.4.5.2 Long and Short Types to signal Forward and Backward modes

The use of BMVTYPE to signal forward and backward modes is defined in section 7.1.3.14.

Note: When a B frame is closer to its temporally previous reference, it is expected that the forward coding mode will be
used more often. Likewise, when a B frame is closer to the end of its inter-anchor interval, it is expected that the
backward coding mode will be used more often. This statistical behavior is exploited by flagging the backward and
forward mode using two codewords whose interpretation is switched across two sides of the midpoint of the inter-
anchor interval.

8.4.5.3 Direct and Interpolated Modes

Macroblocks for which prediction mode is either direct or interpolated use both the anchors for prediction. They shall
use two sets of motion vectors (MVs), one each to reference into the previous and next anchor frame. In both cases the
pixels shall be interpolated from the two reference frames, which shall be followed by a pixel average operation with
round-up to compute the pixels in the motion compensated macroblock:

Pixel value = (Interpolated value from anchor 1 + Interpolated value from anchor 2 + 1) >> 1

In interpolated mode the forward and backward motion vectors shall be explicitly coded within the bitstream. In
interpolated mode, the backward motion vector shall be the first motion vector that is decoded (corresponding to
BMV1), and the forward motion vector shall be the second motion vector that is decoded (corresponding to BMV2). In

SMPTE 421M

© 2006 SMPTE 169

direct mode the forward and backward motion vectors shall be derived by scaling the co-located motion vectors from
the backward reference frame. These scaling operations shall be performed in ¼ pel units.

8.4.5.4 Decoding Direct Mode Motion Vectors

Direct mode MVs shall not be explicitly signaled or decoded. Instead, they shall be computed based on motion vectors
buffered from the temporally subsequent (in display order) anchor frame and scaling logic as described below. The
direct mode MVs shall be set to (0, 0) when the co-located macroblock of the subsequent anchor frame is intra-coded.

If the subsequent anchor P frame's co-located MV was 1-MV, then that MV shall be buffered for the next B frame to be
coded.

If the P frame’s co-located MV was 4-MV,
• median4() of the 4 MVs shall be used if none of the blocks is intra-coded;
• ‘median3() of the 3 MVs shall be used if one of the blocks is intra-coded;
• averaging with integer division by 2 with truncation towards zero of 2 MVs, i.e. (MVa + MVb)/2, shall be

used if two out of four blocks are intra-coded, where MVa and MVb are the MVs of the two inter-coded
blocks.

The resulting MV shall be buffered. If the P frame’s co-located MV was 4-MV, and if 3 or 4 of the blocks are intra,
then the direct mode MVs shall be set to (0,0).

In the main profile only (and not in advanced profile), prior to buffering these MVs from the P frame to use in the
subsequently decoded B frames, pullback operations shall be performed on these MVs (MV_X_To_Buffer,
MV_Y_To_Buffer) according to the pseudo-code of Figure 68.

 //MB_X_Offset is the horizontal position of the MB in units of macroblocks
 //MB_Y_Offset is the vertical position of the MB in units of macroblocks
 // iNumXMBtimes8 is the number of MBs along a row multiplied by 8
 // iNumYMBtimes8 is the number of MBs along a column multiplied by 8
 //iX0B and iY0B are intermediate variables used in the calculation.
 iX0B = (MB_X_Offset << 3) + (MV_X_To_Buffer >> 2);
 // full-pel resolution
 iY0B = (MB_Y_Offset << 3) + (MV_Y_To_Buffer >> 2);
 if (iX0B < -8)
 MV_X_To_Buffer -= (iX0B + 8) * 4;
 else if (iX0B > iNumXMBtimes8)
 MV_X_To_Buffer -= (iX0B – iNumXMBtimes8) * 4;
 if (iY0B < -8)
 MV_Y_To_Buffer -= (iY0B + 8) * 4;
 else if (iY0B > iNumYMBtimes8)
 MV_Y_To_Buffer -= (iY0B - iNumYMBtimes8) * 4;

Figure 68: Pseudo-code for Pullback of Direct mode MVs in main profile

Given that the subsequent anchor (in display order) frame was a P frame (in case the next frame was I, all the direct
mode motion vectors shall be (0,0)), and the co-located macroblock buffered the motion vector MV (MV_X, MV_Y),
the direct mode shall compute two sets of motion vectors, one referencing into the forward or previous anchor frame,
(MV_XF , MV_YF), and the other referencing into the backward or subsequent (in display order) anchor frame,
(MV_XB, MV_YB) according to the pseudo-code of Figure 69.

Scale_Direct_MV (IN MV_X, IN MV_Y, OUT MV_XF , OUT MV_YF, OUT MV_XB, OUT MV_YB)
//ScaleFactor computed according to the pseudo-code of Figure 70.
// Total_MBs_along_X is the number of MBs along a row.
// Total_MBs_along_Y is the number of MBs along a column.

SMPTE 421M

© 2006 SMPTE 170

// MB_X_Offset_in_qpels the horizontal position of the MB in units of pixels multiplied by 4.
// MB_Y_Offset_in_qpels the vertical position of the MB in units of pixels multiplied by 4.
// All computations are performed in ¼ pel units.
if (MVMode == 1-MV Half-pel || MVMode == 1-MV Half-pel Bilinear) {
 MV_XF = 2 * ((MV_X * ScaleFactor + 255) >> 9);
 MV_YF = 2 * ((MV_Y * ScaleFactor + 255) >> 9);
 MV_XB = 2 * ((MV_X * (ScaleFactor - 256) + 255) >> 9);
 MV_YB = 2 * ((MV_Y * (ScaleFactor - 256) + 255) >> 9);
}
else { /* Quarter pel units */
 MV_XF = (MV_X * ScaleFactor + 128) >> 8;
 MV_YF = (MV_Y * ScaleFactor + 128) >> 8;
 MV_XB = (MV_X * (ScaleFactor - 256) + 128) >> 8;
 MV_YB = (MV_Y * (ScaleFactor - 256) + 128) >> 8;
}

if (Main or Advanced profiles, Progressive Only) /* Do pullback */
// Note that this condition is satisfied by definition for progressive B pictures
{
 // limit motion vector around periphery of the frame
 Int iMinCoordinate = -60;
 // -15 pixels in quarter pel units
 Int iMaxX = Total_MBs_along_X * 64 - 4;
 Int iMaxY = Total_MBs_along_Y * 64 - 4;
 Int iX1 = MB_X_Offset_in_qpels + MV_XF;
 Int iY1 = MB_Y_Offset_in_qpels + MV_YF;

 if (iX1 < iMinCoordinate)
 MV_XF = iMinCoordinate - MB_X_Offset_in_qpels;
 else if (iX1 > iMaxX)
 MV_XF = iMaxX - MB_X_Offset_in_qpels;
 if (iY1 < iMinCoordinate)
 MV_YF = iMinCoordinate - MB_Y_Offset_in_qpels;
 else if (iY1 > iMaxY)
 MV_YF = iMaxY - MB_Y_Offset_in_qpels;
 iX1 = MB_X_Offset_in_qpels + MV_XB;
 iY1 = MB_Y_Offset_in_qpels + MV_YB;
 if (iX1 < iMinCoordinate)
 MV_XB = iMinCoordinate - MB_X_Offset_in_qpels;
 else if (iX1 > iMaxX)
 MV_XB = iMaxX - MB_X_Offset_in_qpels;
 if (iY1 < iMinCoordinate)
 MV_YB = iMinCoordinate - MB_Y_Offset_in_qpels;
 else if (iY1 > iMaxY)
 MV_YB = iMaxY - MB_Y_Offset_in_qpels;
}

SMPTE 421M

© 2006 SMPTE 171

End Scale_Direct_MV

Figure 69: Pseudo-code for Computation of Direct mode MVs

 “ScaleFactor” shall be computed at the start of decoding each B frame, according to the pseudo-code of Figure 70.
Int NumShortVLC[] = {1, 1, 2, 1, 3, 1, 2};
Int DenShortVLC[] = {2, 3, 3, 4, 4, 5, 5};
Int NumLongVLC[] = {3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7};
Int DenLongVLC[] = {5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8};
Int Inverse[] = { 256, 128, 85, 64, 51, 43, 37, 32 };
//Numerator, Denominator, and FrameReciprocal are variables used in ScaleFactor computation
Frame_Initialization(code word)
// codewords 000b through 110b are “short” code words, and the rest are “long” code words.
if (long code word)
{
 Numerator = NumLongVLC[code word - 112];
 Denominator = DenLongVLC[code word - 112];
}
else /* short code word */
{
 Numerator = NumShortVLC[code word];
 Denominator = DenShortVLC[code word];
}
FrameReciprocal = Inverse[Denominator - 1];
ScaleFactor = Numerator * FrameReciprocal;
End Frame_Initialization

Figure 70: Pseudo-code for Computation of ScaleFactor in Direct mode

The code word shall be obtained by decoding the frame level syntax element BFRACTION (7.1.1.4) according to Table
40. In this table, the code-words 000b through 110b shall be known as the “short” code words and the remainder shall
be known as the “long” code words.

Figure 71 illustrates how direct mode scales the motion vectors from the next P frame, while the scaling operation is
defined by Figure 69.

(x,y)

(x+dx/2,y+dy/2)

(x+dx,y+dy)

B2

B1

B3

P frame (time t)

B frame (time t+1)

P frame (time t+2)

MV (dx,dy)

Figure 71: Illustration of Direct Mode Prediction

SMPTE 421M

© 2006 SMPTE 172

8.4.5.5 Decoding Motion Vector Differentials

This shall be identical to P pictures defined in section 8.3.5.2.1.

Note: 4-MV is not present in B pictures, and the B frame motion vectors are referred to as BMV1 and BMV2 instead
of MVDATA and BLKMVDATA.

8.4.5.6 Motion Vector Predictors

This shall be the same as the motion vector prediction (as defined in 8.3.5.3.1) for 1-MV P pictures, with the addition of
separate prediction contexts for forward and backward mode MVs. The forward prediction contexts shall be used only
to predict forward MVs and the backward prediction contexts shall be used only for the prediction of backward MVs.

8.4.5.6.1 Populating the forward and backward prediction contexts

The forward and backward motion vectors shall be buffered separately, and they shall be used separately to predict
forward and backward motion vectors respectively. For ‘Interpolated’ macroblocks, the forward prediction buffer shall
be used to predict the forward MV, i.e. BMV2, and the backward buffer shall be used to predict the backward MV, i.e.
BMV1. When the MB is of type ‘Direct’ or ‘Interpolated’, the forward MV component shall be buffered in the forward
buffer and the backward MV component shall be buffered in the backward buffer.

When the MB is of type ‘Forward’, the forward MV shall be buffered after it is decoded in the forward prediction
buffer. Then the backward MV component of the direct mode shall be computed to fill in the corresponding position in
the backward buffer (MV_XB, MV_YB). When the MB is of type ‘Backward’, the backward MV shall be buffered after
it is decoded in the backward prediction buffer. Then the forward MV component of the direct mode shall be computed
to fill in the corresponding position in the forward buffer (MV_XF, MV_YF). Thus, in progressive B frames the direct
mode motion vector shall be calculated even for an MB that is only forward (or backward predicted).

If a macroblock in the backward reference frame was coded as an intra macroblock then the co-located macroblock
positions in the forward and backward contexts shall also be considered to be intra-coded.

Note: One way to implement this is by using an “intra motion vector” to fill in both forward and backward motion
prediction planes if the MB is intra-coded. Any consistent representation of “intra motion vector” can be chosen by the
decoder implementation. E.g. If the MVs are being stored in a 2-byte short array, then “intra motion vector” could be
represented as a unique large constant that is filled into the MV array to indicate that the MB was coded as intra.

8.4.5.7 Motion Vector Prediction

MV prediction logic for progressive B pictures shall be the same as in 1-MV P frames (as defined in section 8.3.5.3.1).
Hybrid prediction and 4-MV shall not be used in B pictures. The MV predictor pullback operation for B pictures is
defined in section 8.4.5.8. As described above, forward MVs shall be used to predict an incoming forward MV, and
backward MVs shall be used to predict an incoming backward MV.

8.4.5.8 Motion Vector Predictor Pull-back

A pull-back operation shall be performed on the predicted motion vectors as follows:
• Let X = 16*((CodedWidth+15) /16) * 4 – 4 and
• Y = 16*((CodedHeight+15) /16) * 4 – 4 and
• let (MBx, MBy) be the macroblock in the current frame with predicted motion vector (predictor_pre_x,

predictor_pre_y).
• Let Xmain = 8*((CodedWidth+15) /16) * 4 – 4 and
• Ymain = 8*((CodedHeight+15) /16) * 4 – 4 and
• Let the values qx and qy represent the quarter pixel coordinates of the top left corner of the macroblock

as qx = MBx * 16 * 4, qy = MBy * 16 * 4.

In the main profile, the pullback operation on the motion vector predictor of the macroblock shall be implemented as
follows:

• If qx/2 +predictor_pre_x <-28, then predictor_pre_x shall be set to the value (-28 –qx/2).
• If qx/2 +predictor_pre_x > Xmain, then predictor_pre_x shall be set to the value (Xmain – qx/2).
• If qy/2 +predictor_pre_y <-28, then predictor_pre_y shall be set to the value (-28 –qy/2).
• If qy/2+predictor_pre_y >Ymain, then predictor_pre_y shall be set to the value of (Ymain –qy/2).

SMPTE 421M

© 2006 SMPTE 173

In the advanced profile, the pullback operation on the motion vector predictor of the macroblock shall be implemented
as follows:

• If qx +predictor_pre_x <-60, then predictor_pre_x shall be set to the value (-60 –qx).
• If qx +predictor_pre_x > X , then predictor_pre_x shall be set to the value (X –qx).
• If qy +predictor_pre_y <-60, then predictor_pre_y shall be set to the value (-60 –qy).
• If qy +predictor_pre_y >Y, then predictor_pre_y shall be set to the value of (Y – qy).

8.4.5.9 Motion Vector Decoding in B Frames

Whether or not a macroblock is coded as ‘Direct’ is known at the start of decoding macroblock level information.
Non-direct macroblocks shall have one or two associated motion vectors, and direct macroblocks shall have none.
Skipped macroblocks that are direct coded shall have zero residual Transform coefficients, and skipped non-direct
coded macroblocks shall also have zero residual motion. If a MB is "skipped", the MB mode shall be signaled, to
identify whether the "skipped" MB shall use ‘Direct’, ‘Forward’, ‘Backward’ or ‘Interpolated’ prediction. For a skipped
MB, prediction shall be performed as usual (treating each mode with the appropriate decoding rules) and the predicted
MVs shall be the reconstructed motion vectors.

Since motion vector information is jointly coded with the intra_flag, intra macroblocks shall be identified by decoding
the first motion vector. Thus no mode information is sent after an intra motion vector is received.

Note: Thus, some efficiency is gained by coding the mode of the non-direct macroblock after sending the first motion
vector.

When the first motion vector is non-intra, the macroblock type shall be present. The coding of BMVTYPE is defined
in section 7.1.3.14, and the motivation for this coding scheme is defined in section 8.4.5.2.

The second motion vector shall be sent only if the macroblock is interpolated and if the ‘more_present flag’ (see
section 8.3.5.2.1) component of the first motion vector (BMV1) is nonzero. If the ‘more_present flag’ component is
zero for an interpolated macroblock, it implies that the second residual motion vector of the interpolated block is zero,
and so are the residual Transform terms.

Note: In the interpolated mode BMV1 is the backward and BMV2 is the forward motion vector.

8.4.5.10 Motion Vector Prediction in Skipped Macroblocks

In skipped macroblocks, only the prediction mode, i.e. BMVTYPE, shall be decoded. Then the appropriate (i.e. forward
or backward prediction) buffers shall be used to predict the motion vector of that type. The predicted motion vector
shall be the actual motion vector in this case, as there are no residual differential MVs. This motion vector shall then be
added to the appropriate (forward or backward) prediction context.

8.4.5.11 Reconstructing Motion Vectors

The following sections describe how to reconstruct the luma and color-difference motion vectors for B pictures.

8.4.5.11.1 Luma Motion Vector Reconstruction

This shall be identical to the corresponding operation in 1-MV macroblocks of P pictures as defined in section
8.3.5.4.1.

8.4.5.11.2 Color-difference Motion Vector Reconstruction

In the first step, the nominal color-difference motion vector shall be obtained by combining and scaling the luma
motion vectors appropriately. The scaling is performed in such a way that half-pixel offsets are preferred over quarter
pixel locations.

In the second stage, the 1-bit FASTUVMC syntax element (6.2.6, Annex J.1.11) is used to determine if further
rounding of color-difference motion vectors is necessary. If FASTUVMC == 0, no rounding shall be performed in the
second stage. If FASTUVMC == 1, the color-difference motion vectors that are at quarter pel offsets shall be rounded
to the nearest half or full pel positions.

These operations shall be specified by the pseudo-code of Figure 72.

SMPTE 421M

© 2006 SMPTE 174

 // weak coercion to half pel positions
 // s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
//LumaMVx and LumaMVy are x and y components of luma motion vectors.
//ColordifferenceMVx and ColordifferenceMVy are x and y components of color-difference motion vectors.
 ColordifferenceMVx = (LumaMVx + s_RndTbl[(LumaMVx) & 3]) >> 1;
 ColordifferenceMVy = (LumaMVy + s_RndTbl[(LumaMVy) & 3]) >> 1;
 // strong coercion to half pel positions
 if (FASTUVMC == 1) {
 if ((ColordifferenceMVx) & 1) {
 if (ColordifferenceMVx > 0) ColordifferenceMVx = ColordifferenceMVx - 1;
 else ColordifferenceMVx = ColordifferenceMVx + 1;
 }
 if ((ColordifferenceMVy) & 1) {
 if (ColordifferenceMVy > 0) ColordifferenceMVy = ColordifferenceMVy - 1;
 else ColordifferenceMVy = ColordifferenceMVy + 1;
 }
 }

Figure 72: Color-difference MV Reconstruction in B Pictures

8.4.5.12 Coded Block Pattern

This shall be identical to P pictures as defined in section 8.3.5.5, except restricted to the 1-MV case.

8.4.5.13 MB-level Transform Type (TTMB)

This shall be identical to P pictures as defined in section 8.3.5.6.

8.4.5.14 Subpixel Interpolation

Subpixel interpolation of B frames shall be performed in the same manner as interpolation of P frames as defined in
section 8.3.6.5 except as follows.

• The valid modes shall be quarter pel bicubic and half pel bilinear.

8.4.5.15 Reconstructing and Adding Error

The decoding, dequantization, inverse transform, and addition of error blocks to the predicted blocks shall be
performed in a manner identical to that used in P frames as defined in sections 8.3.6.1, 8.3.6.2, 8.3.6.3, 8.3.6.4,
8.3.6.5.3 and 8.3.6 except as follows:

• Intra macroblocks shall be decoded as they are in P frames.
• However, the overlapped smoothing operation applied to edges between intra blocks in P frames shall not be

performed in B frames.

8.4.6 B Block Layer Decode
Block decoding syntax and operations shall be the same as for P pictures as defined in section 8.3.6, except as follows.

• The only points of slight difference occur in the pullback of motion vectors during motion compensation, and
these are defined in the subsection below.

8.4.6.1 Motion Compensation

The motion compensation of blocks in B pictures shall follow the same rules as those described for P blocks in section
8.3.6.5.

The following operation shall be applied to adjust the motion vectors for main profile:

SMPTE 421M

© 2006 SMPTE 175

Let iXCoord, iYCoord be the spatial location of the top left corner of the current macroblock (e.g. if the current
macroblock is located on the 3rd column and 2nd row, then iXCoord = 2 * 16 and iYCoord = 1 * 16).

Let iMvX, iMvY be the reconstructed luma motion vector in quarter pixel unit in the forward or backward
direction.

Let iNumMBX, iNumMBY be the number of macroblocks in a row and a column, respectively.

Then the adjusted luma motion vector iMvXComp, iMvYComp for motion compensation shall be computed
using the pseudo-code of Figure 73.

 // iPosX and iPosY are intermediate variables.
 iPosX = iXCoord + (iMvX >> 2);
 iPosY = iYCoord + (iMvY >> 2);
 iMvXComp = iMvX;
 iMvYComp = iMvY;
 if (iPosX < -16) {
 iMvXComp = ((-16 – iXCoord)<<2) + (iMvX & 3);
 } else if (iPosX > iNumMBX * 16) {
 iMvXComp = ((iNumMBX * 16 – iXCoord)<<2) + (iMvX & 3);
 }
 if (iPosY < -16) {
 iMvYComp = ((-16 – iYCoord)<<2) + (iMvY & 3);
 } else if (iPosY > iNumMBY * 16) {
 iMvYComp = ((iNumMBY * 16 – iYCoord)<<2) + (iMvY & 3);

}

Figure 73: Pullback of Reconstructed MVs in B Pictures

If the BMVTYPE is ‘Direct’ or ‘Interpolated’, then the above operations shall be performed for both sets of (i.e.
forward and backward pointing) motion vectors.

These adjusted luma motion vectors, iMvXComp, iMvYComp, shall then be used to generate the color-difference
motion vectors in B pictures as described in section 8.4.5.11.2 (referred there as LumaMVx, LumaMVy). In case of
BMVTYPE being ‘Direct’ or ‘Interpolated’, two sets of color-difference motion vectors shall be generated. But no
further pullback operations shall be applied to the color-difference motion vectors.

8.5 Overlapped Transform
If the syntax element OVERLAP (6.2.10, Annex J.1.15) is set to 1, then a filtering operation shall be conditionally
performed across the edges of two neighboring Intra blocks, for both the luma and color-difference channels. This
filtering operation (referred to as overlap smoothing) shall be performed subsequent to decoding the frame, and prior to
in-loop deblocking.

Note: Overlap smoothing can be done immediately after the relevant macroblock slices are decoded as this is
functionally equivalent to smoothing after decoding the entire frame.

Macroblock aligned frame dimensions shall be used for performing the overlap smoothing (i.e. if the frame dimensions
are 158x118, overlap smoothing shall be performed over the macroblock aligned dimensions of 160x128).

Note: Overlapped transforms are modified block based transforms that exchange information across the block
boundary. With a well designed overlapped transform, blocking artifacts can be minimized. For intra blocks, an
overlapped transform is simulated by coupling an 8x8 block transform with overlap smoothing. Edges of an 8x8 block
that separate two intra blocks are smoothed.

Figure 74 shows a portion of a P frame with I blocks. This could be either the Y or Cb or Cr channel. I blocks are
gray (or crosshatched) and P blocks are white. The edge interface over which overlap smoothing is applied is marked

SMPTE 421M

© 2006 SMPTE 176

with a crosshatch pattern. Overlap smoothing is applied to two pixels on either side of the separating boundary. The
right bottom area of frame is shown here as an example. Pixels occupy individual cells and blocks are separated by
heavy lines. The dark circle marks the 2x2 pixel corner subblock that is filtered in both directions.

The lower inset in Figure 74 shows four labeled pixels, a0 and a1 are to the left and b1, b0 to the right of the vertical
block edge. The upper inset shows pixels marked p0, p1, q1 and q0 straddling a horizontal edge. The next section
describes the filter applied to these four pixel locations.

a0 a1 b1 b0

p0

p1

q1

q0

Figure 74: Example showing overlap smoothing

Overlap smoothing shall be carried out on the unclamped 10 bit reconstruction. In other words, the input to the
overlap smoothing process shall be the inverse transformed spatial block of pixels whose dynamic range is 10 bits.

Note: This is necessary because the forward process associated with overlap smoothing can result in range expansion
beyond the permissible 8 bit range for pixel values.

Vertical edges (pixels a0, a1, b1, b0 in the above example) shall be filtered first, followed by the horizontal edges
(pixels p0, p1, q1, q0). The core filter applied to the four pixels straddling either the vertical or horizontal edge is
defined below:

3

7001
1711

1171
1007

1

0

1

0

3

2

1

0

3

2

1

0

>>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

r
r
r
r

x
x
x
x

y
y
y
y

The original pixels being filtered are (x0, x1, x2, x3). r0 and r1 are rounding parameters, which shall take on
alternating values of 3 and 4. For both horizontal and vertical edge filters, the rounding values shall be r0 = 4, r1 = 3
for odd-numbered columns and rows respectively, assuming the numbering within a block to start at 1. For even-
numbered columns and rows, the rounding values shall be r0 = 3 and r1 = 4 respectively.

For vertical edge filtering, the pixels (a0, a1, b1, b0) correspond to (x0, x1, x2, x3), which in turn get filtered to (y0, y1,
y2, y3). Likewise, for horizontal edge filtering, the correspondence is with (p0, p1, q1, q0) respectively.

Pixels in the 2x2 corner, shown by the dark circle in Figure 74, are filtered in both directions. Vertical edge filtering
shall be performed first, followed by horizontal edge filtering. For these pixels, the intermediate result after vertical
edge filtering shall be retained to the full precision of 11 bits (10 bit input plus 1 bit worst case range expansion due to
overlap smoothing).

Subsequent to filtering, the constant value of 128 shall be added to each pixel of the block, which shall then be clamped
to the range [0 255] to produce the reconstructed output.

8.5.1 Overlap Smoothing in Main and Simple Profiles
Overlap smoothing in main and simple profiles shall be applied subject to the following rules:

SMPTE 421M

© 2006 SMPTE 177

1. No overlap smoothing shall be performed for any frame if the OVERLAP == 0; The remainder of these rules
shall apply only when OVERLAP == 1.

a. Overlap smoothing shall be applied only if the frame level quantization step size PQUANT is 9 or
above. If this condition is satisfied,

i. All 8x8 block boundaries between adjacent 8x8 blocks shall be smoothed for I frames and BI
frames.

ii. Only block boundaries separating two intra blocks shall be smoothed for P frames.

iii. No overlap smoothing shall be performed for predicted B frames, i.e. B frames that are not
coded as BI.

iv. There shall be no dependence on DQUANT or differential quantization across macroblocks

8.5.2 Overlap Smoothing in Advanced Profile
Overlap smoothing shall be applied subject to the following rules:

1. No overlap smoothing shall be performed for any frame if OVERLAP == 0; the remainder of these rules shall
apply only when OVERLAP == 1.

2. No overlap smoothing shall be performed for predicted B frames, (i.e. non BI frames).

3. Only block boundaries separating two intra blocks shall be smoothed for P frames such that:

a. Picture level quantization step size PQUANT is 9 or higher, regardless of HALFQP.

4. For I frames, and BI frames, 8x8 block boundaries (which are defined as boundaries between adjacent 8x8
blocks) shall be smoothed as per the following rules:

a. When picture level quantization step size PQUANT is 9 or higher (regardless of HALFQP), all 8x8
block boundaries shall be smoothed.

b. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), no 8x8
block boundaries shall be smoothed if the conditional overlap flag CONDOVER == 0b.

c. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), all 8x8
block boundaries shall be smoothed if the conditional overlap flag CONDOVER == 10b.

d. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), some 8x8
block boundaries shall be smoothed if the conditional overlap flag CONDOVER == 11b, and the
following additional rules apply:

i. Internal 8x8 block boundaries (i.e. boundaries between blocks in the same macroblock) within
the luma plane of a macroblock shall be smoothed when the decoded binary symbol from
OVERFLAGS bitplane, or OVERFLAGMB when the raw mode is used to code
OVERFLAGS bitplane, for the macroblock is 1.

ii. 8x8 block boundaries between adjacent macroblocks (both luma and color-difference) shall be
smoothed only when the decoded binary symbols from OVERFLAGS bitplane, or
OVERFLAGMB when the raw mode is used to code OVERFLAGS bitplane, for both
adjacent macroblocks are 1.

5. There shall be no dependence on DQUANT or differential quantization across macroblocks.

6. There shall be no overlap across a block boundary, if the adjacent macroblocks (both color-difference and
luma) belong to different slices.

Note: Conditional overlap is applicable only for I frames and BI frames. Conditional overlap allows the selective
smoothing of 8x8 block boundaries within macroblocks and between adjacent macroblocks. The signaling is based on
one binary symbol per macroblock – which is interpreted in a strict sense to mean that an edge between macroblocks is
filtered only if OVERFLAGS == 1 for both macroblocks. There is no block or block edge level control.

SMPTE 421M

© 2006 SMPTE 178

8.6 In-loop Deblock Filtering
If the syntax element LOOPFILTER == 1 (6.2.5, Annex J.1.9), then a filtering operation shall be performed on each
reconstructed frame. This filtering operation shall be performed prior to using the reconstructed frame as a reference for
motion predictive coding. When there are multiple slices in a picture, the loop filter for each slice shall be performed
independently as defined in section 7.1.2.

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries the filtering process operates
on the pixels that border neighboring blocks. For P pictures, the block boundaries may occur at every 4th, 8th, 12th, etc
pixel row or column depending on whether an 8x8, 8x4 or 4x8 Inverse Transform is used. For I pictures filtering occurs
at every 8th, 16th, 24th, etc pixel row and column.

8.6.1 I Picture In-loop Deblocking
For I pictures, deblock filtering shall be performed at all 8x8 block boundaries. Figure 75 and Figure 76 show the pixels
that are filtered along the horizontal and vertical border regions. The figures show the upper left corner of a component
(Y, Cb or Cr) plane. The crosses represent pixels and the circled crosses represent the pixels that are filtered.

Figure 75: Filtered horizontal block boundary pixels in I picture

SMPTE 421M

© 2006 SMPTE 179

Figure 76: Filtered vertical block boundary pixels in I picture

As the figures show, the top horizontal line and first vertical line shall not be filtered. Although not depicted, the bottom
horizontal line and last vertical line shall also not be filtered. In more formal terms, the following lines shall be filtered:

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) shall be filtered.

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) shall be filtered.

Where:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size).

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size).

All the horizontal boundary lines in the frame shall be filtered first followed by the vertical boundary lines.

8.6.2 P Picture In-loop Deblocking
For P pictures, blocks may be Intra or Inter-coded. Intra-coded blocks shall use an 8x8 Inverse Transform to reconstruct
the samples, whereas inter coded blocks shall either use an 8x8, 8x4, 4x8 or 4x4 Inverse Transform. The boundary
between transform blocks or subblocks shall be filtered, unless the following exception holds. When the transform
blocks (or subblocks) on either side of the boundary are both inter coded, and when the motion vectors of these blocks
(or subblocks) are identical, and when both blocks (or subblocks) have all transform coefficients equal to zero, filtering
shall not be performed.

Figure 77 shows examples of when filtering between neighboring blocks (or subblocks) does and does not occur. In
this example it is assumed that the motion vectors for both blocks are the same (if the motion vectors are different, then
the boundary is always filtered). The shaded blocks or subblocks represent the cases where at least one nonzero
coefficient is present.

Clear blocks or subblocks represent cases where no Transform coefficients are present. Thick lines represent the
boundaries that are filtered. Thin lines represent the boundaries that are not filtered. These examples illustrate only
horizontal block neighbors. The same applies for vertical block neighbors.

SMPTE 421M

© 2006 SMPTE 180

Figure 77: Example filtered block boundaries in P frames

Figure 78 and Figure 79 shows an example of the pixels that could be filtered in a P frame. The crosses represent pixel
locations and the circled crosses represent the boundary pixels that are filtered if the conditions specified above are met.

Figure 78 shows pixels filtered along horizontal boundaries. As the figure shows, the pixels on either side of the block
or subblock boundary are candidates to be filtered. For the horizontal boundaries this could be every 4th and 5th, 8th and
9th, 12th and 13th etc pixel row in the frame as these are the 8x8 and 8x4 horizontal boundaries.

Figure 79 shows pixels filtered along vertical boundaries. For the vertical boundaries, every 4th and 5th, 8th and 9th, 12th
and 13th etc pixel column in the frame may be filtered as these are the 8x8 and 4x8 vertical boundaries.

The first and last row and the first and last column in the frame shall not be filtered.

The order in which pixels are filtered is important. First, all blocks or subblocks that have a horizontal boundary along
the 8th, 16th, 24th, etc horizontal lines shall be filtered. Next, all subblocks that have a horizontal boundary along the 4th,
12th, 20th, etc horizontal lines shall be filtered. Next, all blocks or subblocks that have a vertical boundary along the 8th,
16th, 24th, etc columns shall be filtered. Lastly, all subblocks that have a vertical boundary along the 4th, 12th, 20th, etc
columns shall be filtered. In all cases, the rules specified above shall be used to determine whether the boundary pixels
are filtered for each block or subblock.

Figure 78: Horizontal block boundary pixels in P picture

SMPTE 421M

© 2006 SMPTE 181

Figure 79: Vertical block boundary pixels in P picture

8.6.3 B Picture In-loop Deblocking
For B pictures, in-loop deblocking is exactly the same as I picture in-loop deblocking (see section 8.6.1), i.e. the 8x8
block boundaries shall be filtered, and MVs or 4x8/8x4 blocks are not considered.

8.6.4 Filter Operation
This section describes the filtering operation that is performed on the boundary pixels in I, BI, P, and B frames.

For P frames the decision criteria listed in section 8.6.2 determines which vertical and horizontal boundaries are
filtered. For I, B and BI frames, all the 8x8 vertical and horizontal block boundaries are filtered. Since the minimum
number of consecutive pixels that are filtered in a row or column is four and the total number of pixels in a row or
column is always a multiple of four, the filtering operation shall be performed on segments of four pixels.

For example, if the eight pixel pairs that make up the vertical boundary between two blocks are filtered, then the eight
pixels are divided into two 4-pixel segments as shown in Figure 80 where the dotted line defines the boundary between
the two 4-pixel segments. In each 4-pixel segment, the third pixel pair shall be filtered first as indicated by the X’s. The
result of this filter operation shall determine whether the other three pixels in the segment are also filtered, as defined
below.

SMPTE 421M

© 2006 SMPTE 182

Figure 80: Four-pixel segments used in loop filtering

Figure 81 shows the pixels that shall be used in the filtering operation performed on the 3rd pixel pair. Pixels P4 and P5
are the pixel pairs that can be changed as a result of the filter operation.

Figure 81: Pixels used in filtering operation

The pseudo-code of Figure 82 shall specify the filtering operation performed on the 3rd pixel pair in each segment. The
Boolean value ‘filter_other_3_pixels’ defines whether the remaining 3 pixel pairs in the segment are also filtered. If
‘filter_other_3_pixels’ == TRUE, then the other three pixel pairs shall be filtered. If ‘filter_other_3_pixels == FALSE,
then they shall not be filtered, and the filtering operation proceeds to the next 4-pixel segment. The pseudo-code of
Figure 83 shall specify the filtering operation that is performed on the 1st, 2nd and 4th pixel pair if ‘filter_other_3_pixels’
== TRUE.

filter_other_3_pixels = TRUE
int a0, a1, a2, a3 clip, d // local vars

a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3
if (|a0| < PQUANT) {
 a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3
 a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3
 a3 = min(|a1|, |a2|)
 if (a3 < |a0|)
 {
 d = 5*((sign(a0) * a3) - a0)/8
 clip = (P4 – P5)/2
 if (clip == 0)
 filter_other_3_pixels = FALSE
 else
 {

SMPTE 421M

© 2006 SMPTE 183

 if (clip > 0)
 {
 if (d < 0)
 d = 0
 if (d > clip)
 d = clip
 }
 else
 {
 if (d > 0)
 d = 0
 if (d < clip)
 d = clip
 }
 P4 = P4 - d
 P5 = P5 + d
 }
 }

else
 filter_other_3_pixels = FALSE
}
else
 filter_other_3_pixels = FALSE

Figure 82: Pseudo-code illustrating filtering of 3rd pixel pair in segment

int a0, a1, a2, a3 clip, d // local vars

a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3
if (|a0| < PQUANT)
{
 a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3
 a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3
 a3 = min(|a1|, |a2|)
 if (a3 < |a0|)
 {
 d = 5*((sign(a0) * a3) - a0)/8
 clip = (P4 – P5)/2

 if (clip > 0)
 {
 if (d < 0)
 d = 0
 if (d > clip)
 d = clip
 P4 = P4 - d
 P5 = P5 + d

SMPTE 421M

© 2006 SMPTE 184

 }
 else if (clip < 0)
 {
 if (d > 0)
 d = 0
 if (d < clip)
 d = clip
 P4 = P4 - d
 P5 = P5 + d
 }
 }

}

Figure 83: Pseudo-code illustrating filtering of 1st, 2nd and 4th pixel pair in segment

This section used the vertical boundary for example purposes. The same operation shall be used for filtering the
horizontal boundary pixels, where pixels P1, P2, P3 and P4 reside to the left of the horizontal boundary, and pixels P5,
P6, P7 and P8 reside to the right of the horizontal boundary.

8.6.4.1 Main Profile Deblocking for P picture

If the syntax element LOOPFILTER = 1 (6.2.5, Annex J.1.9), the decoder shall perform the following exception
operations for the main profile in-loop deblocking filter. These operations differ slightly from the generic operations as
defined next:

1. If the first macroblock in the frame is coded as intra or if the upper left luma block (block 0) of the first macroblock
in the frame is coded as intra then the top and left block boundaries of all the inter-coded macroblocks that use the 1-
MV motion compensation mode shall not use the motion vector, coded-block status or subblock pattern to decide which
block boundary segments are candidates for deblock filtering. In other words, the entire 8-sample top boundary and the
entire the 8-sample left boundary are filtered. The internal subblock boundaries are filtered as described in section
8.6.2.

2. The criteria used to decide whether to filter the left boundary of block 3 (the lower-right luma block) shall be derived
from the motion vector status of blocks 2 and 3 as intended but instead of using the coded-block status and subblock
patterns (if present) for blocks 2 and 3 as intended, the coded-block status and subblock patterns of blocks 1 and 3 shall
be used.

A high-level overview to illustrate exception 2 is shown in Figure 84 and Figure 85.

SMPTE 421M

© 2006 SMPTE 185

A
ffected E

dge
A

ffected E
dge

Figure 84: Overview Figure A to illustrate Exception 2

SMPTE 421M

© 2006 SMPTE 186

Figure 85: Overview Figure B to illustrate Exception 2

3. The decision of which block boundary segments to filter does not match the intended behavior if either of the blocks
was coded using the 4x4 transform. The full top or left block boundary of the current block shall be filtered if either
block uses a 4x4 transform.

Therefore:
• If the current block was coded using the 4x4 transform then both the 8 pixel top boundary and the 8 pixel left

boundary shall be filtered regardless of the subblock pattern of any of the blocks.
• If the current block was coded using the 8x8, 8x4 or 4x8 transform and the block above was coded using the

4x4 transform then the 8 pixel top boundary shall be filtered regardless of the subblock pattern of any of the
blocks.

• If the current block was coded using the 8x8, 8x4 or 4x8 transform and the block to the left was coded using
the 4x4 transform then the 8 pixel left boundary shall be filtered regardless of the subblock pattern of any of
the blocks.

For example, if the block currently being filtered is coded using the 4x4 transform and the block above was coded using
the 4x8 transform then the entire 8 pixel top boundary is filtered regardless of the subblock pattern of the 4x8 or 4x4
transformed blocks. This differs from the generic behavior which is to filter a subblock boundary only if at least one of
subblocks contains a non-zero coefficient. So for example, in the generic case, if the upper-left subblock of the 4x4
transformed block and the left 4x8 transform of the block above do not contain any non-zero coefficients, then the first
4 pixels in the top boundary between these subblocks are not filtered.

One exception to exception 3 is for the case where the macroblock is coded using TTMB == 4x4 Transform. In this
case, all blocks in the macroblock use the 4x4 transform. Further, if the coded-block status for a block is 0 (no
coefficients present in the entire block) then it is considered to be an 8x8 transform block for the purposes of the in-
loop deblocking decision process. For example, the macroblock was coded using TTMB == 4x4 and blocks 0 and 1
both had the coded-block status == 0 (no coefficients present in either block) then exception 3 does not apply and the
boundary is filtered as intended.

A high-level overview to illustrate exception 3 is shown in Figure 86, Figure 87 and Figure 88, where shaded subblocks
indicate that at least one non-zero coefficient is present, bold lines indicate that the boundary is filtered, and each block
is assumed to have the same motion vector.

SMPTE 421M

© 2006 SMPTE 187

Current block (4x4 transform)

Top neighbor (4x8 transform)

Left neighbor (8x4 transform)

Current block (4x4 transform)

Top neighbor (4x8 transform)

Left neighbor (8x4 transform)

Intended behavior

Exception 3 behavior
Figure 86: Overview Figure A to illustrate Exception 3

SMPTE 421M

© 2006 SMPTE 188

Current block (4x8 transform)

Top neighbor (4x4 transform)

Left neighbor (8x4 transform)

Intended behavior

Current block (4x8 transform)

Top neighbor (4x4 transform)

Left neighbor (8x4 transform)

Exception 3 behavior
Figure 87: Overview Figure B to illustrate Exception 3

SMPTE 421M

© 2006 SMPTE 189

Current block (8x4 transform)

Top neighbor (4x8 transform)

Left neighbor (4x4 transform)

Intended behavior

Exception 3 behavior

Current block (8x4 transform)

Top neighbor (4x8 transform)

Left neighbor (4x4 transform)

Figure 88: Overview Figure C to illustrate Exception 3

4. The decision criteria for filtering color-difference block boundaries shall use the range-limited color-difference
motion vectors (iCMvXComp and iCMvYComp) as calculated in section 8.3.6.5.

The interaction between the exceptions described in exceptions 2 and 3 is as follows:

If block 1 or block 3 (or both) are coded using the 4x4 transform then the entire 8 pixel left boundary of block 3 shall
be filtered.

8.7 Bitplane Coding
This section describes the bitplane coding scheme.

Certain macroblock-specific information can be encoded in one binary symbol per macroblock. For example, whether
or not any information is present for a macroblock (i.e., whether or not it is skipped) can be signaled with one binary
symbol or bit. In these cases, the status for all macroblocks in a frame may be coded as a bitplane and transmitted in the
frame header. The only exception to this rule is if the bitplane coding mode (described below) is set to ‘Raw’ mode. In
this case, the status for each macroblock shall be coded as one bit per symbol, and transmitted along with other

SMPTE 421M

© 2006 SMPTE 190

macroblock level syntax elements. ‘Raw’ mode shall be the only allowed bitplane mode when multiple slices are used
to code the frame. Bitplane coding is used in seven different cases to signal information about the macroblocks in a
frame. These are:

1) signaling skipped macroblocks,

2) signaling field or frame macroblock mode,

3) signaling 1-MV or 4-MV motion vector mode for each macroblock,

4) signaling of conditional overlap flag (OVERLAP) in I frames in advanced profile,

5) signaling of ACPRED flag in advanced profile,

6) signaling of DIRECTMB flag in B pictures, and

7) signaling of FORWARDMB flag in interlace field coded pictures.

Picture-level bitplane coding shall be used to code two-dimensional binary arrays. The size of each array is rowMB ×
colMB, where rowMB and colMB are the number of macroblock rows and columns respectively. Within the bitstream,
each array is coded as a set of consecutive bits. One of seven modes shall be used to code each array.

The seven modes are enumerated below.
1. Raw mode – coded as one bit per symbol, and transmitted as part of MB level syntax.
2. Normal-2 mode – two symbols coded jointly
3. Differential-2 mode – differential coding of bitplane, followed by coding two residual symbols jointly
4. Normal-6 mode – six symbols coded jointly
5. Differential-6 mode – differential coding of bitplane, followed by coding six residual symbols jointly
6. Rowskip mode – one bit skip to signal rows with no set bits
7. Columnskip mode – one bit skip to signal columns with no set bits

Section 7.2 defines the syntax elements that make up the bitplane coding scheme. The following sections define how to
decode the bitstream and reconstruct the bitplane.

8.7.1 INVERT
The INVERT syntax element shown in the syntax diagram of Figure 32 is a one bit code. If IMODE != Diff-2 &&
IMODE != Diff-6 modes, and if INVERT == 1, the value of the interpreted bitplane shall be inverted. If IMODE !=
Diff-2 && IMODE != Diff-6 modes, and if INVERT == 0, the value of the interpreted bitplane shall not be inverted. If
IMODE == Diff-2 || IMODE == Diff-6 modes, the value of INVERT syntax shall be used to control the Diff-1 operation
as defined in section 8.7.3.8. The value of this bit shall be ignored when the raw mode is used.

Note: Invert can be set to 1 when the bitplane has more set bits than zero bits, and can be set to 0 otherwise.

8.7.2 IMODE
The IMODE syntax element shown in the syntax diagram of Figure 32 signals the mode used to code the bitplane. The
seven modes are described in section 8.7.3. The IMODE syntax element shall be as defined in Table 69.

8.7.3 DATABITS
The DATABITS syntax element shown in the syntax diagram of Figure 32 shall be an entropy coded stream of symbols
that is based on the coding mode. DATAMB consists of rowMB × colMB binary symbols. The seven coding modes are
defined in the following sections.

8.7.3.1 Raw mode

In this mode, the bitplane shall be decoded as one bit per symbol, and shall be present as part of the macroblock layer.

8.7.3.2 Normal-2 mode

If rowMB × colMB is odd, the first symbol shall be decoded with a 1 bit word. Subsequent symbols shall be decoded
pair-wise, in natural scan order. The binary VLC table in Table 80 shall be used to decode symbol pairs.

SMPTE 421M

© 2006 SMPTE 191

Table 80: Norm-2/Diff-2 Code Table

SYMBOL 2N SYMBOL 2N + 1 CODEWORD

0 0 0b

1 0 100b

0 1 101b

1 1 11b

8.7.3.3 Diff-2 mode

The Normal-2 method shall be used to produce the bitplane as defined in section 8.7.3.2 and then the Diff-1 operation
shall be applied to the bitplane as defined in section 8.7.3.8.

8.7.3.4 Normal-6 mode

In the Norm-6 mode, the bitplane shall be coded in groups of six pixels. These pixels shall be grouped into either 2x3
or 3x2 tiles. The bitplane shall be tiled maximally using a set of rules defined in the next paragraph, and the remaining
pixels shall be decoded using a variant of row-skip and column-skip modes. The tiles are signaled in natural scan order.

2x3 “vertical” tiles shall be used if and only if rowMB is a multiple of 3 and colMB is not. Else, 3x2 “horizontal” tiles
shall be used, as shown in Figure 89.

(a)

(b)

Figure 89: An example of 2x3 “vertical” tiles (a) and two examples of 3x2 “horizontal” tiles (b) – the elongated
dark rectangles are 1 pixel wide and encoded using row-skip and column-skip coding.

When the picture is tiled as shown in Figure 89, (with linear tiles along the top and left edges of the picture), the coding
order of the tiles shall be as follows. The 6-element tiles shall be decoded first, followed by the column-skip and row-
skip coded linear tiles. If the array size is a multiple of 2x3 or of 3x2, the column-skip and row-skip linear tiles shall
not exist and the bitplane is perfectly tiled.

The pseudo-code of Figure 90 shall specify the decoding order of the tiles.

//rowMB = Number of macroblock rows
//colMB = Number of macroblock columns
if (rowMB is multiple of 3 && colMB is not multiple of 3) {
 decode 2x3 vertical tiles with starting MB position colMB%2;

SMPTE 421M

© 2006 SMPTE 192

 NumColSkipTiles = colMB%2;
 NumRowSkipTiles = 0;
}
else {
 decode 3x2 horizontal tiles with starting MB position (rowMB%2)*colMB+colMB%3
 NumColSkipTiles = colMB%3
 NumRowSkipTiles = rowMB%2
}

if (NumColSkipTiles) {
 //NumColSkipTiles can be 1 or 2
 for (i =0; i< NumColSkipTiles; i++)
 decode column-skip tiles with starting MB position i
}

if (NumRowSkipTiles) {
 //NumRowSkipTiles can only be 1
 decode row-skip tiles with starting MB position NumColSkipTiles
}

Figure 90: Decoding Norm-6 Bitplane: Pseudo-code

The 6-element rectangular tiles shall be decoded using Table 81 which has the following structure:

Let N be the number of set bits in the tile, i.e. 0 ≤ N ≤ 6. For N < 3, a VLC is used to decode the tile. For N = 3, a
fixed length escape shall be followed by a 5 bit fixed length code. For N > 3, another fixed length escape shall be
followed by a VLC.

Note: For N > 3, the VLC which follows the escape is identical to the VLC used to code the complement of this tile for
the N < 3 case. The fixed length escape used for the case of N > 3 differs from the fixed length escape of the case of N =
3.

Each rectangular tile contains 6 decoded bits of information. Let k be the code associated with the tile, where k =

∑
i

bi 2i, bi is the binary value of the ith bit in natural scan order within the tile. Hence 0 ≤ k < 64. Table 81 shall be

used to decode k.

Table 81: Code table for 3x2 and 2x3 tiles

 VLC / Escape symbol Followed by

k
Codewor
d

Codelengt
h

Codewor
d

Codelengt
h

0 1 1

1 2 4

2 3 4

3 0 8

4 4 4

5 1 8

SMPTE 421M

© 2006 SMPTE 193

6 2 8

7 2 5 7 5

8 5 4

9 3 8

10 4 8

11 2 5 11 5

12 5 8

13 2 5 13 5

14 2 5 14 5

15 3 5 14 8

16 6 4

17 6 8

18 7 8

19 2 5 19 5

20 8 8

21 2 5 21 5

22 2 5 22 5

23 3 5 13 8

24 9 8

25 2 5 25 5

26 2 5 26 5

27 3 5 12 8

28 2 5 28 5

29 3 5 11 8

30 3 5 10 8

31 3 5 7 4

32 7 4

33 10 8

34 11 8

35 2 5 3 5

36 12 8

37 2 5 5 5

SMPTE 421M

© 2006 SMPTE 194

38 2 5 6 5

39 3 5 9 8

40 13 8

41 2 5 9 5

42 2 5 10 5

43 3 5 8 8

44 2 5 12 5

45 3 5 7 8

46 3 5 6 8

47 3 5 6 4

48 14 8

49 2 5 17 5

50 2 5 18 5

51 3 5 5 8

52 2 5 20 5

53 3 5 4 8

54 3 5 3 8

55 3 5 5 4

56 2 5 24 5

57 3 5 2 8

58 3 5 1 8

59 3 5 4 4

60 3 5 0 8

61 3 5 3 4

62 3 5 2 4

63 3 5 1 1

8.7.3.5 Diff-6 mode

The Normal-6 method shall be used to produce the bitplane as defined in section 8.7.3.4 and then the Diff-1 operation
shall be applied to the bitplane as defined in section 8.7.3.8.

8.7.3.6 Row-skip mode

In the row-skip coding mode, all-zero rows shall be skipped with one bit overhead. The process shall be as shown in
Figure 91.

SMPTE 421M

© 2006 SMPTE 195

Figure 91: Syntax diagram of row-skip coding

From Figure 91, for each row, ROWSKIP is a 1-bit syntax element that shall always be present. If ROWSKIP == 0, the
syntax element ROWBITS shall not be present and the entire row of symbols shall be set to zero. If ROWSKIP == 1,
the syntax element ROWBITS shall be present and shall be decoded as one bit per symbol for the entire row.

In other words, if the entire row is zero, a zero bit is sent as the ROWSKIP symbol, and ROWBITS is skipped. If
there is a set bit in the row, ROWSKIP is set to 1, and the entire row is sent raw (ROWBITS).

Rows shall be scanned from the top to the bottom of the frame.

8.7.3.7 Column-skip mode

Column-skip is the transpose of row-skip. Columns shall be scanned from the left to the right of the frame.

8.7.3.8 Diff-1: Inverse differential decoding

If either differential mode (Diff-2 or Diff-6) is used, a bitplane of “differential bits” shall be first decoded using the
corresponding normal modes (Norm-2 or Norm-6 respectively). The differential bits shall be used to regenerate the
original bitplane. The regeneration process is a 2-D DPCM on a binary alphabet. In order to regenerate the bit at
location (i, j), the predictor bp(i,j) shall be generated as follows (from bits b(i, j) at positions (i, j)):

otherwise
i

jibjiborji

jib
jb

A
jib p 0

),1()1,(,0

),1(
)1,0(),(==

−≠−==

⎪
⎩

⎪
⎨

⎧

−
−=

For the differential coding mode, the bitwise inversion process based on INVERT shall be not performed. However,
the INVERT flag (7.2.1) is used in a different capacity to indicate the value of the symbol A for the derivation of the
predictor shown above. More specifically, A shall be set to 0 if INVERT == 0, and A shall be set to 1 if INVERT ==
1. The actual value of the bitplane shall be obtained by XOR-ing the predictor with the decoded differential bit value.
In the above equation, b(i,j) is the bit at the i,jth position after final decoding (i.e. after doing Norm-2/Norm-6, followed
by differential xor with its predictor).

8.8 Sync Markers (Simple and Main Profiles only)
Sync markers are defined sequences of bits that are inserted at important locations in the bitstream to clearly identify
these locations. There are several reasons to insert sync markers – the important ones are for error resilience and for
parallel decoding of the bitstream. Sync markers may be inserted in the simple and main profile bitstreams. The
sequence level flag SYNCMARKER (Annex J.1.16) determines whether sync markers are enabled in the sequence. If
they are enabled, sync markers may be sent only for I and P pictures. No sync markers shall be allowed in B pictures,
including B pictures coded as Intra. When SYNCMARKER is enabled, all bitplanes shall be coded as raw bitplanes
and the relevant data (e.g. 4-MV/1-MV, skipbit) shall be present at the macroblock level. Sync markers shall be placed
only at byte boundaries.

The sync markers in simple/main profiles are not guaranteed to be unique. Sync markers are 24 bits in length and it is
to be expected that even if they do randomly occur in a bitstream, such occurrences will be rare.

SMPTE 421M

© 2006 SMPTE 196

Note: Assuming a uniform distribution, it may be expected that sync marker is randomly emulated once in a 224 byte
long stream. For a bitrate of 1Mbps, this is equivalent to one random sync marker emulation every two minutes, or
one occurrence every 3900 frames.

Sync markers may only occur at the start of a row of macroblocks (abbreviated as MB row). No sync marker shall be
permitted in the first MB row. When the sequence level SYNCMARKER is enabled, a single bit shall be present at
the end of every MB row, except for the last MB row in the frame, to indicate whether or not a sync marker follows.
If this bit is one, it signals that no sync marker shall follow. If this bit is zero, the remainder of the current byte shall
be flushed out. Subsequently, the 24 bit byte aligned sync marker shall be read from the bitstream.

Two sync markers are defined. These are the short and long sync markers. Both the codes are 24 bits in length, but
the payload (data following the sync marker) differs in length. The short sync marker, whose hex representation is
0x0000AA, shall be followed by a 5 byte payload. The long sync marker, whose hex representation is 0x0000AB,
shall be followed by an 11 byte payload.

Note: The first two bytes of both sync markers are zeros. This design makes the implementation of hardware-based
sync marker detection schemes easier.

The decoder need not do anything with the payload, however the decoder shall decode bitstreams that have embedded
sync markers, assuming that otherwise no errors are present. The payload may be used to transmit parity, error
detection and error recovery information.

Figure 92 represents an example coded (I or P) frame. Subfigure (a) shows successive macroblocks coded when
SYNCMARKER is zero, (b) shows coded macroblocks when SYNCMARKER is one but no sync markers are actually
sent, and (c) shows the case when both long and short sync markers are sent in the frame. The frame header, sync
markers and payloads are byte aligned. The trailing 0 or 1 in all but the last slice is sent when SYNCMARKER is 1.
This is necessary to ensure byte flushing in the case that a sync marker is sent at the start of the next slice. “FB” in the
figure stands for flush bits or the process of stuffing between zero and seven bits to reach the end of the current byte.
The value of the flush bits is zero. “SC” and “PL” stand for sync marker and payload respectively. The sync marker
0x0000AA is followed by a 5 byte payload and sync marker 0x0000AB is followed by an 11 byte payload. There are
no sync markers in B frames. For B frames, the entropy coded stream follows the order shown in Figure 92 regardless
of whether SYNCMARKER is 0 or 1.

SMPTE 421M

© 2006 SMPTE 197

Figure 92: Sync markers– (a) shows sequence of entropy coded data with SYNCMARKER set to zero, (b)
SYNCMARKER is 1 but no sync markers are actually sent and (c) SYNCMARKER is 1, a long and a short sync

marker are sent, some slices do not have sync markers

8.9 Pan Scan
Pan scan window information shall be present only in the advance profile picture headers if the entry point header
syntax element PANSCAN_FLAG == 1 (6.2.3). In this case, each picture header in the entry point segment has the
PS_PRESENT syntax element, as defined in section 7.1.1.20. If PS_PRESENT == 1 then for each window in the frame
there are four syntax elements – PS_HOFFSET (7.1.1.21), PS_VOFFSET (7.1.1.22), PS_WIDTH (7.1.1.23) and
PS_HEIGHT (7.1.1.24) - that define the size and location of the window within the frame. See Annex I.5 for
information on alternative methods of signaling pan scan regions.

8.9.1 Number of Pan Scan Windows
If PS_PRESENT == 1, then there are from one to four pan scan windows in each frame. The number of pan scan
windows is determined by the sequence header syntax elements: INTERLACE (6.1.9), PULLDOWN (6.1.8) and PSF
(6.1.13) and the frame header syntax elements RFF (7.1.1.18) and RPTFRM (7.1.1.19). The pseudo-code of Figure 93
defines how the number of pan scan windows shall be determined.
If (INTERLACE == 1 && PSF == 0)
{
 If (PULLDOWN == 1)
 NumberOfPanScanWindows = 2 + RFF
 else

SMPTE 421M

© 2006 SMPTE 198

 NumberOfPanScanWindows = 2
}
else
{
 If (PULLDOWN == 1)
 NumberOfPanScanWindows = 1 + RPTFRM
 else
 NumberOfPanScanWindows = 1
}

Figure 93: Pseudo-code for Computing Number of Pan Scan Windows

If the sequence header INTERLACE == 1 then there may be one pan scan window for each displayed field in the
frame. Therefore there are either 2 (for the case where RFF == 0) or 3 (for the case where RFF == 1). If the sequence
header INTERLACE == 0, then there may be one pan scan window for each displayed frame. Since RPTFRM defines
how many times the current frame is repeated for display, the number of pan scan windows is 1 + RPTFRM.

For each pan window there shall be a set of four pan scan window syntax elements in the frame header: PS_HOFFSET,
PS_VOFFSET, PS_WIDTH and PS_HEIGHT. The order of the pan windows in the frame header bitstream shall be the
same as the display order of the fields or frames – meaning that the first set of pan scan window syntax elements shall
correspond to the first field or frame in display order.

8.9.2 Pan Scan Parameters
For each pan scan window, the PS_HOFFSET, PS_VOFFSET, PS_WIDTH and PS_HEIGHT shall define the size and
location of the window within the main frame.

PS_HOFFSET is an 18 bit value that shall define the horizontal distance between the left border of the main frame and
the left border of the pan scan window. PS_HOFFSET shall be in units of 1/16 luma samples. Therefore the maximum
horizontal offset shall be 16383 15/16 luma samples.

PS_VOFFSET is an 18 bit value that shall define the vertical distance between the top border of the main frame and the
top border of the pan scan window. PS_HOFFSET shall be in units of 1/16 luma samples. Therefore the maximum
vertical offset shall be 16383 15/16 luma samples.

PS_WIDTH is a 14 bit value that shall define the width of the pan scan window in luma samples. The maximum width
of the pan scan window shall be 16384 luma samples.

PS_HEIGHT is a 14 bit value that shall define the height of the pan scan window in luma samples. The maximum
height of the pan scan window shall be 16384 luma samples.

8.9.3 Pan Scan Restrictions
If the entry point header syntax element PANSCAN_FLAG == 1 then the first coded frame in the entry point header
shall contain pan scan window information – i.e., PS_PRESENT shall be 1 for the first coded frame.

If PS_PRESENT == 0 for any of the other frames in the entry point segment then the pan scan window size and offsets
shall be equal to the most recent pan scan window parameters in display order.

For interlace fields, the pan scan window dimensions and offsets shall be specified at frame resolution.

SMPTE 421M

© 2006 SMPTE 199

9 Interlace Bitstream Syntax and Semantics

9.1 Picture-level Syntax and Semantics
This section defines the syntax and semantics of the picture layer, slice layer, macroblock layer, and block layer, when
a picture is coded in interlace mode. Figure 94 through Figure 106 define the bitstream elements that make up each
layer. Table 82 through Table 95 shall define the syntax elements of a picture that is coded in interlace mode. A
picture is coded in interlace mode only in advanced profile.

The syntax of a skipped interlaced-frame coded picture shall be identical to that of a skipped progressive picture as
defined in Figure 20 and Table 23. A skipped interlaced-frame coded picture shall be present only if the sequence level
syntax element INTERLACE == 1 (6.1.9), and if present, the value of the FCM syntax element (7.1.1.15) shall be 10b.

SMPTE 421M

© 2006 SMPTE 200

Figure 94: Syntax diagram for the picture layer bitstream in Interlace Frame I and BI picture

SMPTE 421M

© 2006 SMPTE 201

Table 82: Interlaced Frame I and BI picture layer bitstream for Advanced Profile

I AND BI INTERLACED FRAME PICTURE () { Number of bits Descriptor Reference

 FCM Variable size Vlclbf 9.1.1.1

INTERLACE ==1and
FCM==10b here.

 PTYPE Variable size Vlclbf 9.1.1.2

 if (TFCNTRFLAG) { 8 Uimsbf 6.1.10

 TFCNTR 9.1.1.3

 }

 if (PULLDOWN == 1) { 6.1.8

 if (PSF == 1) { 6.1.13

 RPTFRM 2 Uimsbf 9.1.1.6

 }

 else {

 TFF 1 Uimsbf 9.1.1.4

 RFF 1 Uimsbf 9.1.1.5

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 Uimsbf 9.1.1.7

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 Uimsbf 9.1.1.8

 PS_VOFFSET 18 Uimsbf 9.1.1.9

 PS_WIDTH 14 Uimsbf 9.1.1.10

 PS_HEIGHT 14 Uimsbf 9.1.1.11

 }

 }

 }

 RNDCTRL 1 Uimsbf 9.1.1.12

 UVSAMP 1 Uimsbf 9.1.1.13

 PQINDEX 5 Uimsbf 9.1.1.14

SMPTE 421M

© 2006 SMPTE 202

 if (PQINDEX <= 8) {

 HALFQP 1 Uimsbf 9.1.1.15

 }

 if (QUANTIZER == 01) { 6.2.11 (Annex J)

 PQUANTIZER 1 Uimsbf 9.1.1.16

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 Uimsbf 9.1.1.17

 }

 FIELDTX Bitplane 9.1.1.18

 ACPRED Bitplane 9.1.1.19

 if (OVERLAP == 1 && PQUANT <= 8) { OVERLAP (6.2.10, Annex
J) PQUANT shall be
computed from PQINDEX
as defined in 7.1.1.6

 CONDOVER Variable size Vlclbf 9.1.1.20

 if (CONDOVER == 11) {

 OVERFLAGS Bitplane 9.1.1.21

 }

 }

 TRANSACFRM Variable size Vlclbf 9.1.1.22

 TRANSACFRM2 Variable size Vlclbf 9.1.1.23

 TRANSDCTAB 1 Uimsbf 9.1.1.24

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variable size Vlclbf 9.1.1.25

 }

 for (“all macroblocks”) { ‘all macroblocks’ represents
all macroblocks in this
BDU.

 I INTERLACED FRAME MB () Table 90

 }

}

SMPTE 421M

© 2006 SMPTE 203

Figure 95: Syntax diagram for the picture layer bitstream in Interlace Frame P picture

Table 83: Interlaced Frame P picture layer bitstream for Advanced Profile

P INTERLACED FRAME PICTURE () { Number of bits Descriptor Reference

 FCM Variable size vlclbf 9.1.1.1

INTERLACE ==1and
FCM==10b here.

SMPTE 421M

© 2006 SMPTE 204

 PTYPE Variable size vlclbf 9.1.1.2

 if (TFCNTRFLAG) { 8 uimsbf 6.1.10

 TFCNTR 9.1.1.3

 }

 if (PULLDOWN == 1) { 6.1.8

 if (PSF == 1) { 6.1.13

 RPTFRM 2 uimsbf 9.1.1.6

 }

 else {

 TFF 1 uimsbf 9.1.1.4

 RFF 1 uimsbf 9.1.1.5

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 9.1.1.7

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 9.1.1.8

 PS_VOFFSET 18 uimsbf 9.1.1.9

 PS_WIDTH 14 uimsbf 9.1.1.10

 PS_HEIGHT 14 uimsbf 9.1.1.11

 }

 }

 }

 RNDCTRL 1 uimsbf 9.1.1.12

 UVSAMP 1 uimsbf 9.1.1.13

 PQINDEX 5 uimsbf 9.1.1.14

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 9.1.1.15

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 9.1.1.16

SMPTE 421M

© 2006 SMPTE 205

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 9.1.1.17

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variable size vlclbf 9.1.1.26

 }

 if (EXTENDED_DMV == 1) { 6.2.14

 DMVRANGE Variable size vlclbf 9.1.1.27

 }

 4MVSWITCH 1 uimsbf 9.1.1.28

 INTCOMP 1 uimsbf 9.1.1.29

 if (INTCOMP) {

 LUMSCALE 6 uimsbf 9.1.1.30

 LUMSHIFT 6 uimsbf 9.1.1.31

 }

 SKIPMB Bitplane 9.1.1.32

 MBMODETAB 2 uimsbf 9.1.1.33

 IMVTAB 2 uimsbf 9.1.1.34

 ICBPTAB 3 uimsbf 9.1.1.35

 2MVBPTAB 2 uimsbf 9.1.1.36

 if (4MVSWITCH == 1) { 9.1.1.28

 4MVBPTAB 2 uimsbf 9.1.1.37

 }

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variable size vlclbf 9.1.1.25

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 9.1.1.38

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 9.1.1.39

 }

 }

 TRANSACFRM Variable size vlclbf 9.1.1.22

 TRANSDCTAB 1 uimsbf 9.1.1.24

SMPTE 421M

© 2006 SMPTE 206

 for (‘all macroblocks’) { ‘all macroblocks’ represents
all macroblocks in this
BDU.

 P INTERLACED FRAME MB () Table 91

 }

}

Figure 96: Syntax diagram for the picture layer bitstream in Interlace Frame B picture

SMPTE 421M

© 2006 SMPTE 207

Table 84: Interlaced Frame B picture layer bitstream for Advanced Profile

B INTERLACED FRAME PICTURE () { Number of bits Description Reference

 FCM Variable size vlclbf 9.1.1.1

INTERLACE ==1and
FCM==10b here.

 PTYPE Variable size vlclbf 9.1.1.2

 if (TFCNTRFLAG) { 8 uimsbf 6.1.10

 TFCNTR 9.1.1.3

 }

 if (PULLDOWN == 1) { 6.1.8

 if (PSF == 1) { 6.1.13

 RPTFRM 2 uimsbf 9.1.1.6

 }

 else {

 TFF 1 uimsbf 9.1.1.4

 RFF 1 uimsbf 9.1.1.5

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 9.1.1.7

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindow
s is computed as shown in
Figure 93 in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 9.1.1.8

 PS_VOFFSET 18 uimsbf 9.1.1.9

 PS_WIDTH 14 uimsbf 9.1.1.10

 PS_HEIGHT 14 uimsbf 9.1.1.11

 }

 }

 }

 RNDCTRL 1 uimsbf 9.1.1.12

 UVSAMP 1 uimsbf 9.1.1.13

 PQINDEX 5 uimsbf 9.1.1.14

 if (PQINDEX <= 8) {

SMPTE 421M

© 2006 SMPTE 208

 HALFQP 1 uimsbf 9.1.1.15

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

 PQUANTIZER 1 uimsbf 9.1.1.16

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 9.1.1.17

 }

 BFRACTION Variable size vlclbf 9.1.1.40

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variable size vlclbf 9.1.1.26

 }

 if (EXTENDED_DMV == 1) { 6.2.14

 DMVRANGE Variable size vlclbf 9.1.1.27

 }

 INTCOMP 1 uimsbf 9.1.1.29

Shall always be FALSE

 DIRECTMB Bitplane 9.1.1.41

 SKIPMB Bitplane 9.1.1.32

 MBMODETAB 2 uimsbf 9.1.1.33

 IMVTAB 2 uimsbf 9.1.1.34

 ICBPTAB 3 uimsbf 9.1.1.35

 2MVBPTAB 2 uimsbf 9.1.1.36

 4MVBPTAB 2 uimsbf 9.1.1.37

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variable size vlclbf 9.1.1.25

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 9.1.1.38

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 9.1.1.39

 }

 }

 TRANSACFRM Variable size vlclbf 9.1.1.22

 TRANSDCTAB 1 uimsbf 9.1.1.24

SMPTE 421M

© 2006 SMPTE 209

 for (“all macroblocks”) { ‘all macroblocks’ represents
all macroblocks in this
BDU.

 B INTERLACED FRAME MB () Table 92

 }

}

SMPTE 421M

© 2006 SMPTE 210

Figure 97: Syntax diagram for the picture layer bitstream in Interlace Field pictures for Field1

SMPTE 421M

© 2006 SMPTE 211

Table 85: Picture Layer bitstream for Field 1 of Interlace Field Picture for Advanced Profile

INTERLACE FIELD PICTURE FIELD1 () { Number of bits Descriptor Reference

 FCM Variable size vlclbf 9.1.1.1

INTERLACE ==1and FCM==11b
here.

Field1 Picture shall be preceded
by Frame start code as described
Annex G.

 FPTYPE 3 uimsbf 9.1.1.42

 if (TFCNTRFLAG) { 8 uimsbf 6.1.10

 TFCNTR 9.1.1.3

 }

 if (PULLDOWN == 1) { 6.1.8

 if (PSF == 1) { 6.1.13

 RPTFRM 2 uimsbf 9.1.1.6

 }

 else {

 TFF 1 uimsbf 9.1.1.4

 RFF 1 uimsbf 9.1.1.5

 }

 }

 if (PANSCAN_FLAG == 1) { 6.2.3

 PS_PRESENT 1 uimsbf 9.1.1.7

 if (PS_PRESENT == 1)

 {

 for (i = 0; i <
(NumberOfPanScanWindows); i++)

 NumberOfPanScanWindows is
computed as shown in Figure 93
in 8.9.1

 {

 PS_HOFFSET 18 uimsbf 9.1.1.8

 PS_VOFFSET 18 uimsbf 9.1.1.9

 PS_WIDTH 14 uimsbf 9.1.1.10

 PS_HEIGHT 14 uimsbf 9.1.1.11

 }

 }

 }

 RNDCTRL 1 uimsbf 9.1.1.12

SMPTE 421M

© 2006 SMPTE 212

 UVSAMP 1 uimsbf 9.1.1.13

 if (REFDIST_FLAG == 1 && (FPTYPE == I/I,I/P,
P/I or P/P)) {

 6.2.4, 9.1.1.42

 REFDIST Variable size vlclbf 9.1.1.43

 }

 if (FPTYPE == B/B, B/BI, BI/B or BI/BI) { 9.1.1.42

 BFRACTION Variable size vlclbf 9.1.1.40

 }

 if (FPTYPE == I/I, I/P, BI/B or BI/BI) {

// the first field is I or BI
 I AND BI INTERLACE FIELDPIC()
 } else if (FPTYPE == P/I or P/P) {

// the first field is P
 P INTERLACE FIELDPIC()
 } else { // FPTYPE == B/B or B/BI

// the first field is B
 B INTERLACE FIELDPIC()
 }

 Field 1 (Table 87, Table 88, Table
89 according to FPTYPE)

 }

Table 86: Picture Layer bitstream for Field 2 of Interlace Field Picture for Advanced Profile

INTERLACE FIELD PICTURE FIELD2 () { Number of bits Descriptor Reference

 if (FPTYPE == I/I, P/I, B/BI or BI/BI) {

// the second field is I or BI
 I AND BI INTERLACE FIELDPIC()
 } else if (FPTYPE == I/P or P/P) {

// the second field is P
 P INTERLACE FIELDPIC()
 } else { // FPTYPE == B/B or BI/B

// the second field is B
 B INTERLACE FIELDPIC()
 }

 Field 2 (Table 87,
Table 88, Table 89
according to
FPTYPE)

Field 2 picture layer
shall be preceded by
Field start code as
described Annex G

 }

SMPTE 421M

© 2006 SMPTE 213

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

I PICTURE MB

ACPRED

Field Picture Layer
(I And BI Field Picture)

Figure 98: Syntax diagram for the field picture layer bitstream in Interlace I and BI Field pictures

Table 87: Field Interlace I and BI Field Picture Layer bitstream for Advanced Profile

I AND BI INTERLACE FIELDPIC() { Number of bits Descriptor Reference

 PQINDEX 5 uimsbf 9.1.1.14

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 9.1.1.15

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex J)

SMPTE 421M

© 2006 SMPTE 214

 PQUANTIZER 1 uimsbf 9.1.1.16

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 9.1.1.17

 }

 ACPRED Bitplane 9.1.1.19

 if (OVERLAP == 1 && PQUANT <= 8) { OVERLAP 6.2.10. PQUANT
computed from PQINDEX as
defined in 7.1.1.6

 CONDOVER Variable size vlclbf 9.1.1.20

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane 9.1.1.21

 }

 }

 TRANSACFRM Variable size vlclbf 9.1.1.22

 TRANSACFRM2 Variable size vlclbf 9.1.1.23

 TRANSDCTAB 1 uimsbf 9.1.1.24

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variable size vlclbf Table 24, 9.1.1.25

 }

 for (“all macroblocks”) { ‘all macroblocks’ represents
all macroblocks in this BDU.

 I INTERLACE FIELD MB () Table 93

 }

}

SMPTE 421M

© 2006 SMPTE 215

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

IMVTAB

ICBPTAB

TRANSACFRM

VOPDQUANT

P PICTURE MB

TTMBF

TTFRM

TRANSDCTAB

MVMODE

MVRANGE

NUMREF

REFFIELD

DMVRANGE

LUMSCALE1

LUMSHIFT1

MVMODE2

INTCOMPFIELD

LUMSCALE2

LUMSHIFT2

MBMODETAB

4MVBPTAB

Field Picture Layer
(P Field Picture)

Figure 99: Syntax diagram for the field picture layer bitstream in Interlace P Field pictures

Table 88: Field Interlace P Field Picture layer bitstream for Advanced Profile

P INTERLACE FIELDPIC () { Number of bits Descriptor Reference

 PQINDEX 5 uimsbf 9.1.1.14

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 9.1.1.15

SMPTE 421M

© 2006 SMPTE 216

 }

 if (QUANTIZER == 01b) { 6.2.11 (Annex
J)

 PQUANTIZER 1 uimsbf 9.1.1.16

 }

 if (POSTPROCFLAG == 1) { 6.1.5

 POSTPROC 2 uimsbf 9.1.1.17

 }

 NUMREF 1 uimsbf 9.1.1.44

 if (NUMREF == 0) {

 REFFIELD 1 uimsbf 9.1.1.45

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex J)

 MVRANGE Variable size vlclbf 9.1.1.26

 }

 if (EXTENDED_DMV == 1) { 6.2.14

 DMVRANGE Variable size vlclbf 9.1.1.27

 }

 MVMODE Variable size vlclbf 9.1.1.46

 if (MVMODE == “intensity compensation”) {

 MVMODE2 Variable size vlclbf 9.1.1.47

 INTCOMPFIELD Variable size vlclbf 9.1.1.48

 LUMSCALE1 6 uimsbf 9.1.1.49

 LUMSHIFT1 6 uimsbf 9.1.1.50

 if (INTCOMPFIELD == 1b) { 9.1.1.48

 LUMSCALE2 6 uimsbf 9.1.1.51

 LUMSHIFT2 6 uimsbf 9.1.1.52

 }

 }

 MBMODETAB 3 uimsbf 9.1.1.33

 IMVTAB 2 or 3 uimsbf 9.1.1.34

 ICBPTAB 3 uimsbf 9.1.1.35

 if (MVMODE ==”Mixed-MV”) { 9.1.1.46

 4MVBPTAB 2 uimsbf 9.1.1.37

 }

SMPTE 421M

© 2006 SMPTE 217

 if (DQUANT != 0) { 6.2.8 (Annex J)

 VOPDQUANT () Variable size vlclbf Table 24,
9.1.1.25

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex J)

 TTMBF 1 uimsbf 9.1.1.38

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 9.1.1.39

 }

 }

 TRANSACFRM Variable size vlclbf 9.1.1.22

 TRANSDCTAB 1 uimsbf 9.1.1.24

 for (“all macroblocks”) { ‘all
macroblocks’
represents all
macroblocks in
this BDU.

 P INTERLACE FIELD MB () Table 94

 }

}

SMPTE 421M

© 2006 SMPTE 218

Figure 100: Syntax diagram for the field picture layer bitstream in Interlace B Field pictures

Table 89: Field Interlace B Field Picture layer bitstream for Advanced Profile

B INTERLACE FIELDPIC () { Number of bits Descriptor Reference

 PQINDEX 5 uimsbf 9.1.1.14

 if (PQINDEX <= 8) {

 HALFQP 1 uimsbf 9.1.1.15

 }

 if (QUANTIZER == 01b) { 6.2.11
(Annex J)

 PQUANTIZER 1 uimsbf 9.1.1.16

 }

 if (POSTPROCFLAG == 1) { 6.1.5

SMPTE 421M

© 2006 SMPTE 219

 POSTPROC 2 uimsbf 9.1.1.17

 }

 if (EXTENDED_MV == 1) { 6.2.7 (Annex
J)

 MVRANGE Variable size vlclbf 9.1.1.26

 }

 if (EXTENDED_DMV == 1) { 6.2.14

 DMVRANGE Variable size vlclbf 9.1.1.27

 }

 MVMODE Variable size vlclbf 9.1.1.46

 FORWARDMB Bitplane 9.1.1.53

 MBMODETAB 3 uimsbf 9.1.1.33

 IMVTAB 3 uimsbf 9.1.1.34

 ICBPTAB 3 uimsbf 9.1.1.35

 if (MVMODE ==”Mixed-MV”) { 9.1.1.46

 4MVBPTAB 2 uimsbf 9.1.1.37

 }

 if (DQUANT != 0) { 6.2.8 (Annex
J)

 VOPDQUANT () Variable size vlclbf Table 24,
9.1.1.25

 }

 if (VSTRANSFORM == 1) { 6.2.9 (Annex
J)

 TTMBF 1 uimsbf 9.1.1.38

 if (TTMBF == 1) {

 TTFRM 2 uimsbf 9.1.1.39

 }

 }

 TRANSACFRM Variable size vlclbf 9.1.1.22

 TRANSDCTAB 1 uimsbf 9.1.1.24

 for (“all macroblocks”) { ‘all
macroblocks
’ represents
all
macroblocks
in this BDU.

 B INTERLACE FIELD MB () Table 95

 }

SMPTE 421M

© 2006 SMPTE 220

}

Figure 101: Syntax diagram for macroblock layer bitstream in Interlace Frame I picture

SMPTE 421M

© 2006 SMPTE 221

Table 90: Macroblock layer bitstream in Interlaced Frame I Picture

I INTERLACE FRAME MB() { Number of bits Descriptor Reference

 If (FIELDTX Coding Mode == “Raw”) { 9.1.1.18

 FIELDTX 1 uimsbf 9.1.3.1

 }

 CBPCY Variable size vlclbf 9.1.3.2

 If (ACPRED Coding Mode == “Raw”) { 9.1.1.19

 ACPRED 1 uimsbf 9.1.3.3

 }

 If (CONDOVER == 11b

 && OVERFLAGS Coding Mode == ”Raw”) {

 7.1.1.29,
7.1.1.30,
7.2.2

 OVERFLAGMB 1 uimsbf 9.1.3.4

 }

 If (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 for (“all blocks in MB”) {

 INTRA BLOCK() Table 31

 }

}

SMPTE 421M

© 2006 SMPTE 222

Figure 102: Syntax diagram for macroblock layer bitstream in Interlace Frame P picture

SMPTE 421M

© 2006 SMPTE 223

Table 91: Macroblock layer bitstream in Interlaced Frame P Picture

P INTERLACE FRAME MB() { Number of bits Descriptor Reference

 if (SKIPMB Coding Mode == “Raw”) { 9.1.1.32

 SKIPMBBIT 1 uimsbf 9.1.3.7

 }

 if (!SKIPMBBIT) { 9.1.1.32, 9.1.3.7

 MBMODE Variable size vlclbf 9.1.3.8

 }

 if (“Intra MB”) { Inferred from
MBMODE see
9.1.3.8, 10.7.3.4

 FIELDTX 1 uimsbf 9.1.3.1

 CBPRESENT 1 uimsbf 9.1.3.9

 if (CBPPRESENT == 1) {

 CBPCY Variable size vlclbf 9.1.3.2

 }

 ACPRED 1 uimsbf 9.1.3.3

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 for (“all blocks in MB”) {

 INTRA BLOCK() Table 31

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (!SKIPMBBIT) { 9.1.1.32, 9.1.3.7

SMPTE 421M

© 2006 SMPTE 224

 if (“CBP is present”) { Inferred from
MBMODE

 CBPCY Variable size vlclbf 9.1.3.2

 }

 if (MVTYPEMB mode == ‘2 Field MV’) { MVTYPEMB
mode is inferred
from MBMODE
syntax element

See 10.7.3.4

 2MVBP Variable size vlclbf 9.1.3.10

 }

 if (MVTYPEMB mode == ‘4-MV’ ||
MVTYPEMB mode == ‘4 Field MV’) {

 MVTYPEMB
mode is inferred
from MBMODE
syntax element

See 10.7.3.4

 4MVBP Variable size vlclbf 9.1.3.11

 }

 for (“all motion vectors”) { Number of motion
vectors inferred
from 2MVBP or
4MVBP or
MVTYPEMB

as described in
10.7.3.2 and
10.7.3.4

 MVDATA Variable size vlclbf 9.1.3.12

 }

 if (DQUANTFRM && CBPCY) { 7.1.1.31.1, 9.1.3.2

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 If (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 } /* if (DQPROFILE) */

 } /* if (DQUANTFRM) */

SMPTE 421M

© 2006 SMPTE 225

 } /* if (!SKIPMBBIT) */

 if (!TTMBF && CBPCY) { 9.1.1.38, 9.1.3.2

 TTMB Variable size vlclbf 9.1.3.13

 }

 for (“all coded blocks in MB”) { Number of coded
blocks inferred
from CBPCY. See
9.1.3.2

 INTER BLOCK() Table 32

 }

 } /* Inter MB */

}

SMPTE 421M

© 2006 SMPTE 226

MB Layer
(Interlace Frame B Picture)

CBPCY

MVDATA

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

INTRA MB

SKIPMB

MBMODE

DIRECTBBIT

BMVTYPE

MVSW

2MVBP / 4MVBP

INTER MB

BLOCK LAYER

MQDIFF

ABSMQ

FIELDTX

ACPRED

CBPPRESENT

CPBCY

Figure 103: Syntax diagram for macroblock layer bitstream in Interlace Frame B picture

SMPTE 421M

© 2006 SMPTE 227

Table 92: Macroblock layer bitstream in Interlaced Frame B Picture

B INTERLACE FRAME MB() { Number of
bits

Descriptor Reference

 if (SKIPMB Coding Mode == “Raw”) { 9.1.1.32

 SKIPMBBIT 1 uimsbf 9.1.3.7

 }

 If (!SKIPMBBIT) { 9.1.1.32, 9.1.3.7

 MBMODE Variable
size

vlclbf 9.1.3.8

 }

 if (“Intra MB”) { Inferred from MBMODE see
9.1.3.8, 10.7.3.4

 FIELDTX 1 uimsbf 9.1.3.1

 CBPPRESENT 1 uimsbf 9.1.3.9

 if (CBPPRESENT) {

 CBPCY Variable
size

vlclbf 9.1.3.2

 }

 ACPRED 1 uimsbf 9.1.3.3

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 for (“all blocks in MB”) {

 INTRA BLOCK() Table 31

 }

 } /* Intra MB */

 else { /* Inter MB */

SMPTE 421M

© 2006 SMPTE 228

 if (DIRECTMB Coding Mode == “Raw”) { < 9.1.1.41

 DIRECTBBIT 1 uimsbf 9.1.3.14

 }

 if (!DIRECTBBIT) { 9.1.1.41, 9.1.3.14

 BMVTYPE Variable
size

vlclbf 9.1.3.15

 }

 if (‘MVTYPEMB mode == ‘2 Field MV’ &&
BMVTYPE != Interpolated && !(DIRECTBBIT)) {

 MVTYPEMB mode is
inferred from MBMODE
syntax element. See 10.7.3.4
and9.1.3.16 10.8.6.1

 MVSW 1 uimsbf 9.1.3.16, 10.8.6.4

 }

 if (SKIPMBBIT) {

 goto End;

 }

 if (“CBP is present”) { inferred from MBMODE.
See 10.7.3.4

 CBPCY Variable
size

vlclbf 9.1.3.2

 }

 if (!(DIRECTBBIT)) {

 if ((MVTYPEMB mode == “2 Field MV” &&
BMVTYPE != Interpolated) || (MVTYPEMB mode == “1-
MV” && BMVTYPE == Interpolated)) {

 MVTYPEMB mode is
inferred from MBMODE
syntax element. See 10.7.3.4,
9.1.3.10, 10.8.6.1

 2MVBP Variable
size

vlclbf

 }

 else if ((“MVTYPEMB mode == 2 Field MV”
&& MBTYPE == INTERP)) {

 MVTYPEMB mode is
inferred from MBMODE
syntax element See 10.7.3.4,
10.8.6.1

 4MVBP Variable
size

vlclbf 9.1.3.11

 }

 }

 for (“all motion vectors”) { Number of MVs inferred
from 2MVBP or 4MBVP or
MVTYPEMB. See 10.8.6.1.5

 MVDATA Variable
size

vlclbf 9.1.3.12

SMPTE 421M

© 2006 SMPTE 229

Note forward MVs are
received before backward
MVs in the interpolated case

 }

 if (DQUANTFRM && CBPCY) { 7.1.1.31.1, 9.1.3.2

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 if (!TTMBF && CBPCY) { 9.1.1.38, 9.1.3.2

 TTMB Variable
size

vlclbf 9.1.3.13

 }

 for (“all coded blocks in MB”) {

 INTER BLOCK() Table 32

 }

 } /* Inter MB */

}

End:

SMPTE 421M

© 2006 SMPTE 230

Figure 104: Syntax diagram for macroblock layer bitstream in interlace field I picture

Table 93: Macroblock layer bitstream in Interlaced Field I picture

I INTERLACE FIELD MB() { Number of bits Descriptor Reference

 CBPCY Variable size vlclbf 9.1.3.2

 if (ACPRED Coding Mode == “Raw”) { 9.1.1.19, See
7.2.2 for

SMPTE 421M

© 2006 SMPTE 231

Raw Mode

 ACPRED 1 uimsbf 9.1.3.3

 }

 if (CONDOVER == 11b

 && OVERFLAGS Coding Mode == “Raw”) {

 9.1.1.20,
9.1.1.21

 OVERFLAGMB 1 uimsbf 9.1.3.4

 }

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 for (“all blocks in MB”) {

 INTRA BLOCK() Table 31

 }

}

SMPTE 421M

© 2006 SMPTE 232

MBMODE

MQDIFF

ABSMQ

ACPRED

CBPCY

BLOCK LAYER

MBMODE

MVDATA

HYBRIDPRED

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

MBMODE

BLKMVDATA

HYBRIDPRED

CBPCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

4MVBP

Intra MB 1MV MB 4MV MB

P Field Picture MB
Layer

Figure 105: Syntax diagram for macroblock layer bitstream in P field picture

SMPTE 421M

© 2006 SMPTE 233

Table 94: Macroblock layer bitstream in Interlaced Field P Picture

P INTERLACE FIELD MB() { Number of bits Descriptor Reference

 MBMODE Variable size vlclbf 9.1.3.8

 if (“Intra MB”) { Inferred from
MBMODE see
9.1.3.8, 10.3.5.3

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 ACPRED 1 uimsbf 9.1.3.3

 if (“CBP is Present”) { Inferred from

MBMODE, see
10.3.5.3

 CBPCY Variable size vlclbf 9.1.3.2

 }

 for (“all blocks in MB”) { Inferred from CBPCY

 INTRA BLOCK() Table 31

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (“1-MV MB”) { Inferred from
MBMODE see
10.3.5.3

 if (“MV Data is Present”) { Inferred from
MBMODE, see
10.3.5.1.1, 10.3.5.3

 MVDATA Variable size vlclbf 9.1.3.12

 }

SMPTE 421M

© 2006 SMPTE 234

 if (“Hybridpred syntax element for MV
prediction is Present”) {

 Conditions specified in
10.3.5.4.3.5

 HYBRIDPRED 1 uimsbf 9.1.3.17

 }

 }

 else { /* 4-MV Macroblock */

 4MVBP Variable Size vlclbf 9.1.3.11

 for (“all Y blocks”) {

 if (“BLKMVDATA is present”) { Inferred from 4MVBP,
see 9.1.3.11, 10.3.5.1.2

 BLKMVDATA Variable Size vlclbf 9.1.3.18

 }

 if (“HYBRIDPRED syntax element for MV
prediction is present”) {

 Conditions specified in
10.3.5.4.3.5

 HYBRIDPRED 9.1.3.17

 }

 } /* all Y blocks */

 }

 if (“CBP is Present”) { Inferred from
MBMODE, see
10.3.5.3

 CBPCY Variable size vlclbf 9.1.3.2

 }

 if (DQUANTFRM && CBPCY) { 7.1.1.31.1, 9.1.3.2

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 } /* if (DQPROFILE …*/

 } /* if (DQUANTFRM…*/

 if (!TTMBF && CBPCY) { 9.1.1.38, 9.1.3.2

 TTMB Variable size vlclbf 9.1.3.13

SMPTE 421M

© 2006 SMPTE 235

 }

 for (“all coded blocks in MB”) { Inferred from CBPCY
9.1.3.2, 10.3.5.5

 INTER BLOCK() Table 32

 }

 } /* Inter MB */

}

SMPTE 421M

© 2006 SMPTE 236

Figure 106: Syntax diagram for macroblock layer bitstream in Field B picture

SMPTE 421M

© 2006 SMPTE 237

Table 95: Macroblock layer bitstream in Interlaced Field B Picture

B INTERLACE FIELD MB() { Number of bits Descriptor Reference

 MBMODE Variable size vlclbf 9.1.3.8

 if (“Intra MB”) { Inferred from
MBMODE see
9.1.3.8, 10.3.5.3

 if (DQUANTFRM) { 7.1.1.31.1

 if (DQPROFILE == “all macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 }

 }

 ACPRED 1 uimsbf 9.1.3.3

 if (“CBP is present”) { Inferred from

MBMODE see
10.3.5.3

 CBPCY Variable size vlclbf 9.1.3.2

 }

 for (“all blocks in MB”) { Inferred from
CBPCY

 INTRA BLOCK() Table 31

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (FORWARDMB Coding Mode == “Raw”)
{

 9.1.1.53 See 7.2.2 for
Raw Mode

 FORWARDBIT 1 uimsbf 9.1.3.19

 }

 if (“MB Prediction Mode” != “Forward”) { Inferred from
FORWARDBIT or
corresponding
bitplane, see 9.1.1.53,

SMPTE 421M

© 2006 SMPTE 238

9.1.3.19

 if (“4MVBP is Present”) { Inferred from

MBMODE see
9.1.3.8, 10.3.5.3

 BMVTYPE = “Backward” 9.1.3.15

This is inferred
because only forward
and backward are
allowed with 4-MV

 }

 else {

 BMVTYPE Variable Size vlclbf 9.1.3.15

 }

 if (“BMV Type” == “Interpolated”) { Inferred from
FORWARDBIT
(9.1.3.19) and
BMVTYPE
(9.1.3.15)

 INTERPMVP 1 uimsbf 9.1.3.20

 }

 }

 if (“1-MV MB”) { Inferred from
MBMODE (see
9.1.3.8, 10.3.5.3)

 if (“BMVType” != ‘Direct’ && “MVData
is Present”) {

 For BMVType, see
9.1.3.15, 10.4.6.1.
Presence of Block
MV Data is Inferred
from MBMODE see
10.3.5.3

 BMV1 Variable size vlclbf 9.1.3.21

 }

 if (“BMVType” == “Interpolated” &&
INTERPMVP == 1) {

 9.1.3.15, 9.1.3.20

 BMV2 Variable size vlclbf 9.1.3.22

Corresponds to the
backward MV

 }

 }

 else { /* 4-MV Macroblock */ BMVTYPE can only
be forward or
backward in 4-MV

SMPTE 421M

© 2006 SMPTE 239

MBs.

 4MVBP Variable Size vlclbf 9.1.3.11

 for (“all Y blocks”) {

 if (“BLKMVDATA is present”) { Inferred from
4MVBP see 9.1.3.11,
10.3.5.1.2

 BLKMVDATA Variable Size vlclbf 9.1.3.18

 }

 } /* all Y blocks */

 } /* 4-MV Macroblock */

 if (“CBP is Present”) { Inferred from

MBMODE see
10.3.5.3

 CBPCY Variable size vlclbf 9.1.3.2

 }

 if (DQUANTFRM && CBPCY) { 7.1.1.31.1, 9.1.3.2

 if (DQPROFILE == “All Macroblocks”) { 7.1.1.31.2

 if (DQBILEVEL){ 7.1.1.31.5

 MQDIFF 1 uimsbf 9.1.3.5

 } else {

 MQDIFF 3 uimsbf 9.1.3.5

 if (MQDIFF == 7) {

 ABSMQ 5 uimsbf 9.1.3.6

 }

 }

 } /* if (DQPROFILE)*/

 } /* if (DQUANTFRM)*/

 if (!TTMBF && CBPCY) { 9.1.1.38, 9.1.3.2

 TTMB Variable size vlclbf 9.1.3.13

 }

 for (“all coded blocks in MB”) { Inferred from
CBPCY 9.1.3.2,
10.3.5.5

 INTER BLOCK() Table 32

 }

 } /* Inter MB */

}

SMPTE 421M

© 2006 SMPTE 240

9.1.1 Picture layer
Data for each picture shall consist of a picture header followed by data for the macroblock layer. The bitstream
elements that make up the interlace frame picture headers for I, P and B picture types are shown in Figure 94, Figure 95
and Figure 96 respectively. The bitstream elements that make up the frame header for interlace field pictures are shown
in Figure 97. The bitstream elements that make up the interlace field picture headers for I, P and B pictures are shown
in Figure 98, Figure 99 and Figure 100 respectively. The following sections describe the bitstream elements in the
interlace frame picture and interlace field picture headers.

9.1.1.1 Frame Coding Mode (FCM) (Variable size)

FCM in interlace frame and interlace field picture headers shall be the same as described in section 7.1.1.15.

9.1.1.2 Picture Type (PTYPE) (Variable size)

PTYPE in interlace frame pictures shall be the same as described in section 7.1.1.4 for progressive pictures.

9.1.1.3 Temporal Reference Frame Counter (TFCNTR) (8 bits)

TFCNTR in interlace frame and interlace field picture headers shall be the same as described in section 7.1.1.16.

9.1.1.4 Top Field First (TFF) (1 bit)

TFF in the frame headers of interlace frame and interlace field pictures shall be the same as described in section
7.1.1.17, except the TFF in the frame header of interlace field pictures shall satisfy an additional constraint: If the
current frame coded as two interlace field pictures contains at least one P or B field, and if this P or B field uses one or
both fields in another frame as a reference where the reference frame was also coded as a interlace field picture, then
the TFF of the current frame and reference frame shall be the same.

9.1.1.5 Repeat First Field (RFF) (1 bit)

RFF in the frame headers of interlace frame and interlace field pictures shall be the same as described in section
7.1.1.18.

9.1.1.6 Repeat Frame Count (RPTFRM) (2 bits)

RPTFRM in the frame headers of interlace frame and interlace field pictures shall be the same as described in section
7.1.1.19.

9.1.1.7 Pan Scan Present Flag (PS_PRESENT) (1 bit)

The PS_PRESENT syntax element shall be the same as described in section 7.1.1.20 for progressive advanced profile
pictures.

9.1.1.8 Pan Scan Window Horizontal Offset (PS_HOFFSET) (18 bits)

The PS_HOFFSET syntax element shall be the same as described in section 7.1.1.21 for progressive advanced profile
pictures.

9.1.1.9 Pan Scan Window Vertical Offset (PS_VOFFSET) (18 bits)

The PS_VOFFSET syntax element shall be the same as described in section 7.1.1.22 for progressive advanced profile
pictures.

9.1.1.10 Pan Scan Window Width (PS_WIDTH) (14 bits)

The PS_WIDTH syntax element shall be the same as described in section 7.1.1.23 for progressive advanced profile
pictures.

9.1.1.11 Pan Scan Window Height (PS_HEIGHT) (14 bits)

The PS_HEIGHT syntax element shall be the same as described in section 7.1.1.24 for progressive advanced profile
pictures.

SMPTE 421M

© 2006 SMPTE 241

9.1.1.12 Rounding Control Bit (RNDCTRL)(1 bit)

RNDCTRL is a 1 bit syntax element that is present in interlace frame and interlace field picture headers (I, P, B). The
flag shall be used to indicate the type of rounding used for the current frame. If RNDCTRL == 1, the parameter RND
which controls rounding shall be set to 1. Otherwise, RND shall be set to zero. In interlace frame I and BI pictures,
RNDCTRL shall have the value 0

9.1.1.13 UV Sampling Format (UVSAMP)(1 bit)

UVSAMP in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.26.

9.1.1.14 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.6.

9.1.1.15 Half QP Step (HALFQP) (1 bit)

HALFQP in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.7.

9.1.1.16 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.8.

9.1.1.17 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2 bits syntax element that shall be present in all pictures for the advanced profile when the sequence
level flag POSTPROCFLAG is set to 1. It shall be the same as defined in section 7.1.1.27 for progressive pictures.

9.1.1.18 Field Transform Flag (FIELDTX)(Variable Size)[I]

FIELDTX is a bitplane coded syntax element that shall be present in Interlace frame I picture headers, and defines
whether a macroblock is frame or field coded (and thus the internal organization of the macroblock). FIELDTX == 1
shall indicate that the macroblock is field coded. Otherwise, the macroblock shall be frame coded. FIELDTX may also
specify that the frame/field coded information is coded in the raw mode, in which case this information is signaled at
the macroblock level (see section 9.1.3.1). Refer to section 7.2 for a description of the bitplane coding. See section
10.5.1 for more details on the use of FIELDTX.

9.1.1.19 AC Prediction (ACPRED)(Variable size)

The ACPRED syntax element shall only be present in interlace field I and interlace frame I pictures and it shall be the
same as described in section 7.1.1.28.

9.1.1.20 Conditional Overlap Flag (CONDOVER) (Variable size)

CONDOVER shall be present only in frame / field I pictures and it shall be the same as described in section 7.1.1.29.

9.1.1.21 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS)(Variable size)

OVERFLAGS shall be present only in frame / field I pictures and it shall be the same as described in section 7.1.1.30.

9.1.1.22 Frame-level Transform AC Coding Set Index (TRANSACFRM)(Variable size)

TRANSACFRM in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.11.

9.1.1.23 Frame-level Transform AC Table-2 Index (TRANSACFRM2)(Variable size)

TRANSACFRM2 in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.12.

9.1.1.24 Intra Transform DC Table (TRANSDCTAB)(1 bit)

TRANSDCTAB in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.13.

9.1.1.25 Macroblock Quantization (VOPDQUANT) (Variable size)

VOPDQUANT in interlace frame and interlace field pictures shall be the same as described in section 7.1.1.31.

SMPTE 421M

© 2006 SMPTE 242

9.1.1.26 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element and shall be present only in field / frame P and B picture headers. For
interlace field pictures in which MVMODE is Mixed-MV or 1-MV (not half-pel), and for interlace frame pictures,
MVRANGE shall be the same as defined in section 7.1.1.9.

For interlace P and B field pictures in which MVMODE is 1-MV Half-pel bicubic or 1-MV Half-pel bilinear, the
MVRANGE shall be as defined in Table 96. The value of f represents the fractional portion of the MV range as a
mantissa in Table 96. For half-pel mode f shall be only 0 or 5.

For interlace frame B pictures, the value of the MVRANGE syntax element shall be greater or equal to the value of the
MVRANGE syntax element of the subsequent (backward reference) anchor P picture. The MVRANGE syntax element
of an interlace frame B picture may take any value if the backward reference picture is an I picture or a skipped picture.
The value of the MV Range of an interlace B field picture shall be greater or equal to the value of the MV Range of the
backward reference field of the same polarity, if the backward reference field is coded as a interlace P Field picture.
The MVRANGE syntax element of an interlace B field picture may take any value if the backward reference field of
the same polarity is coded as an interlace I field picture.

Table 96: MVRANGE – Motion Vector Range for Interlace Field Pictures Using Half-pel Modes

MVRANGE VLC MV range in full pixel units (horizontal x vertical)

0b (also default) [-128, 127.f] x [-64, 63.f]

10b [-256, 255.f] x [-128, 127.f]

110b [-1024, 1023.f] x [-256, 255.f]

111b [-2048,2047.f] x [-512, 511.f]

9.1.1.27 Extended Differential MV Range Flag (DMVRANGE) (Variable size)

DMVRANGE is a variable sized syntax element and shall be present in field / frame P and B pictures if the syntax
element EXTENDED_DMV == 1. The DMVRANGE element shall be coded as defined in Table 97. See section
10.3.5.4.2 and it sub-sections for a description of how the DMVRANGE value is used.

Table 97: DMVRANGE VLC Table

Extended
Horizontal
Differential
MV Range

Extended
Vertical

Differential
MV Range

DMVRANG
E VLC

DMVRANG
E VLC

Size

No No 0b 1

Yes No 10b 2

No Yes 110b 3

Yes Yes 111b 3

9.1.1.28 4 Motion Vector Switch (4MVSWITCH) (1 bit)

The 4MVSWITCH syntax element is a 1-bit field and shall be present in the picture header of interlace frame P
pictures. If 4MVSWITCH == 0, the macroblocks in the picture shall have only one motion vector or two motion
vectors, depending on whether the macroblock has been frame-coded or field-coded respectively. If 4MVSWITCH ==
1, there shall be either 1, 2 or 4 motion vectors per macroblock.

For interlace frame B pictures, 4MVSWITCH shall not be present, and the value of this syntax element shall be set to
zero.

Note: There can be 1, 2, or 4 motion vectors per macroblock for interlace frame B pictures. See section 10.7.3 for more
details on the use of 4MVSWITCH in decoding.

SMPTE 421M

© 2006 SMPTE 243

9.1.1.29 Intensity Compensation (INTCOMP)(1 bit)

INTCOMP is a 1 bit syntax element that shall be present in interlace frame P and B picture headers. INTCOMP is
used to indicate whether intensity compensation mode is used in the current frame. If INTCOMP == 1, intensity
compensation shall be used. Otherwise, intensity compensation shall not be used. In interlace frame B pictures the value
of this bit shall always be set to 0 as this syntax element is not used in B pictures.

9.1.1.30 Luma Scale (LUMSCALE)(6 bits)

The LUMSCALE syntax element shall be present in P interlace frame pictures if the frame header syntax element
INTCOMP == 1. LUMSCALE shall be set according to section 8.3.8.

9.1.1.31 Luma Shift (LUMSHIFT)(6 bits)

The LUMSHIFT syntax element shall be present in P interlace frame pictures if the frame header syntax element
INTCOMP == 1. LUMSHIFT shall be set according to section 8.3.8.

9.1.1.32 Skipped Macroblock Decoding (SKIPMB)(Variable size)

The SKIPMB syntax element shall only be present in interlace frame P and interlace frame B pictures and shall be the
same as described in 7.1.1.37.

9.1.1.33 Macroblock Mode Table (MBMODETAB) (2 or 3 bits)

The MBMODETAB syntax element is a fixed length field that shall be present in interlace frame P, frame B, field P
and field B pictures.

For field P and field B pictures, MBMODETAB shall be a 3 bit value that indicates which one of the eight code tables
is used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer and shall be as defined in
Table 98. There are two sets of eight code tables and the set that is being used shall also depend on whether Mixed-
MV is used or not as indicated by the MVMODE flag. These code tables are defined in section 11.4.1 and 11.4.2.

Table 98: MBMODETAB code-table for interlace field P, B pictures

MBMODETA
B

Macroblock Mode Code Table

000b Code Table 0 (Table 144 if Mixed-
MV; Table 152 otherwise)

001b Code Table 1(Table 145 if Mixed-
MV; Table 153 otherwise)

010b Code Table 2(Table 146 if Mixed-
MV; Table 154 otherwise)

011b Code Table 3(Table 147 if Mixed-
MV; Table 155 if 1-MV)

100b Code Table 4(Table 148 if Mixed-
MV; Table 156 otherwise)

101b Code Table 5(Table 149 if Mixed-
MV; Table 157 otherwise)

110b Code Table 6 (Table 150 if Mixed-
MV; Table 158otherwise)

111b Code Table 7 (Table 151 if Mixed-
MV; Table 159 otherwise)

For frame P and frame B pictures, MBMODETAB shall be a 2 bit value that indicates which one of the four tables in
used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer and shall be as defined in

SMPTE 421M

© 2006 SMPTE 244

Table 99. There are two sets of four code tables and the set that is being used shall also depend on whether 4-MV is
used or not as indicated by the 4MVSWITCH flag. These tables are defined in section 11.4.3 and 11.4.4

Table 99: MBMODETAB code-table for interlace frame P, B pictures

MBMODETA
B

Macroblock Mode Code Table

00b Code Table 0 (Table 160 if 4-MV;
Table 164 otherwise)

01b Code Table 1 (Table 161 if 4-MV;
Table 165 otherwise)

10b Code Table 2 (Table 162 if 4-MV;
Table 166 otherwise)

11b Code Table 3 (Table 163 if 4-MV;
Table 167 otherwise)

9.1.1.34 Interlace Motion Vector Table (IMVTAB) (2 or 3 bits)

The IMVTAB syntax element is a 2 or 3 bit value present in interlace field/frame P and B pictures. For P and B
interlace frame pictures IMVTAB shall be a 2 bit syntax element that indicates which of the four progressive (also
called one-reference) MV tables is used to code the MVDATA syntax element in the macroblock layer, and shall be as
defined in Table 100. For B interlace field pictures, IMVTAB shall be a 3 bit syntax element that indicates which of
eight interlace code tables are used to decode the motion vector data, and shall be as defined in Table 101. For P
interlace field pictures in which NUMREF == 0, IMVTAB shall be a 2 bit syntax element that indicates which of four
progressive code tables are used to decode the motion vector data, and shall be as defined in Table 100. For P interlace
field pictures in which NUMREF == 1, IMVTAB shall be a 3 bit syntax element that indicates which of eight interlace
code tables are used to decode the motion vector data, as defined in Table 101. Refer to section 10.3.5 for a description
of the motion vector decoding process.

Table 100: IMVTAB code-table for P interlace field picture with NUMREF == 0, and for P/B interlace frame
pictures

IMVTA
B

Motion Vector Table

00b 1-Reference Table 0 (Table 140)

01b 1-Reference Table 1 (Table 141)

10b 1-Reference Table 2 (Table 142)

11b 1-Reference Table 3 (Table 143)

Table 101: IMVTAB code-table for P interlace field pictures with NUMREF == 1, and for B interlace field
pictures

IMVTA
B

Motion Vector Table

000b 2-Reference Table 0 (Table 132)

001b 2-Reference Table 1 (Table 133)

010b 2-Reference Table 2 (Table 134)

011b 2-Reference Table 3 (Table 135)

SMPTE 421M

© 2006 SMPTE 245

100b 2-Reference Table 4 (Table 136)

101b 2-Reference Table 5 (Table 137)

110b 2-Reference Table 6 (Table 138)

111b 2-Reference Table 7 (Table 139)

The motion vector tables are defined in section 11.3.

9.1.1.35 Interlace Coded Block Pattern Table (ICBPTAB) (3 bits)

The ICBPTAB syntax element is a 3 bit value present in interlace field P, B pictures and interlace frame P, B pictures.
This syntax element shall signal which of eight code tables is used to decode the CBPCY syntax element in intra-coded
or inter-coded macroblocks, and shall be as defined in Table 102. The code tables used for decoding the CBPCY syntax
element in interlace frame and interlace field pictures are defined in section 11.2. Section 10.3.5.5 describes the
decoding of CBPCY syntax element in interlace P and B picture macroblocks.

Table 102: ICBPTAB code-table

ICBPTAB CBPCY Table

000b Table 0 (Table 124)

001b Table 1 (Table 125)

010b Table 2 (Table 126)

011b Table 3 (Table 127)

100b Table 4 (Table 128)

101b Table 5 (Table 129)

110b Table 6 (Table 130)

111b Table 7 (Table 131)

9.1.1.36 2-MV Block Pattern Table (2MVBPTAB) (2 bits)

The 2MVBPTAB syntax element is a 2 bit value and shall be present only in interlace frame P and interlace frame B
pictures. This syntax element shall signal which one of four tables is used to decode the 2-MV block pattern (2MVBP)
syntax element in 2-MV field macroblocks, and shall be as defined in Table 103. The code tables are defined in section
11.1.2.

Table 103: 2MVBP code-table

2MVBPTAB 2MVBP Table

00b Table 0 (Table 120)

01b Table 1 (Table 121)

10b Table 2 (Table 122)

11b Table 3 (Table 123)

SMPTE 421M

© 2006 SMPTE 246

9.1.1.37 4-MV Block Pattern Table (4MVBPTAB) (2 bits)

The 4MVBPTAB syntax element is a 2 bit value and shall be present only in interlace frame P, B and interlace field P,
B pictures. For interlace field P and B pictures, it shall only be present if MVMODE (or MVMODE2, if MVMODE is
set to intensity compensation) indicates that the picture is of ‘Mixed-MV’ type. For interlace frame P picture, it shall be
present only if 4MVSWITCH syntax element is set to 1. For interlace frame B pictures, this syntax element shall
always present. The 4MVBPTAB syntax element signals which of four tables is used to decode the 4-MV block pattern
(4MVBP) syntax element in 4-MV macroblocks, and shall be as defined in Table 104. The code tables are defined in
section 11.1.1.

Table 104: 4MVBP code-table

4MVBPTAB 4MVBP Table

00b Table 0 (Table 116)

01b Table 1 (Table 117)

10b Table 2 (Table 118)

11b Table 3 (Table 119)_

9.1.1.38 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

This syntax element shall be present only in interlace field P, B pictures and interlace frame P, B pictures. It shall be
the same as defined in section 7.1.1.40.

9.1.1.39 Frame-level Transform Type (TTFRM) (2 bits)

This syntax element shall be present only in interlace field P, B pictures and interlace frame P, B pictures. It shall be
the same as defined in section 7.1.1.41.

9.1.1.40 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION in interlace frame and interlace field picture headers shall be the same as defined in section 7.1.1.14.

9.1.1.41 B Frame Direct Mode Macroblock Bit Syntax Element (DIRECTMB)(Variable size)

The DIRECTMB is a bitplane coded syntax element that shall be present in interlace frame B pictures. It is used to
indicate the macroblocks in the B picture that are coded in direct mode. When bitplane coding is used, each macroblock
shall be represented by this syntax element. In particular, even those macroblocks that are coded as intra shall be
represented. If DIRECTMB == 1 for a non-intra coded macroblock, then the macroblock shall be coded in direct mode.
If DIRECTMB == 0 for a non-intra coded macroblock, then the macroblock shall not be coded in direct mode. The
value of DIRECTMB shall be ignored for intra-coded macroblock. The DIRECTMB syntax element may also signal
that the direct mode is signaled in raw mode, in which case the direct mode shall be signaled at the macroblock level. In
this case, the macroblock level bit shall only be present if the macroblock is not coded as intra. Refer to section 8.7 for
a description of the bitplane coding method.

9.1.1.42 Field Picture Type (FPTYPE) (3 bits)

FPTYPE is a 3 bit syntax element present in the picture header of interlace field pictures. FPTYPE shall be decoded
according to Table 105.

Table 105: Field Picture Type FLC

FPTYPE First Field
Picture Type

Second Field
Picture Type

000b I I

001b I P

SMPTE 421M

© 2006 SMPTE 247

010b P I

011b P P

100b B B

101b B BI

110b BI B

111b BI BI

9.1.1.43 P Reference Distance (REFDIST) (Variable size)

REFDIST is a variable sized syntax element and shall be present in interlace field picture headers, if the entry-level flag
REFDIST_FLAG == 1, and if the picture type is not one of the following types: B/B, B/BI, BI/B, BI/BI. If the entry
level flag REFDIST_FLAG == 0, REFDIST shall be set to the default value of 0. This element defines the number of
frames between the current frame and the reference frame. REFDIST shall be set according to Table 106 as a function
of the VLC codewords.

Table 106: REFDIST VLC Table

REFDIST VLC Codeword
(Binary)

VLC
Size

0 00b 2

1 01b 2

2 10b 2

N 11[(N-3) 1s]0b N

The last row in Table 106 indicates the codewords used to represent reference frame distances greater than 2. These are
coded as (binary) 11 followed by N-3 1s, where N+1 is the reference frame distance. The last bit in the codeword is 0.
For example:

N = 3, VLC Codeword = 110b, VLC Size = 3

N = 4, VLC Codeword = 1110b, VLC Size = 4

N = 5, VLC Codeword = 11110b, VLC Size = 5

The value of REFDIST shall be less than, or equal to, 16.

9.1.1.44 Number of Reference Pictures (NUMREF) (1 bit)

NUMREF is a 1 bit syntax element and shall be present only in interlace P field pictures headers. If NUMREF == 0,
then the current interlace P field picture shall reference one field. If NUMREF == 1, then the current interlace P field
picture shall reference the two temporally closest (in display order) I or P field pictures. Section 10.3.3 defines the use
of NUMREF in decoding interlace P field pictures.

9.1.1.45 Reference Field Picture Indicator (REFFIELD) (1 bit)

REFFIELD is a 1 bit syntax element and shall be present in interlace P field picture headers if NUMREF == 0. If
REFFIELD == 0, then the temporally closest (in display order) I or P field shall be used as a reference. If REFFIELD
== 1, then the second most temporally recent interlace I or P field picture shall be used as reference. Section 10.3.3
defines the use of REFFIELD in decoding interlace P field pictures.

9.1.1.46 Motion Vector Mode (MVMODE) (Variable size)

The MVMODE syntax element is a variable size syntax element that shall be present in interlace field P and B picture
headers. For P pictures it shall be the same as the corresponding MVMODE syntax element described for progressive

SMPTE 421M

© 2006 SMPTE 248

pictures in section 7.1.1.32. For B pictures, and PQUANT > 12, then MVMODE shall be as defined in Table 107; and
for PQUANT <= 12, MVMODE shall be as defined in Table 108.

Note: Intensity compensation is not present in B pictures.

Table 107: B Picture Low rate (PQUANT > 12) MVMODE code table

MVMODE Mode

1b 1-MV Half-pel bilinear

01b 1-MV

001b 1-MV Half-pel

000b Mixed-MV

Table 108: B Picture High rate (PQUANT <= 12) MVMODE code table

MVMODE Mode

1b 1-MV

01b Mixed-MV

001b 1-MV Half-pel

000b 1-MV Half-pel bilinear

9.1.1.47 Motion Vector Mode 2(MVMODE2) (Variable size)

The MVMODE2 syntax element shall be present in interlace field P picture headers only if MVMODE signals intensity
compensation. The syntax shall be identical to the corresponding MVMODE2 syntax element for progressive pictures
as defined in section 7.1.1.33.

9.1.1.48 Intensity Compensation Field (INTCOMPFIELD)(Variable size)

INTCOMPFIELD is a variable-sized syntax element that shall be present in interlace field P field picture headers.
INTCOMPFIELD shall be used to indicate which reference field undergoes intensity compensation and shall be as
defined in Table 109. INTCOMPFIELD shall be present in the bitstream even if NUMREF == 0 (9.1.1.44).

Table 109: INTCOMPFIELD VLC Table

INTCOMPFIEL
D

Intensity
Compensatio
n Applied to:

1b Both fields

00b Top field

01b Bottom field

9.1.1.49 Field Picture Luma Scale 1 (LUMSCALE1)(6 bits)

The LUMSCALE1 syntax element shall be present in the P interlace field picture header if the field picture header
syntax element MVMODE (9.1.1.46) signals intensity compensation. If the INTCOMPFIELD element is 1 or 00b then
LUMSCALE1 shall be applied to the top field. Otherwise it shall be applied to the bottom field. The effect of
LUMSCALE1 on intensity compensation in P interlace field picture headers is defined in section 10.3.8.

SMPTE 421M

© 2006 SMPTE 249

9.1.1.50 Field Picture Luma Shift 1 (LUMSHIFT1)(6 bits)

The LUMSHIFT1 syntax element shall be present in the P interlace field picture header if the interlace field picture
header syntax element MVMODE (9.1.1.46) signals intensity compensation. If the INTCOMPFIELD element is 1 or
00b then LUMSHIFT1 shall be applied to the top field. Otherwise it shall be applied to the bottom field. The effect of
LUMSHIFT1 on intensity compensation in P interlace field pictures is defined in section 10.3.8.

9.1.1.51 Field Picture Luma Scale 2 (LUMSCALE2)(6 bits)

The LUMSCALE2 syntax element shall be present in the P interlace field picture header if the interlace field picture
header syntax element MVMODE (9.1.1.46) signals intensity compensation and INTCOMPFIELD == 1.
LUMSCALE2 shall be applied to the bottom field. The effect of LUMSCALE2 in P interlace field pictures is defined in
section 10.3.8.

9.1.1.52 Field Picture Luma Shift 2 (LUMSHIFT2)(6 bits)

The LUMSHIFT2 syntax element shall be present in the P interlace field picture header if the interlace field picture
header syntax element MVMODE (9.1.1.46) signals intensity compensation and INTCOMPFIELD == 1. LUMSHIFT2
shall be applied to the bottom field. The effect of LUMSHIFT2 on intensity compensation in P interlace field pictures is
defined in section 10.3.8.

9.1.1.53 B Field Forward Mode Macroblock Bit Syntax Element (FORWARDMB)(Variable size)

The FORWARDMB syntax element shall only be present in interlace field B pictures. The FORWARDMB syntax
element uses bitplane coding to indicate the macroblocks in the B field picture that are coded in forward mode. When
sent as a bitplane, there is a bit corresponding to each macroblock, even those that are coded as intra. If FORWARDMB
== 1, the macroblock is coded in forward mode. If FORWARDMB == 0, the macroblock coding mode shall be derived
as described in section 10.4.5.3. FORWARDMB syntax element may also signal that the forward mode is signaled in
raw mode in which case the forward mode is signaled at the macroblock level. In this case, the macroblock level bit
shall only be present if the macroblock is not coded as intra. Refer to section 8.7 for a description of the bitplane coding
method.

9.1.2 Slice Layer
The slice-layer may be present in the bitstream of interlaced coded pictures in Advanced Profile. Refer to Section 7.1.2
for a definition of the Slice layer. For interlaced frame and interlace field pictures, the syntax elements of the slice layer
shall be identical to those of progressive pictures.

As in progressive pictures,
1. motion vector predictors, predictors for AC and DC coefficients, and the predictors for quantization

parameters shall be reset at the beginning of a new slice, and
2. no in-loop-deblocking and no overlap smoothing shall be allowed across slices.

In other words, the top and bottom macroblock rows of each slice are treated as if they are the top and macroblocks
rows of the picture.

For interlace field pictures, two points should be emphasized.
1. If the PIC_HEADER_FLAG == 1 in the slice layer of an interlace field picture, the picture header information

that is repeated shall consist of both the frame picture header, and the field picture header of that field.
2. While coding the SLICE_ADDR syntax element, the row address shall not be reset to zero at the beginning of

the second field. In other words, the row address of the first macroblock row in the second field is not zero, but
is the row address of the last macroblock row in the first field incremented by one.

9.1.3 Macroblock Layer
Data for each macroblock shall consist of a macroblock header followed by the block layer. Figure 101 to Figure 106
define the macroblock layer structure for interlace field I, P, B pictures and interlace frame I, P, B pictures. The
elements that make up the macroblock layer are described in the following sections. The picture types in which the
following macroblock layer syntax elements occur in are indicated in the square brackets.

SMPTE 421M

© 2006 SMPTE 250

9.1.3.1 Field Transform Flag (FIELDTX)(1 bit)[I, P,B]

FIELDTX is a 1-bit syntax element and shall be present in those P and B interlace frame macroblocks which are intra-
coded. FIELDTX shall also be present in I interlace frame macroblocks if the raw mode is used to encode the bitplane
information. This syntax element indicates whether a macroblock is frame or field coded (basically, the internal
organization of the macroblock). FIELDTX == 1 shall indicate that the macroblock is field coded, and FIELDTX == 0
shall indicate that the macroblock is frame coded. See section 10.5.1 for more details on the use of FIELDTX.

Note: In the inter-coded macroblocks of P and B interlace frame, this syntax element is not explicitly signaled, but
inferred from MBMODE (see section 10.7.3.4).

9.1.3.2 Coded Block Pattern (CBPCY) (Variable size)[I, P,B]

CBPCY is a variable-length syntax element present in I picture, P picture and B picture macroblock layers. CBPCY
shall be coded as defined in section 8.1.2.1 in I picture macroblocks, and shall be coded as defined in section 10.3.5.5
in P picture and B picture macroblocks. In P and B interlace frame picture macroblocks that are intra-coded, CBPCY
shall be present only if indicated by the CBPPRESENT syntax element as defined in section 9.1.3.9.

9.1.3.3 AC Prediction Flag (ACPRED)(1 bit)[I, P,B]

The ACPRED syntax element shall be present in all I interlace frame and interlace field picture macroblocks and in all
intra macroblocks in field and frame P and B pictures. Its syntax shall be identical to the corresponding ACPRED
syntax for progressive pictures shall be as defined in section 7.1.3.2, for I pictures as defined in section 8.1.2.2, and for
P pictures as defined in section 8.3.6.1.

9.1.3.4 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

This syntax element shall be present only in I pictures and its syntax shall be identical to the corresponding
OVERFLAGMB syntax for progressive pictures as defined in section 7.1.3.3. See Section 8.5.2 for a description.

9.1.3.5 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P,B]

MQDIFF shall be present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it shall be the same
as defined in section 7.1.3.4.

9.1.3.6 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P,B]

ABSMQ shall be present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it shall be the same as
defined in section 7.1.3.5.

9.1.3.7 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element that shall be present in P and B interlace frame macroblocks, and its syntax shall
be identical to the corresponding SKIPMB syntax for progressive pictures defined in section 7.1.3.7.

9.1.3.8 Macroblock Mode (MBMODE)(Variable size)[P,B]

MBMODE is a variable-length syntax element that shall be present in interlace field P, B and interlace frame P, B
macroblocks. It shall be as defined in section 10.3.5.3 for interlace field P, B pictures and in section 10.7.3.4 for
interlace frame P, B pictures.

9.1.3.9 CBP Present Flag (CBPPRESENT)(1 bit)[P,B]

CBPPRESENT is a 1-bit syntax element that shall be present in those P and B interlace frame macroblocks which are
intra-coded. If CBPPRESENT == 1, the CBPCY syntax element shall be present for that macroblock, and decoded. If
CBPPRESENT == 0, the CBPCY syntax element shall not be present, and shall be set to zero.

Note: In P and B interlace field macroblocks, the presence of CBPCY syntax element is not explicitly signaled, but
inferred from MBMODE (See 10.3.5.3).

9.1.3.10 Two Motion Vector Block Pattern (2MVBP)(Variable size)[P,B]

2MVBP is a variable sized syntax element present in interlace frame P, B picture macroblocks. In interlace frame P
macroblocks, this syntax element shall be present if the MBMODE syntax element indicates that the macroblock has 2

SMPTE 421M

© 2006 SMPTE 251

field motion vectors. In this case, 2MVBP indicates which of the 2 luma blocks contain non-zero motion vector
differentials. In interlace frame B macroblocks, this syntax element shall be present if the MBMODE syntax element
indicates that the macroblock contains 1 motion vector, and if the macroblock is an interpolated macroblock. In this
case, 2MVBP shall indicate which of the two motion vectors (forward and backward motion vectors) are present.
2MVBP shall be decoded according to the table specified by the 2MVBPTAB syntax element as defined in section
9.1.1.36. The tables used for decoding 2MVBP are listed in Table 120 to Table 123.

9.1.3.11 Four Motion Vector Block Pattern (4MVBP)(Variable size)[P,B]

4MVBP is a variable sized syntax element present in interlace field P, B and interlace frame P, B picture macroblocks.
In interlace field P, B and interlace frame P macroblocks, this syntax element shall be present if the MBMODE syntax
element indicates that the macroblock has 4 motion vectors. In this case, 4MVBP indicates which of the 4 luma blocks
contain non-zero motion vector differentials. In interlace frame B macroblocks, this syntax element shall be present if
the MBMODE syntax element indicates that the macroblock contains 2 field motion vectors, and if the macroblock is
an interpolated macroblock. In this case, 4MVBP indicates which of the four motion vectors (the top and bottom field
forward motion vectors, and the top and bottom field backward motion vectors) are present. 4MVBP shall be decoded
according to the table specified by the 4MVBPTAB syntax element as defined in section 9.1.1.37. The tables used for
decoding 4MVBP are listed in Table 116 to Table 119.

9.1.3.12 Motion Vector Data (MVDATA)(Variable size)[P,B]

MVDATA is a variable sized syntax element and shall be present in interlace field P, and interlace frame P, B picture
macroblocks. This syntax element shall decode to the motion vector(s) for the macroblock according to section 10.3.5.4
for interlace field pictures, and section 10.7.3.6 for interlace frame pictures.

9.1.3.13 MB-level Transform Type (TTMB)(Variable size)[P,B]

TTMB shall be present in interlace field P, B pictures and interlace frame P, B pictures and it shall be the same as
defined in section 7.1.3.10.

9.1.3.14 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element that shall be present only in interlace frame B picture macroblocks, and its
syntax shall be identical to the corresponding syntax element in progressive pictures defined in section 7.1.3.12.

9.1.3.15 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]

BMVTYPE is a variable sized syntax element and shall be present in interlace frame and field B picture macroblocks.
For interlace frame B pictures, the BMVTYPE syntax shall be identical to progressive B pictures defined in section
7.1.3.14.

In interlace field B pictures, BMVTYPE shall be sent if the MB mode is not forward (as indicated by the
FORWARDMB or FORWARDBIT syntax element) and 4-MV is not being used. In this case, BMVTYPE shall be as
defined in Table 110 to signal whether the B MB is backward, direct or interpolated. In the case where the MB mode is
not forward and 4-MV is in use, the BMVTYPE is inferred to be backward because only forward and backward modes
are allowed with 4-MV.

Table 110: BMVTYPE VLC Table for Interlace Field B Macroblock not encoded in Forward Mode

BMVTYPE MB Mode is:

0b Backward

10b Direct

11b Interpolated

9.1.3.16 B Frame MV Switch (MVSW)(1 bit)[B]

MVSW is a 1-bit syntax element and shall be present in B frame macroblocks if the MB is in field mode and if the
BMVTYPE is forward or backward. If MVSW == 1, then it shall indicate that the MV type and prediction type changes

SMPTE 421M

© 2006 SMPTE 252

from forward to backward (or backward to forward) in going from the top to the bottom field. If MVSW == 0, then the
prediction type shall not change in going from the top to the bottom field.

9.1.3.17 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P,B]

HYBRIDPRED is a 1-bit syntax element per motion vector, and shall be present in interlace field P picture
macroblocks. It shall be as defined in section 10.3.5.4.3.5.

9.1.3.18 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[inter]

BLKMVDATA is a variable-sized syntax element that may be present in interlace field P and B pictures only if the
macroblock is coded in 4-MV mode. It shall decode to the motion vector information for the block as defined in section
10.3.5.4.

9.1.3.19 Forward B Field Coding Mode (FORWARDBIT)(1 bit)[B]

FORWARDBIT is a 1-bit syntax element that shall be present in interlace B field picture macroblocks if the field level
syntax element FORWARDMB indicates that the raw mode is used. If FORWARDBIT == 1, then the macroblock shall
be coded using forward mode. If FORWARDBIT == 0, then the macroblock coding mode shall be derived as defined
in section 10.4.5.3.

9.1.3.20 Interpolated MV Present (INTERPMVP)(1 bit)[B]

INTERPMVP is a 1-bit syntax element and shall be present in B field macroblocks if the field level syntax element
BMVTYPE indicates that the macroblock type is interpolated. If INTERPMVP == 1, then the interpolated MV
(BMV2) shall be present. If INTERPMVP == 0, BMV2 shall not be present.

9.1.3.21 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element that shall be present in interlace field B picture macroblocks. This syntax
element encodes the first motion vector for the macroblock. The decoding procedure for BMV1 shall be identical to the
decoding procedure for MVDATA in interlace field P pictures as defined in section 10.3.5.4.1.

9.1.3.22 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element that shall be present in interlace field B picture macroblocks if the
interpolation mode is used. This syntax element encodes the second motion vector of the macroblock. The decoding
procedure for BMV2 shall be identical to the decoding procedure for MVDATA in interlace field P pictures as defined
in section 10.3.5.4.1.

9.1.4 Block Layer Syntax Elements
The block layer syntax elements in interlace frame and interlace field pictures shall be identical to the corresponding
syntax elements in progressive pictures as described in 7.1.4.

SMPTE 421M

© 2006 SMPTE 253

10 Interlace Decoding Process
This section describes the decoding processes required for decoding interlace field I pictures (section 10.1), interlace
field BI pictures (section 10.2), interlace field P pictures (section 10.3), interlace field B pictures (section 10.4) interlace
frame I pictures (section 10.5), interlace frame BI pictures (section 10.6), interlace frame P pictures (section 10.7),
interlace frame B pictures (section 10.8) for advanced profile.

This section also defines the processes that are common to all interlace frame and interlace field coded picture types
including the overlapped transform decoding process (section 10.9) and the in-loop deblock filtering process (section
10.10).

The bitplane decoding process and pan-scan decoding process for all interlaced coded pictures is identical to the
corresponding processes for progressive pictures that are defined in section 8.7 and section 8.9 respectively.

Unless described below, the decoding processes of interlace field and interlace frame pictures shall be identical to the
corresponding processes in progressive pictures.

10.1 Interlace Field I Picture Decoding
The following section describes the process for decoding field I pictures.

10.1.1 Macroblock Layer Decode
Figure 104 shows the elements that make up the I picture macroblock layer. Figure 8 shows how the frame is
composed of macroblocks.

10.1.1.1 Coded Block Pattern (CBPCY)

The coded block pattern shall be the same as advanced profile progressive I pictures as defined in section 8.1.2.1.

10.1.1.2 AC Prediction Flag (ACPRED)

The ACPRED syntax element in the macroblock header is a one-bit syntax element that defines whether AC prediction
is used to decode the AC coefficients for all the blocks in the macroblock. Section 8.1.3.7 defines the AC prediction
process. If ACPRED == 1, then AC prediction shall be used, otherwise it shall not be used.

10.1.2 Block Layer Decode
The 4 blocks that make up the Y component of the macroblock shall be decoded first followed by the Cb and Cr blocks
as shown in Figure 8. Figure 36 shows the process used to reconstruct the 8x8 blocks.

The following sub-sections define the processes for reconstructing intra blocks in interlace field pictures.

10.1.2.1 DC Differential Bitstream Decode

The DC differential decoding process shall be the same as defined in section 8.1.3.1.

10.1.2.2 DC Predictor

The DC Predictor shall be as defined in section 8.1.3.2.

10.1.2.3 DC Inverse-quantization

The DC inverse-quantization process shall be as defined in section 8.1.3.3.

10.1.2.4 AC Coefficient Bitstream Decode

The AC Coefficient decoding process shall be as defined in section 8.1.3.4.

SMPTE 421M

© 2006 SMPTE 254

10.1.2.5 Zigzag Scan of AC Coefficients

The zigzag scanning of AC coefficient shall be the same as defined in section 8.1.3.6.

10.1.2.6 AC Prediction

The AC prediction process shall be the same as defined in section 8.1.3.7.

10.1.2.7 Inverse AC Coefficient Quantization

The inverse AC coefficient quantization process shall be the same as defined in section 8.1.3.8.

10.1.2.8 Coefficient Scaling

For DC and AC prediction, the coefficients in the predicted blocks shall be scaled if the macroblocks quantizers differ
from those of the current block as defined in section 8.1.3.9. As in progressive pictures, the product pDC *

pDCSTEP , and the product pAC * pSTEP product shall not exceed the signed 12 bit range, i.e., these product

values shall be limited to ≥ -2048 && ≤ 2047.

10.1.2.9 Inverse Transform

The inverse transform, overlap smoothing and reconstruction processes shall be identical to the processes defined for
advanced profile progressive I frames in section 8.1.3.10.

10.2 Interlace BI Field Decoding
Interlace BI Fields interlace B fields where all macroblocks are intra-coded. The syntax and decoding processes of
Interlace BI field shall be identical to that of Interlace I field, but an Interlace BI Field shall not be used as an anchor or
reference to predict other pictures.

10.3 Interlace Field P Picture Decoding
Figure 59 shows the steps required to decode and reconstruct blocks in interlace field P pictures. The following sub-
sections define the processes for decoding interlace field P pictures.

10.3.1 Handling of Top-Field First (TFF)
In Interlace Field Pictures the TFF syntax element in the frame header shall indicate the temporal order of the two fields
that comprise the frame. TFF == 1 shall indicate that the first field in the frame is the top field and the second field is
the bottom field. TFF == 0 shall indicate that the first field in the frame is the bottom field and the second field is the
top field. The following restrictions and procedures are required for the TFF syntax element and its relationship to the
reference field or fields:

1. If the current and reference frame are coded as Interlace Field Pictures (FCM == 11b) then both frames shall
have the same TFF value.

2. If the current frame is coded as an Interlace Field Picture and the reference frame is coded as a Progressive
Picture or Interlace Frame Picture then for purposes of determining the field order of the reference frame, the
TFF value of the reference frame shall be assumed to be the same as the TFF value of the current frame,
regardless of the value of TFF for the reference frame.

10.3.2 Out-of-bounds Reference Pixels
When coding the first field in a frame, the top and/or bottom fields from the reference frame may be used as the
reference. The out-of-bound pixels for the reference frame shall be generated in a manner which is dependent on the
coding type (progressive or interlaced) of the reference frame as shown in Figure 49 and described in section 8.3.2.
The boundary of the frame shall be calculated as defined in section 8.3.2.

When coding the second field in a frame, the first field of the current frame may be used as a reference as well as the
second field of the reference frame. When the first field of the current frame is used as a reference, out-of-bound pixels
shall be generated by replicating the boundary pixels of the first field as shown in Figure 107. The figure shows the

SMPTE 421M

© 2006 SMPTE 255

bottom field being coded (denoted by X’s) and using the top field as a reference. The figure shows the replication of the
top field reference pixels.

When the second field uses the second field of the reference frame as a reference, the pixel replication shall be
performed as shown in Figure 49. The out-of-bound pixels for the reference frame shall be generated in a manner which
is dependent on the coding type (progressive or interlaced) of the reference frame as shown in Figure 49 and defined in
section 8.3.2.

Note: Annex K.2 provides additional information on the internal representation of a frame.

Figure 107: Horizontal and vertical pixel replication for out-of-bounds references in interlace field pictures for

the case where the second field uses the first field as reference

10.3.3 Reference Pictures
A P Interlace Field Picture shall reference either one or two previously decoded fields. The NUMREF syntax element
in the picture layer is a one bit syntax element that shall indicate whether the current field references one or two
previous reference field pictures. If NUMREF == 0, then the current P interlace field picture references one field. In
this case, the REFFIELD syntax element shall follow the NUMREF syntax element in the picture layer bitstream. The
REFFIELD syntax element is a one bit syntax element that shall indicate which previously decoded field is used as the
reference. If REFFIELD == 0, then the temporally closest (in display order) I or P field shall be used as the reference.
If REFFIELD == 1, then the second most temporally recent I or P field picture shall be used as the reference. The
possible repeat of a field for display (due to RFF == 1) shall be ignored while choosing the closest field for reference.

If NUMREF == 1, then the current P interlace field picture references the two temporally closest (in display order) I or
P field pictures.

Figure 109, Figure 110 and Figure 108 show examples of reference field pictures for NUMREF == 0 and NUMREF ==
1.

SMPTE 421M

© 2006 SMPTE 256

Figure 108: Example of two reference interlace field pictures (NUMREF == 1)

SMPTE 421M

© 2006 SMPTE 257

Figure 109: Example of one reference interlace field picture (NUMREF == 0) using temporally most recent

reference (REFFIELD == 0)

SMPTE 421M

© 2006 SMPTE 258

Figure 110: Example of one reference interlace field picture (NUMREF == 0) using temporally second-most

recent reference (REFFIELD == 1)

10.3.4 P Picture Types
P pictures shall be one of two types: 1-MV or Mixed-MV. The following sections define each P picture type.

10.3.4.1 1-MV P Picture

In 1-MV P pictures, a single motion vector shall be used to indicate the displacement of the predicted blocks for all 6
blocks in the inter-coded macroblock. The 1-MV mode shall be signaled by the MVMODE and MVMODE2 picture
layer syntax elements as defined in section 8.3.4.3.

10.3.4.2 Mixed-MV P Picture

In Mixed-MV P pictures, each inter-coded macroblock shall be encoded as a 1-MV or a 4-MV macroblock. In 4-MV
macroblocks, each of the 4 luma blocks shall have an associated motion vector. The 1-MV or 4-MV mode for each
macroblock shall be indicated by the MBMODE syntax element. The Mixed-MV mode shall be signaled by the
MVMODE and MVMODE2 picture layer syntax elements as defined in section 8.3.4.3.

10.3.5 Macroblock Layer Decode

10.3.5.1 Macroblock Types

SMPTE 421M

© 2006 SMPTE 259

Macroblocks in P pictures shall be one of 3 possible types: 1-MV, 4-MV, and Intra. The macroblock type is signaled
by the MBMODE syntax element in the macroblock layer. The following sections describe each type and how they
are signaled.

10.3.5.1.1 1-MV Macroblocks

1-MV macroblocks can occur in 1-MV and Mixed-MV P pictures. A 1-MV macroblock is one where a single motion
vector represents the displacement between the current and reference pictures for all 6 blocks in the macroblock. For
1-MV macroblocks, the MBMODE syntax element in the macroblock layer indicates three parameters:

1) That the macroblock type is 1-MV

2) Whether the CBPCY syntax element is present

3) Whether the MVDATA syntax element is present

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element
shall be present in the macroblock layer in the corresponding position. The CBPCY syntax element indicates which of
the 6 blocks are coded in the block layer. If the MBMODE syntax element indicates that the CBPCY syntax element
is not present, then CBPCY shall be assumed to equal to 0 and no block data shall be present for any of the 6 blocks in
the macroblock.

If the MBMODE syntax element indicates that the MVDATA syntax element is present, then the MVDATA syntax
element shall be present in the macroblock layer in the corresponding position. The MVDATA syntax element shall
encode the motion vector differential. The motion vector differential is combined with the motion vector predictor to
reconstruct the motion vector. If the MBMODE syntax element indicates that the MVDATA syntax element is not
present, then the motion vector differential shall be assumed to be zero and therefore the motion vector shall be equal to
the motion vector predictor.

10.3.5.1.2 4-MV Macroblocks

4-MV macroblocks shall only occur in Mixed-MV P pictures. A 4-MV macroblock is one where each of the 4 luma
blocks in a macroblock has an associated motion vector which indicates the displacement between the current and
reference pictures for that block. The displacement for the color-difference blocks shall be derived from the 4 luma
motion vectors. This procedure shall be identical to the progressive picture case described in section 8.3.5.4.2. The
difference between the current and reference blocks is encoded in the block layer.

For 4-MV macroblocks the MBMODE syntax element in the macroblock layer indicates two parameters:

1) That the macroblock type is 4-MV

2) Whether the CBPCY syntax element is present

The CBPCY syntax element indicates which of the 6 blocks are coded in the block layer. If the MBMODE syntax
element indicates that the CBPCY syntax element is not present, then CBPCY shall be assumed to equal to 0 and no
block data shall be present for any of the 6 blocks in the macroblock.

The 4MVBP syntax element indicates which of the 4 luma blocks contain non-zero motion vector differentials. The
4MVBP syntax element decodes to a value between 0 and 15. This value, when expressed as a binary value, represents
a bit syntax element which shall indicate whether the motion vector for the corresponding luma block is present as
defined in Figure 111.

 Figure 111: Association of bits in 4MVBP to luma blocks

SMPTE 421M

© 2006 SMPTE 260

For each of the 4 bit positions in the 4MVBP, a value of 0 shall indicate that no motion vector differential
(BLKMVDATA (9.1.3.18)) is present for that block and the motion vector differential shall be assumed to be 0. A
value of 1 indicates that a motion vector differential (BLKMVDATA) shall be present for that block in the
corresponding position. For example, if 4MVBP decodes to a value of 1100b, then the bitstream contains
BLKMVDATA for blocks 0 and 1 and no BLKMVDATA is present for blocks 2 and 3.

10.3.5.2 Intra Macroblocks

Intra macroblocks can occur in 1-MV or Mixed-MV P pictures. An Intra macroblock is one where all six blocks are
coded without referencing any previous picture data. The block encodes the difference between each current block
pixel and a constant value of 128.

For Intra macroblocks, the MBMODE syntax element (9.1.3.8) in the macroblock layer indicates two parameters:

1) That the macroblock type is Intra,

2) Whether the CBPCY syntax element is present.

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element
shall be present in the macroblock layer in the corresponding position. The CBPCY syntax element indicates which of
the 6 blocks has AC coefficient data coded in the block layer. If the MBMODE syntax element indicates that the
CBPCY syntax element is not present, then CBPCY shall be assumed to equal 0 and no AC coefficient data shall be
present for any of the 6 blocks in the macroblock.

10.3.5.3 Macroblock Mode (MBMODE)

The MBMODE syntax element indicates the macroblock type (1-MV, 4-MV or Intra) and also the presence of the
CBPCY syntax element and MV data, as described above. Depending on whether the MVMODE (9.1.1.46) and
MVMODE2 (9.1.1.47) syntax elements indicate Mixed-MV or 1-MV the MBMODE signals the information as
follows:

10.3.5.3.1 Macroblock Mode in 1-MV Pictures

When the MBMODE syntax element signals information about the macroblock in 1-MV pictures, the related
parameters shall be as defined in Table 111.

Table 111: Macroblock Mode in 1-MV Pictures

MBMODE MB Type CBP
Present

MVDat
a
Present

0 Intra MB No NA

1 Intra MB Yes NA

2 1-MV MB No No

3 1-MV MB No Yes

4 1-MV MB Yes No

5 1-MV MB Yes Yes

10.3.5.3.2 Macroblock Mode in Mixed-MV Pictures

 When the MBMODE syntax element signals information about the macroblock in mixed-MV pictures, the related
parameters shall be as defined in Table 112.

Table 112: Macroblock Mode in Mixed-MV Pictures

MBMODE MB Type CBP
Present

MVDat
a

SMPTE 421M

© 2006 SMPTE 261

Present

0 Intra MB No NA

1 Intra MB Yes NA

2 1-MV MB No No

3 1-MV MB No Yes

4 1-MV MB Yes No

5 1-MV MB Yes Yes

6 4-MV MB No NA

7 4-MV MB Yes NA

One of 8 tables is used to signal the MBMODE. The table is signaled at the picture layer via the MBMODETAB syntax
element. Table 144 through Table 151 shall be used for Mixed-MV MB mode. Table 152 through Table 159 shall be
used for 1-MV MB mode.

10.3.5.4 Motion Vector Decoding Process

The following sub-sections define the motion vector decoding process for P interlace field picture macroblocks.

Note: In the sections that define the luma motion vector decoding process, all motion vectors are expressed in 1/2 or 1/4
pel units (depending on the value of MVMODE) and conform to the coordinate system shown in Figure 112. In the
sections that define the color-difference motion vector derivation process, all motion vectors are expressed in1/4 pel
units.

10.3.5.4.1 Interlace Field Picture Coordinate System

In the following sections which describe the motion vector decoding processes the motion vector units are expressed in
field picture units. For example, if the vertical component a motion vector indicates that the displacement is +5 then this
indicates a displacement of 1 ¼ field picture lines if the motion vector resolution is quarter-pel (MVMODE is Mixed-
MV or 1-MV quarter-pel bicubic) or 2 ½ field picture lines if the motion vector resolution is half-pel (MVMODE is 1-
MV half-pel bicubic or 1-MV half-pel bilinear). Unless otherwise stated, the motion vector decoding processes in the
sections that follow assume that the motion vector is expressed in the resolution that corresponds to the MVMODE for
the picture. Figure 112 shows the relationship between the vertical component of the motion vector and the spatial
location for both combinations of current and reference field polarities. The figure shows one vertical column of pixels
in the current and reference fields. Each circle represents integer pixel positions and the “x”s represent quarter or half
pixel positions. The figure shows that a value of 0 indicates no vertical displacement between the current and reference
field positions. As the figure shows, if the current and reference fields are of opposite polarities then the 0 vertical
vector points to a position halfway between the field lines (a ½ pixel shift) in the reference field. If the current and
reference fields are of the same polarity then the 0 vertical vector points to the corresponding field line in the reference
field.

SMPTE 421M

© 2006 SMPTE 262

Figure 112: Vertical relationship between motion vectors for current and reference fields

10.3.5.4.2 Decoding Motion Vector Differential

The MVDATA or BLKMVDATA syntax elements encode motion information for the blocks in the macroblock. 1-MV
macroblocks shall have a single MVDATA syntax element if MBMODE syntax element indicates that MVDATA is
present as defined in 10.3.5.1.1, and 4-MV macroblocks shall have between zero and four BLKMVDATA syntax
elements. The following sections describe how to compute the motion vector differential for the one-reference (picture
layer syntax element NUMREF == 0) and two-reference (picture layer syntax element NUMREF == 1) cases.

10.3.5.4.2.1 Motion Vector Differentials in One-Reference Interlace Field Pictures

In interlace field pictures that have only one reference field, each MVDATA or BLKMVDATA syntax element in the
macroblock layer jointly encodes two parameters: 1) the horizontal motion vector differential component and 2) the
vertical motion vector differential component.

The MVDATA or BLKMVDATA syntax elements are each a variable length codeword followed by a fixed length
codeword. The value of the codeword determines the size of the fixed length codeword. The IMVTAB syntax element
in the picture layer shall specify the table used to decode the variable sized codeword.

The pseudo-code of Figure 113 defines how the motion vector differential shall be decoded. The values dmv_x and
dmv_y are computed in the following pseudo-code. The values are defined as follows:

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.9) and
shall be as defined in Table 75.

SMPTE 421M

© 2006 SMPTE 263

extend_x: extended range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

extend_x and extend_y shall be derived from the DMVRANGE syntax element as follows. If DMVRANGE
indicates that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x =
0. Similarly, if DMVRANGE indicates that extended range for the vertical component is used, then extend_y
= 1 otherwise extend_y = 0.

The offset_table1 and offset_table2 are arrays and shall be defined as follows:
offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128,}
offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

Figure 113: Pseudo-code for Decoding MV Differentials in One Reference Interlace Field Pictures

int index = vlc_decode() // Use the table indicated by IMVTAB in the picture layer
if (index == 71)
{
 dmv_x = get_bits(k_x)
 dmv_y = get_bits(k_y)
}
else
{
 if (extend_x == 1)
 offset_table = offset_table2
 else
 offset_table = offset_table1

 index1 = (index + 1) % 9
 if (index1 != 0)
 {
 val = get_bits (index1 + extend_x)
 sign = 0 - (val & 1)
 dmv_x = sign ^ ((val >> 1) + offset_table[index1])
 dmv_x = dmv_x - sign
 }
 else
 dmv_x = 0

 if (extend_y == 1)
 offset_table = offset_table2
 else
 offset_table = offset_table1

 int index1 = (index + 1) / 9
 if (index1 != 0)
 {
 int val = get_bits (index1 + extend_y)
 sign = 0 - (val & 1)
 dmv_y = sign ^ ((val >> 1) + offset_table[index1])
 dmv_y = dmv_y – sign
 }
 else
 dmv_y = 0

SMPTE 421M

© 2006 SMPTE 264

}

10.3.5.4.2.2 Motion Vector Differentials in Two-Reference Interlace Field Pictures

Two-reference Interlace Field Pictures occur in the coding of interlace frames using field pictures. Each frame of the
sequence is separated into two fields, and each field is coded using what is essentially the progressive code path. Field
pictures often have two reference fields and the coding of field picture motion vectors in this case is described below.

In interlace field pictures that have two reference fields, each MVDATA or BLKMVDATA syntax element in the
macroblock layer jointly encodes three parameters: 1) the horizontal motion vector differential component, 2) the
vertical motion vector differential component and 3) whether the dominant or non-dominant predictor is used, i.e.
which of the two fields is referenced by the motion vector.

The MVDATA or BLKMVDATA syntax element is a variable length codeword followed by a fixed length codeword.
The value of the codeword determines the size of the fixed length codeword. The IMVTAB syntax element in the
picture layer defines the table used to decode the variable sized codeword.

The pseudo-code of Figure 114 defines how the motion vector differential and dominant/non-dominant predictor
information shall be decoded.

The values predictor_flag, dmv_x and dmv_y are computed in the following pseudo-code. The values are defined as
follows:

predictor_flag: binary flag indicating whether the dominant or non-dominant motion vector predictor is used
(0 = dominant predictor used, 1 = non-dominant predictor used)

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

extend_x: extended range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.9) and
shall be as defined in Table 75.

extend_x and extend_y shall be derived from the DMVRANGE syntax element. If DMVRANGE indicates
that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x = 0.
Similarly, if DMVRANGE indicates that extended range for the vertical component is used, then extend_y = 1
otherwise extend_y = 0.

size_table, offset_table1 and offset_table2 are arrays and shall be defined as follows:
size_table[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}
offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128}
offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

int index = vlc_decode() // Use the table indicated by IMVTAB in the picture layer
int index1, val

if (index == 125)
{
 dmv_x = get_bits(k_x)
 dmv_y = get_bits(k_y)
 predictor_flag = dmv_y & 1
 dmv_y = (dmv_y + predictor_flag) >> 1

SMPTE 421M

© 2006 SMPTE 265

}
else
{
 if (extend_x == 1)
 offset_table = offset_table2
 else
 offset_table = offset_table1
 index1 = (index + 1) % 9
 if (index1 != 0)
 {
 val = get_bits (index1 + extend_x)
 sign = 0 - (val & 1)
 dmv_x = sign ^ ((val >> 1) + offset_table[index1])
 dmv_x = dmv_x - sign
 }
 else
 dmv_x = 0

 if (extend_y == 1)
 offset_table = offset_table2
 else
 offset_table = offset_table1
 index1 = (index + 1) / 9
 if (index1 != 0 && index1 != 1)
 {
 val = get_bits (size_table[index1 + 2 * extend_y])
 sign = 0 - (val & 1)
 dmv_y = sign ^ ((val >> 1) + offset_table[index1 >> 1])
 dmv_y = dmv_y – sign
 }
 else
 {
 dmv_y = 0
 }
 predictor_flag = index1 & 1
}

Figure 114: Pseudo-code for Decoding MV Differentials in Two Reference Interlace Field Pictures

10.3.5.4.3 Motion Vector Predictors

Motion vectors are computed by adding the motion vector differential computed in the previous section to a motion
vector predictor. The predictor is computed from three neighboring motion vectors.

The following sections describe how the predictors are calculated for macroblocks in ‘1-MV’ P pictures and ‘Mixed-
MV’ P pictures.

10.3.5.4.3.1 Motion Vector Predictors In 1-MV P Pictures

SMPTE 421M

© 2006 SMPTE 266

Figure 51 (section 8.3.5.3.1) shows the three motion vectors used to compute the predictor for the current macroblock.
The predictors shall be derived as described in section 8.3.5.3.1.

10.3.5.4.3.2 Motion Vector Predictors In Mixed-MV P Pictures

Current
Macroblock

Predictor
A

Predictor
C

Predictor
B

Current
Macroblock

Predictor
A

Predictor
C

Predictor
B

Not last macroblock in macroblock row Last macroblock in macroblock row

Figure 115: Candidate Motion Vectors for 1-MV Macroblocks in Mixed-MV Interlace Field Pictures

SMPTE 421M

© 2006 SMPTE 267

Figure 116: Candidate Motion Vectors for 4-MV Macroblocks in Mixed-MV Interlace Field Pictures

Figure 115 and Figure 116 show the 3 candidate motion vectors for 1-MV and 4-MV macroblocks in Mixed-MV P
pictures. The larger rectangles are macroblock boundaries and the smaller rectangles are block boundaries.

For the special case where the frame is one macroblock wide, the predictor shall always be Predictor A (the top
predictor).

Figure 115 shows the candidate motion vectors for 1-MV macroblocks. The neighboring macroblocks can be 1-MV or
4-MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4-MV (i.e., predictor A
is the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1 in
the macroblock immediately to the left of the current). If any of the neighbors are 1-MV macroblocks, then the motion
vector predictors shown in Figure 115 shall be taken to be the vectors for the entire macroblock. As the figure shows, if
the macroblock is the last macroblock in the row, then Predictor B shall be from block 2 of the top-left macroblock
instead of from block 2 in the top-right macroblock as is the case otherwise.

Figure 116 shows the predictors for each of the 4 luma blocks in a 4-MV macroblock. For the case where the
macroblock is the first macroblock in the row, Predictor B for block 0 is handled differently than the remaining blocks
in the row. In this case, Predictor B shall be taken from block 3 in the macroblock immediately above the current
macroblock instead of from block 3 in the macroblock above and to the left of current macroblock, as is the case
otherwise. Similarly, for the case where the macroblock is the last macroblock in the row, Predictor B for block 1 is
handled differently. In this case, the predictor shall be taken from block 2 in the macroblock immediately above the

Predictor
A

Predictor
C

Predictor
B

Current
block

Predictor
A

Predictor
C

Predictor
B

Current
block

Predictor
C

Predictor
A Predictor

B

Current
block

Predictor
A

Predictor
C

Predictor
B

Current
block

Predictors for Block 0 if not
the first macroblock in row

Predictors for Block 1 if not
last macroblock in row

Predictors for
Block

Predictors for
Block

Predictor
A

Predictor
C

Predictor
B

Current
block

Predictors for Block 1 if last
macroblock in row

Predictor
B

Current
block

Predictor
A

Predictors for Block 0 if first
macroblock in row

Predictor
C = 0

Predictor
B = 0

Current
block

Predictor
A

Predictors for Block 0 if 1 MB wide

picture

Predictor
C = 0

Predictor
C = 0

Predictor
A Predictor

B = 0

Current
block

Predictors for Block 2 if

1 MB wide picture

SMPTE 421M

© 2006 SMPTE 268

current macroblock instead of from block 2 in the macroblock above and to the left of the current macroblock, as is the
case otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 shall be set
equal to 0.

10.3.5.4.3.3 Dominant and Non-Dominant MV Predictors

In two-reference field P pictures, for each inter-coded macroblock, two motion vector predictors are derived. One is
from the dominant field and the other is from the non-dominant field. The dominant field shall be the field containing
the majority of the motion vector predictor candidates. In the case of a tie, the motion vector derived from the opposite
field shall be the dominant predictor. Intra-coded macroblocks shall not be considered in the calculation of the
dominant/non-dominant predictor. If all candidate predictor macroblocks are Intra-coded, then the dominant and non-
dominant motion vector predictors shall be set to zero and the dominant predictor shall be from the opposite field.

10.3.5.4.3.4 Calculating the Motion Vector Predictor

If the NUMREF syntax element in the picture header == 0, then the current interlace field picture shall refer to only one
previously coded picture. If NUMREF == 1, then the current interlace field picture shall refer to the two most recent
field pictures. If NUMREF == 0, a single predictor shall be calculated for each motion vector. If NUMREF == 1, two
motion vector predictors shall be calculated. The pseudo-code of Figure 117 and Figure 118 describe how the motion
vector predictors are calculated for each case. The variables fieldpred_x and fieldpred_y represent the horizontal and
vertical components of the motion vector predictor.

10.3.5.4.3.4.1 Motion Vector Predictors in One-Reference Interlace Field Pictures

The pseudo-code of Figure 117 shall be used to calculate the motion vector predictors in one-reference interlace field
pictures.

SMPTE 421M

© 2006 SMPTE 269

if (predictorA is not out of bounds) {
 if (predictorC is not out of bounds) {
 if (predictorA is intra) {
 if (predictorB is intra) {
 if (predictorC is intra) {
 // A, B and C are intra
 fieldpred_x = 0
 fieldpred_y = 0
 }
 else {
 // A and B are intra
 fieldpred_x = predictorC_x
 fieldpred_y = predictorC_y
 }
 }
 else {
 // A is intra B is inter
 if (predictorC is intra) {
 // A and C are intra
 fieldpred_x = predictorB_x
 fieldpred_y = predictorB_y
 }
 else {
 // B and C are inter
 fieldpred_x =
 median (0, predictorB_x, predictorC_x)
 fieldpred_y =
 median (0, predictorB_y, predictorC_y)
 }
 }
 }
 else {
 // A is inter
 if (predictorB is intra) {
 if (predictorC is intra) {
 // A is inter B and C are intra
 fieldpred_x = predictorA_x
 fieldpred_y = predictorA_y
 }
 else {
 // A and C are inter and B is intra
 fieldpred_x =
 median (0, predictorA_x, predictorC_x)
 fieldpred_y =
 median (0, predictorA_y, predictorC_y)
 }
 }

SMPTE 421M

© 2006 SMPTE 270

 else {
 // A and B are inter
 if (predictorC is intra) {
 // A and B are inter and C is intra
 fieldpred_x =
 median (0, predictorA_x, predictorB_x)
 fieldpred_y =
 median (0, predictorA_y, predictorB_y)
 }
 else {
 // A, B and C are inter
 fieldpred_x =
 median (predictorA_x, predictorB_x, predictorC_x)
 fieldpred_y =
 median (predictorA_x, predictorB_y, predictorC_y)
 }
 }
 }
 }
 else {
 // predictorC is out of bounds
 if (only 1 macroblock per row) {
 if (predictorA is intra) {
 fieldpred_x = 0
 fieldpred_y = 0
 }
 else {
 // Use predictorA
 fieldpred_x = predictorA_x
 fieldpred_y = predictorA_y
 }
 }
 else {
 // Predictor C is out of bounds, use Predictor A and Predictor B
 if (predictorA is intra) {
 if (predictorB is intra) {
 fieldpred_x = 0
 fieldpred_y = 0
 }
 else {
 fieldpred_x = predictorB_x
 fieldpred_y = predictorB_y
 }
 }
 else {
 if (predictorB is intra) {

SMPTE 421M

© 2006 SMPTE 271

 fieldpred_x = predictorA_x
 fieldpred_y = predictorA_y
 }
 else {
 fieldpred_x =
 median (predictorA_x, predictorB_x, 0)
 fieldpred_y =
 median (predictorA_x, predictorB_y, 0)
 }
 }
 }
 }
}
else {
 // Predictor A is out of bounds
 if (predictorC is out of bounds or predictorC is intra) {
 fieldpred_x = 0
 fieldpred_y = 0
 }
 else {
 // Use predictorC
 fieldpred_x = predictorC_x
 fieldpred_y = predictorC_y
 }
}

Figure 117: MV Predictor in One Reference Interlace Field Pictures

10.3.5.4.3.4.2 Motion Vector Predictors in Two-Reference Interlace Field Pictures

In 2-reference pictures (NUMREF == 1) the current field shall reference the two most recent fields. In this case two
motion vector predictors shall be computed for each macroblock. One predictor shall be from the reference field of the
same polarity and the other shall be from the reference field with the opposite polarity.

Given the 3 motion vector predictor candidates, the pseudo-code of Figure 118 shall define the process for calculating
the motion vector predictors. The variables samefieldpred_x and samefieldpred_y represent the horizontal and vertical
components of the motion vector predictor from the same field and oppositefieldpred_x and oppositefieldpred_y
represent the horizontal and vertical components of the motion vector predictor from the opposite field. The variable
dominantpredictor indicates which field contains the dominant predictor. The value predictor_flag decoded from the
motion vector differential indicates whether the dominant or non-dominant predictor is used. A predictor candidate that
is out-of-bounds shall not be used in the computation of the predictor.

samecount = 0;
oppositecount = 0;
if (predictorA is not out of bounds) {
 if (predictorC is not out of bounds) {
 if (predictorA is intra) {
 samefieldpred_x = oppositefieldpred_x = samefieldpredA_x = oppositefieldpredA_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredA_y = oppositefieldpredA_y = 0
 }

SMPTE 421M

© 2006 SMPTE 272

 if (predictorB is intra) {
 samefieldpred_x = oppositefieldpred_x = samefieldpredB_x = oppositefieldpredB_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredB_y = oppositefieldpredB_y = 0
 }
 if (predictorC is intra) {
 samefieldpred_x = oppositefieldpred_x = samefieldpredC_x = oppositefieldpredC_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredC_y = oppositefieldpredC_y = 0
 }
 if (predictorA is not intra) {
 if (predictorA is from same field) {
 samecount = samecount + 1
 samefieldpred_x = samefieldpredA_x = predictorA_x
 samefieldpred_y = samefieldpredA_y = predictorA_y
 oppositefieldpred_x = oppositefieldpredA_x = scaleforopposite_x(predictorA_x)
 oppositefieldpred_y = oppositefieldpredA_y = scaleforopposite_y(predictorA_y)
 }
 else {
 oppositecount = oppositecount + 1
 oppositefieldpred_x = oppositefieldpredA_x = predictorA_x
 oppositefieldpred_y = oppositefieldpredA_y = predictorA_y
 samefieldpred_x = samefieldpredA_x = scaleforsame_x(predictorA_x)
 samefieldpred_y = samefieldpredA_y = scaleforsame_y(predictorA_y)
 }
 }
 if (predictorB is not intra) {
 If (predictorB is from same field) {
 samecount = samecount + 1
 samefieldpred_x = samefieldpredB_x = predictorB_x
 samefieldpred_y = samefieldpredB_y = predictorB_y
 oppositefieldpred_x = oppositefieldpredB_x = scaleforopposite_x(predictorB_x)
 oppositefieldpred_y = oppositefieldpredB_y = scaleforopposite_y(predictorB_y)
 }
 else {
 oppositecount = oppositecount + 1
 oppositefieldpred_x = oppositefieldpredB_x = predictorB_x
 oppositefieldpred_y = oppositefieldpredB _y = predictorB_y
 samefieldpred_x = samefieldpredB_x = scaleforsame_x(predictorB_x)
 samefieldpred_y = samefieldpredB_y = scaleforsame_y(predictorB_y)
 }
 }
 if (predictorC is not intra) {
 if (predictorC is from same field) {
 samecount = samecount + 1
 samefieldpred_x = samefieldpredC_x = predictorC_x
 samefieldpred_y = samefieldpredC_y = predictorC_y
 oppositefieldpred_x = oppositefieldpredC_x = scaleforopposite_x(predictorC_x)

SMPTE 421M

© 2006 SMPTE 273

 oppositefieldpred_y = oppositefieldpredC_y = scaleforopposite_y(predictorC_y)
 }
 else {
 oppositecount = oppositecount + 1
 oppositefieldpred_x = oppositefieldpredC_x = predictorC_x
 oppositefieldpred_y = oppositefieldpredC _y = predictorC_y
 samefieldpred_x = samefieldpredC _x = scaleforsame_x(predictorC_x)
 samefieldpred_y = samefieldpredC _y = scaleforsame_y(predictorC_y)
 }
 }
 if ((samecount + oppositecount) > 1) {
 samefieldpred_x =
 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)
 samefieldpred_y =
 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)
 oppositefieldpred_x =
 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)
 oppositefieldpred_y =
 median (oppositefieldpredA_y, oppositefieldpredB_y, oppositefieldpredC_y)
 }

 if (samecount > oppositecount)
 dominantpredictor = samefield
 else
 dominantpredictor = oppositefield
 }
 else {
 // predictorC is out of bounds
 if (only 1 macroblock per row) {
 if (predictorA is intra) {
 samefieldpred_x = oppositefieldpred_x = 0
 samefieldpred_y = oppositefieldpred_y = 0
 dominantpredictor = oppositefield
 }
 else {
 // Use predictorA
 if (predictorA is from same field) {
 samefieldpred_x = predictorA_x
 samefieldpred_y = predictorA_y
 oppositefieldpred_x = scaleforopposite_x(predictorA_x)
 oppositefieldpred_y = scaleforopposite_y(predictorA_y)
 dominantpredictor = samefield
 }
 else {
 oppositefieldpred_x = predictorA_x
 oppositefieldpred_y = predictorA_y
 samefieldpred_x = scaleforsame_x(predictorA_x)

SMPTE 421M

© 2006 SMPTE 274

 samefieldpred_y = scaleforsame_y(predictorA_y)
 dominantpredictor = oppositefield
 }
 }
 }
 else {
 // Predictor C is out of bounds, use Predictor and PredictorB
 predictorC_x = 0
 predictorC_y = 0
 if (predictorA is intra) {
 samefieldpred_x = oppositefieldpred_x = samefieldpredA_x = oppositefieldpredA_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredA_y = oppositefieldpredA_y = 0
 }
 if (predictorB is intra) {
 samefieldpred_x = oppositefieldpred_x = samefieldpredB_x = oppositefieldpredB_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredB_y = oppositefieldpredB_y = 0
 }
 samefieldpred_x = oppositefieldpred_x = samefieldpredC_x = oppositefieldpredC_x = 0
 samefieldpred_y = oppositefieldpred_y = samefieldpredC_y = oppositefieldpredC_y = 0
 if (predictorA is not intra) {
 if (predictorA is from same field) {
 samecount = samecount + 1
 samefieldpred_x = samefieldpredA_x = predictorA_x
 samefieldpred_y = samefieldpredA_y = predictorA_y
 oppositefieldpred_x = oppositefieldpredA_x = scaleforopposite_x(predictorA_x)
 oppositefieldpred_y = oppositefieldpredA_y = scaleforopposite_y(predictorA_y)
 }
 else {
 oppositecount = oppositecount + 1
 oppositefieldpred_x = oppositefieldpredA_x = predictorA_x
 oppositefieldpred_y = oppositefieldpredA _y = predictorA_y
 samefieldpred_x = samefieldpredA_x = scaleforsame_x(predictorA_x)
 samefieldpred_y = samefieldpredA_y = scaleforsame_y(predictorA_y)
 }
 }
 if (predictorB is not intra) {
 if (predictorB is from same field) {
 samecount = samecount + 1
 samefieldpred_x = samefieldpredB_x = predictorB_x
 samefieldpred_y = samefieldpredB_y = predictorB_y
 oppositefieldpred_x = oppositefieldpredB_x = scaleforopposite_x(predictorB_x)
 oppositefieldpred_y = oppositefieldpredB_y = scaleforopposite_y(predictorB_y)
 }
 else {
 oppositecount = oppositecount + 1
 oppositefieldpred_x = oppositefieldpredB_x = predictorB_x

SMPTE 421M

© 2006 SMPTE 275

 oppositefieldpred_y = oppositefieldpredB_y = predictorB_y
 samefieldpred_x = samefieldpredB_x = scaleforsame_x(predictorB_x)
 samefieldpred_y = samefieldpredB_y = scaleforsame_y(predictorB_y)
 }
 }
 if ((samecount + oppositecount) > 1) {
 samefieldpred_x =
 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)
 samefieldpred_y =
 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)
 oppositefieldpred_x =
 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)
 oppositefieldpred_y =
 median (oppositefieldpredA_y, oppositefieldpredB_y, oppositefieldpredC_y)
 }
 if (samecount > oppositecount)
 dominantpredictor = samefield
 else
 dominantpredictor = oppositefield
 }
 }
}
else {
 // Predictor A is out of bounds
 if (predictorC is out of bounds or predictorC is intra) {
 samefieldpred_x = oppositefieldpred_x = 0
 samefieldpred_y = oppositefieldpred_y = 0
 dominantpredictor = oppositefield
 }
 else {
 // Use predictorC
 if (predictorC is from same field) {
 samefieldpred_x = predictorC_x
 samefieldpred_y = predictorC_y
 oppositefieldpred_x = scaleforopposite_x(predictorC_x)
 oppositefieldpred_y = scaleforopposite_y(predictorC_y)
 dominantpredictor = samefield
 }
 else {
 oppositefieldpred_x = predictorC_x
 oppositefieldpred_y = predictorC_y
 samefieldpred_x = scaleforsame_x(predictorC_x)
 samefieldpred_y = scaleforsame_y(predictorC_y)
 dominantpredictor = oppositefield
 }
 }
}

SMPTE 421M

© 2006 SMPTE 276

Figure 118: MV Predictor in Two Reference Interlace Field Pictures

The scaling operations used in the pseudo-code of Figure 118 to derive the other field’s predictor shall be as defined in
the pseudo-code of Figure 119.

scaleforopposite_x (n) {
 int scaledvalue
 scaledvalue = (n * SCALEOPP) >> 8
 return scaledvalue
}
scaleforopposite_y (n) {
 int scaledvalue
 scaledvalue = (n * SCALEOPP) >> 8
 return scaledvalue
}
scaleforsame_x (n) {
 int scaledvalue
 if (abs (n) > 255)
 scaledvalue = n
 else {
 if (abs (n) < SCALEZONE1_X)
 scaledvalue = (n * SCALESAME1) >> 8
 else {
 if (n < 0)
 scaledvalue = ((n * SCALESAME2) >> 8) – ZONE1OFFSET_X
 else
 scaledvalue = ((n * SCALESAME2) >> 8) + ZONE1OFFSET_X
 }
 }

 if (scaledvalue > range_x – 1)
 scaledvalue = range_x – 1
 if (scaledvalue _x < -range_x)
 scaledvalue = -range_x

 return scaledvalue
}
scaleforsame_y (n) {
 int scaledvalue
 if (abs (n) > 63)
 scaledvalue = n
 else {
 if (abs (n) < SCALEZONE1_Y)
 scaledvalue = (n * SCALESAME1) >> 8
 else {
 if (n < 0)

SMPTE 421M

© 2006 SMPTE 277

 scaledvalue = ((n * SCALESAME2) >> 8) – ZONE1OFFSET_Y
 else
 scaledvalue = ((n * SCALESAME2) >> 8) + ZONE1OFFSET_Y
 }
 }

 if (current field is bottom field and reference field is top field) {
 If (scaledvalue > range_y / 2)
 scaledvalue = range_y / 2
 If (scaledvalue < -(range_y / 2) + 1)
 scaledvalue = -(range_y / 2) + 1
 }
 else {
 If (scaledvalue > (range_y / 2) – 1)
 scaledvalue = (range_y / 2) – 1
 If (scaledvalue < -(range_y / 2)
 scaledvalue = -(range_y / 2)
 }

 return scaledvalue
}

Figure 119: Scaling Operation for MV Prediction in Two Reference Interlace Field Pictures

The values range_x and range_y depend on MVRANGE and shall be as specified in Table 75 (section 8.3.5.2.1).

The values of the variables SCALEOPP, SCALESAME1, SCALESAME2, SCALEZONE1_X, SCALEZONE1_Y,
ZONE1OFFSET_X and ZONE1OFFSET_Y shall be as defined in Table 113 for the case where the current field is the
first field and shall be as defined in Table 114 for the case where the current field is the second field. The reference
frame distance is coded in the REFDIST syntax element (9.1.1.43) in the picture header.

Table 113: P Interlace Field Picture MV Predictor Scaling Values when Current Field is First

Reference Frame Distance (REFDIST)

0 1 2 3 or greater

SCALEOPP 128 192 213 224

SCALESAME1 512 341 307 293

SCALESAME2 219 236 242 245

SCALEZONE1_X 32 48 53 56

SCALEZONE1_Y 8 12 13 14

ZONE1OFFSET_X 37 20 14 11

ZONE1OFFSET_Y 10 5 4 3

Table 114: P Interlace Field Picture MV Predictor Scaling Values when Current Field is Second

 Reference Frame Distance (REFDIST)

SMPTE 421M

© 2006 SMPTE 278

0 1 2 3 or greater

SCALEOPP 128 64 43 32

SCALESAME1 512 1024 1536 2048

SCALESAME2 219 204 200 198

SCALEZONE1_X 32 16 11 8

SCALEZONE1_Y 8 4 3 2

ZONE1OFFSET_X 37 52 56 58

ZONE1OFFSET_Y 10 13 14 15

10.3.5.4.3.5 Hybrid Motion Vector Prediction (HYBRIDPRED)

The motion predictor calculated in the previous section is tested relative to the A (top) and C (left) predictors to see if
the predictor is explicitly coded in the bitstream. If explicitly coded, then the HYBRIDPRED syntax element will be
present to indicate whether to use predictor A or predictor C as the motion vector predictor. The pseudo-code of Figure
120 shall specify the decoding of HYBRIDPRED syntax element, and shall define the hybrid motion vector prediction.

For two-reference field pictures, the pseudo-code of Figure 120 has the following correspondence with the pseudo-code
of Figure 118: the values predictor_pre, predictor_post, predictorA, predictorB and predictorC all represent fields of
the same polarity or opposite polarity as the current field as determined by the values of predictor_flag and
dominantpolarity and the procedure described in section 10.3.5.4.4.1.

For example, if the predictor_flag and dominantpredictor indicate that the opposite field predictor is used, then:

predictor_pre_x = oppositefieldpred_x

predictor_pre_y = oppositefieldpred_y

predictorA_x = oppositefieldpredA_x

predictorA_y = oppositefieldpredA_y

predictorB_x = oppositefieldpredB_x

predictorB_y = oppositefieldpredB_y

predictorC_x = oppositefieldpredC_x

predictorC_y = oppositefieldpredC_y

Likewise, if the predictor_flag and dominantpredictor indicate that the same field predictor is used then:

predictor_pre_x = samefieldpred_x

predictor_pre_y = samefieldpred_y

predictorA_x = samefieldpredA_x

predictorA_y = samefieldpredA_y

predictorB_x = samefieldpredB_x

predictorB_y = samefieldpredB_y

predictorC_x = samefieldpredC_x

predictorC_y = samefieldpredC_y

where the values of oppositefieldpred and samefieldpred are calculated as described in section 10.3.5.4.3.4.2.

SMPTE 421M

© 2006 SMPTE 279

For one reference field pictures, the pseudo-code of Figure 120 has the following correspondence with the pseudo-code
of Figure 117:

predictor_pre_x = fieldpred_x

predictor_pre_y = fieldpred_y

The variables are defined as follows in the pseudo-code:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section
predictor_pre_y: The vertical motion vector predictor as calculated in the above section
predictor_post_x: The horizontal motion vector predictor after checking for hybrid motion vector prediction
predictor_post_y: The vertical motion vector predictor after checking for hybrid motion vector prediction
hybridmv_thresh: The threshold for determining whether hybrid motion vector prediction is used.

if (MVMODE is Mixed-MV or 1-MV quarter pel)
 hybridmv_thresh = 32
else // MVMODE is 1-MV half pel bicubic or 1-MV half pel bilinear)
 hybridmv_thresh = 16

if ((predictorA is out of bounds) || (predictorC is out of bounds) || (predictorA is intra) || (predictorC is intra)) {
 predictor_post_x = predictor_pre_x
 predictor_post_y = predictor_pre_y
}
else {
 int sumA = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)
 int sumC = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)
 if (sumA > hybridmv_thresh) {
 // read next bit to see which predictor candidate to use
 if (get_bits(1) == 1) { // HYBRIDPRED field
 // use top predictor (predictorA)
 predictor_post_x = predictorA_x
 predictor_post_y = predictorA_y
 }
 else {
 // use left predictor (predictorC)
 predictor_post_x = predictorC_x
 predictor_post_y = predictorC_y
 }
 }
 else if (sumC > hybridmv_thresh){
 if (get_bits(1) == 1) {
 // use top predictor (predictorA)
 predictor_post_x = predictorA_x
 predictor_post_y = predictorA_y
 }

SMPTE 421M

© 2006 SMPTE 280

 else {
 // use left predictor (predictorC)
 predictor_post_x = predictorC_x
 predictor_post_y = predictorC_y
 }
 }
 else {
 predictor_post_x = predictor_pre_x
 predictor_post_y = predictor_pre_y
 }
}

Figure 120: Hybrid MV Prediction in Interlace Field Pictures

10.3.5.4.4 Reconstructing Motion Vectors

The following sections define how to reconstruct the luma and color-difference motion vectors for 1-MV and 4-MV
macroblocks.

10.3.5.4.4.1 Luma Motion Vector Reconstruction

In all cases (1-MV and 4-MV macroblocks) the luma motion vector shall be reconstructed by adding the differential to
the predictor as follows, where mv_x and mv_y are the horizontal and vertical components of luma motion vector:

For NUMREF == 0 (one reference interlace field picture) and reference is from the same field polarity:

 mv_x = (dmv_x + predictor_post_x) smod (range_x)

 mv_y = (dmv_y + predictor_post_y) smod (range_y)

For NUMREF == 0 (one reference interlace field picture) and reference is from the opposite field polarity:

 mv_x = (dmv_x + predictor_post_x) smod (range_x)

 If current field is top field

 mv_y = (dmv_y + predictor_post_y) smod (range_y)

 If current field is bottom field

 mv_y = ((dmv_y + predictor_post_y - 1) smod (range_y)) + 1

For NUMREF == 1 (two reference interlace field picture) and reference is from the same field polarity:

 mv_x = (dmv_x + predictor_post_x) smod (range_x)

 mv_y = (dmv_y + predictor_post_y) smod (range_y / 2)

For NUMREF == 1 (two reference interlace field picture) and reference is from opposite field polarity:

 mv_x = (dmv_x + predictor_post_x) smod (range_x)

 If current field is top field

 mv_y = (dmv_y + predictor_post_y) smod (range_y / 2)

SMPTE 421M

© 2006 SMPTE 281

 If current field is bottom field

 mv_y = ((dmv_y + predictor_post_y - 1) smod (range_y / 2)) + 1

range_x and range_y depend on MVRANGE and shall be as specified in Table 75.

If the picture uses two reference pictures (NUMREF == 1), then the predictor_flag derived after decoding the motion
vector differential shall be combined with the value of dominantpredictor derived from motion vector prediction to
determine which field is used as reference. The pseudo-code of Figure 121 shall describe how the reference field is
determined:

if (predictor_flag == 0) {
 if (dominantpredictor == samefield)
 reference is from same field as current field
 else
 reference is from opposite field as current field
}
else {
 // predictor_flag == 1
 if (dominantpredictor == samefield)
 reference is from opposite field as current field
 else
 reference is from same field as current field
}

Figure 121: Pseudo-code for determining Reference Field in Two Reference Interlace Field Pictures

1-MV Macroblock

In 1-MV macroblocks there is a single motion vector for the 4 blocks that make up the luma component of the
macroblock (see section 9.1.3.12).

If the MBMODE syntax element indicates that no MV data is present in the macroblock layer, then dmv_x = 0 and
dmv_y = 0 (thus mv_x = predictor_post_x and mv_y = predictor_post_y).

4-MV Macroblock

Each of the Inter-coded luma blocks in a macroblock has its own motion vector. Therefore there are 4 luma motion
vectors in each 4-MV macroblock.

If the 4MVBP syntax element indicates that no motion vector information is present for a block, then dmv_x = 0 and
dmv_y = 0 for that block (thus mv_x = predictor_post_x and mv_y = predictor_post_y for that block).

10.3.5.4.4.2 Color-difference Motion Vector Reconstruction

The color-difference motion vectors shall be derived from the luma motion vectors. The following sections describe
how to reconstruct the color-difference motion vectors for 1-MV and 4-MV macroblocks. The color-difference motion
vectors shall be reconstructed in two steps.

As a first step, the nominal color-difference motion vector shall be obtained by combining and scaling the luma motion
vectors appropriately. The scaling shall be performed in such a way that half-pixel offsets are preferred over quarter
pixel locations.

In the second step, the 1-bit FASTUVMC syntax element (6.2.6) shall be used to determine if further rounding of color-
difference motion vectors is necessary. If FASTUVMC == 0, no rounding shall be performed in the second step. If
FASTUVMC == 1, the color-difference motion vectors that are at quarter pel offsets shall be rounded to the nearest
half and full pel positions as defined in section 8.3.5.4.5.

SMPTE 421M

© 2006 SMPTE 282

Bilinear filtering only shall be used for all color-difference interpolation.

In the sub-sections below cmv_x and cmv_y denote the color-difference motion vector components and lmv_x and
lmv_y denote the luma motion vector components. The vertical motion vector components, lmv_y and cmv_y, shall
conform to the coordinate system shown in Figure 112. The luma motion vectors used to derive the color-difference
motion vectors (the motion vectors used in the median, rounding and shifting operations) are expressed in quarter pel
units in all cases.

10.3.5.4.4.2.1 First-stage Color-difference Motion Vector Reconstruction – 1-MV Color-difference Motion
Vector Case:

In a 1-MV macroblock, the color-difference motion vectors shall be derived from the luma motion vectors as follows:
cmv_x = (lmv_x + round[1mv_x & 3]) >> 1
cmv_y = (lmv_y + round[1mv_y & 3]) >> 1
Where:
round[0] = 0, round[1] = 0, round[2] = 0, round[3] = 1

The color-difference reference field is same as the luma reference field.

10.3.5.4.4.2.2 First-stage Color-difference Motion Vector Reconstruction – 4-MV Color-difference Motion
Vector Case:

The pseudo-code of Figure 122 shall define how the color-difference motion vectors are derived from the motion
information in the 4 luma blocks in 4-MV macroblocks for one-reference P pictures. In this section, ix and iy are
temporary variables.

// lmv0_x, lmv0_y is the motion vector for block 0
// lmv1_x, lmv1_y is the motion vector for block 1
// lmv2_x, lmv2_y is the motion vector for block 2
// lmv3_x, lmv3_y is the motion vector for block 3
ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)
iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)
cmv_x = (ix + round[ix & 3]) >> 1
cmv_y = (iy + round[iy & 3]) >> 1
Where:
round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1.
color-difference reference field == luma reference field.

Figure 122: Color-difference MV Derivation in One Reference Interlace Field Pictures

The pseudo-code of Figure 123 shall define how the color-difference motion vectors are derived from the motion
information in the 4 luma blocks in 4-MV macroblocks for two-reference P pictures. The variable p is the polarity of
the reference field (p=0 if current and reference field are the same, p=1 if current and reference field are opposite).

if (all 4 luma block motion vectors are of reference polarity p)
{
 // lmv0_x, lmv0_y is the motion vector for block 0
 // lmv1_x, lmv1_y is the motion vector for block 1
 // lmv2_x, lmv2_y is the motion vector for block 2
 // lmv3_x, lmv3_y is the motion vector for block 3
 ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

SMPTE 421M

© 2006 SMPTE 283

 iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)
 The color-difference reference field is p.
}
else if (3 of the luma block motion vectors are of reference polarity p)
{
 // lmv0_x, lmv0_y,
 // lmv1_x, lmv1_y,
 // lmv2_x, lmv2_y are the 3 motion vectors from the same field
 ix = median3(lmv0_x, lmv1_x, lmv2_x)
 iy = median3(lmv0_y, lmv1_y, lmv2_y)

The color-difference reference field is p.
}
else
{
 // Use the 2 motion vectors from the field that has the same polarity as the current field.
 // lmv0_x, lmv0_y,
 // lmv1_x, lmv1_y are the motion vectors that have the same polarity as the current field
 ix = (lmv0_x + lmv1_x) / 2
 iy = (lmv0_y + lmv1_y) / 2
 The color-difference reference field is the field that has the same polarity as the current field.
}
cmv_x = (ix + round[ix & 3]) >> 1
cmv_y = (iy + round[iy & 3]) >> 1
Where:
round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1.

Figure 123: Color-difference MV Derivation in Two Reference Interlace Field Pictures

10.3.5.4.4.2.3 Second Stage Color-difference Rounding

The color difference rounding shall be as defined in Section 8.3.5.4.5.

10.3.5.5 Coded Block Pattern

The CBPCY syntax element in the intra and inter-coded macroblock layer indicates the transform coefficient status for
each block in the macroblock. The CBPCY element decodes to a 6-bit field which indicates whether coefficients are
present for the corresponding block. Table 70 defines the correspondence between the bit positions in CBPCY and the
block number. For intra-coded macroblocks, a value of 0 in a particular bit position shall indicate that the
corresponding block does not contain any non-zero AC coefficients. A value of 1 shall indicate that at least one non-
zero AC coefficient is present. The DC coefficient shall still be present for each block in all cases. For inter-coded
macroblocks, a value of 0 in a particular bit position shall indicate that the corresponding block does not contain any
non-zero coefficients. A value of 1 shall indicate that at least one non-zero coefficient is present. For cases where the
bit is 0, no coefficient data shall be coded for that block.

10.3.6 Block Layer Decode

10.3.6.1 Intra Coded Block Decode

The decoding process for Intra coded blocks shall be the same as described in section 8.3.6.1, except that unlike
progressive P frames, interlace field P pictures shall not contain Intra blocks within 4-MV-coded macroblocks, so the
section describing the decoding process for those blocks shall be ignored.

SMPTE 421M

© 2006 SMPTE 284

10.3.6.2 Inter Coded Block Decode

Figure 59 shows the steps for reconstructing Inter blocks. For illustration the figure shows the reconstruction of a block
whose 8x8 error signal is coded with two 8x4 Transforms. The 8x8 error block can also be transformed with either two
4x8 Transforms, four 4x4 Transforms, or one 8x8 Transform. The steps required to reconstruct an inter-coded block
shall be: 1) transform type selection, 2) sub-block pattern decode, 3) coefficient decode, 4) zigzag scan of coefficients,
5) inverse quantization, 6) inverse Transform, and 7) obtain predicted block via motion compensation and add predicted
and error blocks. The following sections describe these steps.

10.3.6.2.1 Transform Type Selection

The transform type selection process shall be identical to the corresponding selection process for progressive pictures as
described in section 8.3.6.2.1.

10.3.6.2.2 Subblock Pattern Decode

The subblock pattern decode shall be identical to the corresponding decode process for progressive pictures as
described in section 8.3.6.2.2.

10.3.6.2.3 Coefficient Bitstream Decode

The process of transform coefficient decoding shall be as described in Section 8.3.6.2.3.

10.3.6.2.4 Zigzag Scan of Coefficients

The zigzag scanning of coefficients shall be the same as defined in section 8.3.6.2.5.

10.3.6.2.5 Inverse Quantization

The non-zero quantized coefficients reconstructed as described in the sections above shall be inverse quantized as
described in section 8.1.3.8.

10.3.6.2.6 Inverse Transform

The inverse transform shall be identical to the corresponding process for progressive P pictures, and shall be as
described in section 8.3.6.4.

10.3.6.2.7 Motion Compensation

The motion compensation process shall be the same as described in section 8.3.6.5.

10.3.7 Rounding Control
The rounding control process shall be the same as described in section 8.3.7.

10.3.8 Intensity Compensation
If the MVMODE syntax element indicates that intensity compensation information is present in the bitstream then the
INTCOMPFIELD syntax element (9.1.1.48) shall be present and shall indicate which reference fields undergo intensity
compensation.

If INTCOMPFIELD indicates that both reference fields undergo intensity compensation then the LUMSCALE1
(9.1.1.49), LUMSHIFT1 (9.1.1.50), LUMSCALE2 (9.1.1.51) and LUMSHIFT2 (9.1.1.52) syntax elements shall be
present in the bitstream. The first two elements shall be used to control the intensity compensation of the top (even
lines) reference field and the last two elements shall be used to control the intensity compensation of the bottom (odd
lines) reference field. For example, if the bottom field is the second field in the frame and is the field currently being
decoded and INTCOMPFIELD indicates that both reference fields are to have intensity compensation performed, then
LUMSHIFT1 and LUMSCALE1 shall control intensity compensation of the top field of the current frame and
LUMSHIFT2 and LUMSCALE2 shall control intensity compensation of the bottom field of the reference frame. The

SMPTE 421M

© 2006 SMPTE 285

process for applying LUMSHIFT and LUMSCALE to achieve intensity compensation for a field shall be the same as
for progressive frames as described in section 8.3.8.

If INTCOMPFIELD indicates that only the top reference field is to undergo intensity compensation then the
LUMSCALE1 and LUMSHIFT1 syntax elements shall be present in the bitstream and shall control how intensity
compensation is performed for the field. For example, if the bottom field is the second field in the frame and is the field
currently being decoded and INTCOMPFIELD indicates that the top reference field is to have intensity compensation
performed then LUMSHIFT1 and LUMSCALE1 control intensity compensation of the top field of the current frame. If
the top field is the first field in the frame and is the field currently being decoded and INTCOMPFIELD indicates that
the top reference fields is to have intensity compensation performed, then LUMSHIFT1 and LUMSCALE1 control
intensity compensation of the top field of the reference frame.

If INTCOMPFIELD indicates that only the bottom reference field is to undergo intensity compensation, then the
LUMSCALE1 and LUMSHIFT1 syntax elements shall be present in the bitstream and shall control how intensity
compensation is performed for the field. For example, if the bottom field is the second field in the frame and is the field
currently being decoded and INTCOMPFIELD indicates that the bottom reference fields is to have intensity
compensation performed, then LUMSHIFT1 and LUMSCALE1 control intensity compensation of the bottom field of
the reference frame. If the top field is the second field in the frame and is the field currently being decoded and
INTCOMPFIELD indicates that the bottom reference fields is to have intensity compensation performed, then
LUMSHIFT1 and LUMSCALE1 control intensity compensation of the top field of the current frame.

If intensity compensation is performed on a reference field, then after decoding the field, the post-compensated pixel
values shall be retained and shall be used when decoding the next field. If the next field indicates that the field that was
intensity compensated by the previous field is to have intensity compensation performed again then the post-
compensated field shall be used. Therefore, when a reference field has intensity compensation performed twice, the
result of the first intensity compensation operation shall be used as input for the second intensity compensation.

The pixel replication for out-of-bound motion compensation shall be performed after one or both fields of a reference
frame have been intensity compensated. The vertical replication method shall be controlled by the coding type of the
reference frame. For example, if the reference frame was coded as a progressive frame then it will use the progressive
vertical replication rule – namely that the samples in the top row are replicated upward and the samples in the bottom
row are replicated downward. If the coding type of the reference was interlace field or interlace frame then the interlace
replication rule shall be used – namely that the samples in the top line of the frame (the frame being made up of the two
interlaced fields) are replicated upward every other line and the samples in the second-to-top line of the frame are
replicated upward every other line. The samples in the last line are replicated downward every other line and the
samples in the second-to-last last line are replicated downward every other line.

10.4 Interlace Field B Picture Decoding
The following sections define the process required to decode B interlace Field pictures. B field syntax shall be the same
as P field syntax (as defined in 10.3), except as described in this section. When using B frames, both forward and
backward frames are needed for motion compensation. In field mode coding, the first (B) field may be used as
reference for the second B field being decoded. For example, if in a B interlace field picture, the first field to be
decoded is the top field, then the bottom field of that picture shall use the top field as the reference for motion
compensation. For B fields, the number of reference fields (see NUMREF) shall always be set to 2. Therefore, B fields
always use 4 reference fields in all (top and bottom forward, top and bottom backward) to predict the current MB.

B field coding has the following properties:

1) The first B field shall reference the first and second fields from the previous and next anchor frames (see Figure
124).

2) The second B field shall reference the first B field from the current frame (e.g. the top B field in Figure 124) as
the field of “opposite polarity” and the second field of the previous anchor frame as the field of “same polarity”,
plus the first and second fields of the next anchor frame. If TFF == 1 then the first field is the top field and the
second field is the bottom field. This is the case illustrated in Figure 124. If TFF == 0 then the bottom field is the
first field and the top field is the second field.

SMPTE 421M

© 2006 SMPTE 286

3) B interlace field picture macroblocks shall use one of four prediction types: forward, backward, direct and
interpolated (see section 10.4.5.1). The “forward/not forward” (0/1) decision (per MB) can be bitplane coded at the
picture level.

Note: This is different from progressive B frames, where the frame level bitplane codes “direct/not direct”.

4) MV prediction shall follow the same logic as field P pictures (see section 10.3.5.4), except that separate forward
and backward contexts shall be retained. The “holes” in the forward and backward prediction contexts are filled
differently as compared to the progressive case. After decoding a backward motion vector, the forward buffer’s
MV shall be filled with the predicted motion vector if the macroblock was coded in backward mode.

5) Only forward and backward modes shall be used with 4-MV; Interpolated and direct modes shall not be used.

6) The MB mode (comprising 1-MV/4-MV/Intra, skipped MB, CBP present, 4-MV block pattern) joint coding,
MV tables and MV architecture) shall be the same as defined for P interlace field pictures (see section 10.3.5).

7) Hybrid MV prediction (see section 10.3.5.4.3.5) shall not be used in interlace field B pictures.

Figure 124: B field references

10.4.1 Handling of TFF
In Interlace Field Pictures the TFF syntax element in the frame header shall indicate the temporal order of the two fields
that comprise the frame. TFF == 1 shall indicate that the first field in the frame is the top field (even lines of the frame)
and the second field is the bottom field (odd lines of the frame). TFF == 0 shall indicate that the first field in the frame
is the bottom field and the second field is the top field. The following restrictions and procedures are required for the
TFF syntax element and its relationship to the reference field or fields:

1. If the current frame is coded as an Interlace Field Picture, then the backward reference frame shall be coded as
an Interlace Field Picture and both shall have the same TFF value. If the forward reference frame is coded as
an Interlace Field Picture then the TFF of the forward reference shall be the same as the TFF of the current
frame.

2. If the current frame is coded as an Interlace Field Picture and the forward reference frame is coded as a
Progressive Picture or Interlace Frame Picture, then for purposes of determining the field order of the forward
reference frame, the TFF value of the reference frame shall be assumed to be the same as the TFF value of the
current frame, regardless of the value of TFF for the forward reference frame.

10.4.2 Out-of-bounds Reference Pixels
Out-of-bounds reference pixels shall be the same as interlace field P pictures (see 10.3.2).

SMPTE 421M

© 2006 SMPTE 287

10.4.3 Reference Pictures
A B Interlace Field Picture shall only reference a total of four fields as shown in Figure 124. Therefore, the NUMREF
and REFFIELD syntax elements shall not be present in B field pictures.

10.4.4 B Picture Types
B pictures shall be one of two types: 1-MV or Mixed-MV. The following sections describe each B picture type.

10.4.4.1 1-MV B Picture

In 1-MV B pictures, either zero, one or two motion vectors shall be used to indicate the displacement of the predicted
(inter-coded) blocks, depending on the prediction type, BMVTYPE of that macroblock. When BMVTYPE (9.1.3.15) is
equal to Direct, the forward and backward motion vectors shall be inferred and no further motion vectors shall be
explicitly signaled. When the BMVTYPE is Interpolated, two motion vectors, i.e. forward and backward, shall be
decoded. In the forward and backward cases, only one motion vector shall be decoded, as with 1-MV P interlace field
pictures (10.3.5.1.1). The 1-MV mode shall be signaled by the MVMODE picture layer syntax elements as described in
section 8.3.4.3.

Note: The MVMODE2 syntax element is not present in B interlace field pictures, as intensity compensation is not
applicable.

10.4.4.2 Mixed-MV B Picture

In Mixed-MV B pictures, each inter-coded macroblock shall be encoded as either a 1-MV or a 4-MV macroblock. In 4-
MV macroblocks, each of the 4 luma blocks has a motion vector associated with it. Additionally, 4-MV macroblocks
shall only be associated with forward or backward prediction types (BMVTYPE) in B interlace field pictures. The 1-
MV or 4-MV mode for each macroblock shall be indicated by the MBMODE syntax element at every macroblock.
The Mixed-MV mode shall be signaled by the MVMODE picture layer syntax elements as described in section 8.3.4.3.

10.4.5 B Macroblock Layer Decode

10.4.5.1 Macroblock Types

Macroblocks in B interlace field pictures shall be one of 3 possible types: 1-MV, 4-MV, and Intra. Additionally, inter-
coded macroblocks shall be one of four prediction types: forward, backward, direct or interpolated (see 9.1.3.15). The
macroblock prediction type is signaled by the MBMODE syntax element in the macroblock layer. The prediction type
is signaled by a combination of the frame-level bitplane FORWARDMB which signals forward/non-forward for each
macroblock, and the macroblock level BMVYPTE syntax in case the prediction type is non-forward.

10.4.5.1.1 1-MV Macroblocks

1-MV macroblocks may occur in 1-MV and Mixed-MV B pictures. 1-MV macroblocks shall be signaled identically
to P interlace field pictures, i.e. using the MBMODE syntax element in the macroblock layer. The CBPCY syntax
element shall be also identical to P interlace field pictures, both syntactically and semantically.

If the MBMODE syntax element indicates that the MVData is present, then the BMV1 syntax element (which is
analogous to MVDATA syntax element in P pictures) shall be present in the macroblock layer in the corresponding
position. The BMV1 syntax element encodes the motion vector differential. The motion vector differential is combined
with the motion vector predictor to reconstruct the motion vector. If the MBMODE syntax element indicates that the
BMV1 syntax element is not present, then the motion vector differential shall be zero and therefore the motion vector is
equal to the motion vector predictor.

Additionally in B interlace field pictures, if the macroblock type is 1-MV and the prediction type of the macroblock is
decoded as INTERPOLATED, then the INTERPMVP syntax element shall be used to signal whether or not the second
motion vector differential, BMV2 is present. If it is, then BMV2 shall be decoded immediately following BMV1. If
BMV2 is not present, the motion vector differential for BMV2 shall be set to zero, and therefore the motion vector is
equal to the motion vector predictor.

SMPTE 421M

© 2006 SMPTE 288

When the prediction type is interpolated, BMV1 corresponds to the forward and BMV2 corresponds to the backward
MV. Note: This is unlike progressive B pictures.

10.4.5.1.2 4-MV Macroblocks

4-MV macroblocks shall only occur in Mixed-MV B pictures. They shall be treated identically to P interlace field
pictures, with the additional restriction that they shall only be associated with the prediction types (BMVTYPE) of
forward or backward.

10.4.5.1.3 Intra Macroblocks

These may occur in B pictures, and shall be identical to those in P interlace field pictures (see section 10.3.5.2).

10.4.5.2 Macroblock Mode

The MBMODE syntax and semantics shall be identical to P interlace field pictures (see section 10.3.5.3).

10.4.5.3 Prediction Type Decoding (BMVTYPE)

The prediction type (see 9.1.3.15) shall be decoded according to the following rules:

• If the picture level bitplane FORWARDMB indicates that a macroblock is of forward type, then the
prediction type for that macroblock shall be set to forward.

• If FORWARDMB element (9.1.1.53) is coded as ‘Raw’, then an additional bit at the macroblock level,
FORWARDBIT (9.1.3.19), shall be used to decide whether the prediction type is forward or not.

• If the prediction type is non-forward, and if the macroblock uses 4-MV, as signaled by the MBMODE syntax
element (only possible in a Mixed-MV B picture), then the prediction type shall be backward, because only
forward and backward types may be associated with 4-MV mode.

• Else, the BMVTYPE syntax element (9.1.3.15) shall be explicitly decoded by the VLC specified in Table 110.

10.4.5.4 Non-zero interpolated MV (INTERPMVP)

In case the prediction type is interpolated, an additional syntax element INTERPMVP (9.1.3.20) shall be present in the
bitstream, and that element shall signal whether or not the second motion vector differential, BMV2 is present.

10.4.5.5 B Frame Modes

Inter-coded macroblocks in B fields shall be one of four modes: backward, forward, direct or interpolated. The
forward mode shall be the same as conventional P picture prediction. In the forward mode, the macroblock references
its temporally previous anchor fields. Likewise, backward mode macroblocks shall reference their temporally
subsequent (in display order) anchor frame.

Direct mode and interpolated mode macroblocks use both the anchors for prediction. Since there are two reference
images for these modes, there are two motion vectors for each macroblock. The direct mode implicitly derives these
motion vectors by appropriately scaling and bounding the motion vectors of the co-located macroblock in the
temporally subsequent (in display order) anchor frame.

The direct and interpolated modes use two motion vectors to predict from the reference (anchor) frames. Both the
direct and interpolated motion modes use round-up averaging for combining the pixel values of the two interpolated
references into one set of macroblock pixels:

Average pixel value = (Forward interpolated value + Backward interpolated value + 1) >> 1

The motion compensation interpolation processes (e.g. bicubic, bilinear, quarter or half pel) shall be signaled and
implemented exactly the same way as with P fields (see section 10.3.6.2.7) .

10.4.5.6 Decoding Direct Mode Motion Vectors

The calculation of direct mode motion vectors is similar to the methods used with progressive B pictures (section
8.4.5.4).

SMPTE 421M

© 2006 SMPTE 289

The motion vectors from the previously decoded (i.e. temporally future) anchor frame (I/I, I/P, P/I or P/P interlace field
picture pair) shall be used to compute the direct mode MVs for the current B field. Of these, the motion vectors
corresponding to the top field shall be used to compute the direct mode motion vectors in the top B field, and those
corresponding to the bottom field shall be used to compute the motion vectors of the bottom B field. For example, in
the B picture, the direct mode motion vectors for MB (x, y) in field z (z = top/bottom) uses the scaled MVs from MB
(x, y) of the previously decoded I or P field z (i.e. co-located MB in the field of the same polarity).

• If the co-located macroblock from the anchor picture is intra-coded, i.e. when the previously decoded z field is
I, or if it is P but MB (x, y) is intra-coded, then for purposes of direct mode scaling: this motion vector shall be
set to (0, 0), and the mode shall be 1-MV, and the reference field polarity shall be the same as the current field.

• If 1-MV mode was used for the co-located anchor macroblock, then that MV shall be used in the direct mode
scaling calculations.

• If 4-MV mode was used for the co-located anchor macroblock, then the logic described in the pseudo-code,
SelectDirectModeMVFromColocatedMB (Figure 125), shall be used to derive the MV needed for direct mode
scaling calculations.

If the co-located macroblock is inter-coded, the pseudo-code of Figure 125 (SelectDirectModeMVFromColocatedMB)
shall be used to pick MVs, from the co-located macroblock. The obtained motion vectors are used in the scaling
operation that derives the forward and backward motion vectors.

SelectDirectModeMVFromColocatedMB considers the reference field polarities of the 4-MVs and favors the dominant
polarity. Thus, if the number of MVs (out of 4) that point to a field of the same polarity as the current field outnumber
those that point to a field of the opposite polarity, the median4, median3, or the arithmetic mean of 2 (integer division
by 2 with truncation towards zero) shall be used if there are 4, 3, or 2 same-polarity reference field MVs respectively.
Otherwise if the MVs that point to field of the opposite polarity as the current field outnumber those that point to field
of the same polarity, similar operations shall be used to get a representative MV to use from the opposite-polarity
reference field MVs.

MotionVector SelectDirectModeMVFromColocatedMB (int SingleMV, int OppFieldCount, int
SameFieldCount)
{
 MotionVector SelectedMV

 if (the co-located MB used 1-MV)
 then SelectedMV = SingleMV
 else // 4 MVs to pick from
 {
 Count the number of same field and opposite field MVs

 if (OppFieldCount > SameFieldCount)
 then use only the opposite field MVs in next step
 // i.e. opposite is the chosen polarity
 else
 use only the same field MVs in the next step
 // i.e. same is the chosen polarity

 Count the number of MVs of the chosen polarity
 if (Number of Chosen MVs == 3)
 // MVa, MVb and MVc are the three chosen MVs
 SelectedMV = Median3 (MVa, MVb, MVc)
 else if (Number of Chosen MVs == 2)
 //MVa and MVb are the two chosen MVs

SMPTE 421M

© 2006 SMPTE 290

 SelectedMV = (MVa + MVb)/2 //Integer division by 2 with truncation towards zero of the chosen
MVs
 else // all 4 are of the chosen polarity
 // MVa, MVb, MVc and MVd are the four chosen MVs
 SelectedMV = Median4 (MVa, MVb, MVc, MVd)
 }

 return (SelectedMV)
}

Figure 125: Selection of Direct Mode MVs in Interlace Field Pictures

With the MV obtained above, the scaling logic, Scale_Direct_MV, shall then be applied as shown in the pseudo-code
of Figure 126.

// (IN MV_X, IN MV_Y) set to (x, y) components of SelectedMV (Figure 125) if co-located MB is inter-coded
// (IN MV_X, IN MV_Y) set to (0,0) for the case when co-located MB is intra-coded.
// variables labeled "IN" are inputs to the function, and
// the variables labled "OUT" are the scaled MVs calculated by the function Scale_Direct_MV
Scale_Direct_MV (IN MV_X, IN MV_Y, OUT MV_XF , OUT MV_YF, OUT MV_XB, OUT MV_YB)

{
 if (Backward reference frame is half-pel MV resolution) {
 if (Current frame is half-pel MV resolution) {
 MV_XF = (MV_X * 2 * ScaleFactor + 255) >> 9;
 MV_YF = (MV_Y * 2 * ScaleFactor + 255) >> 9;
 MV_XB = (MV_X * 2 * (ScaleFactor - 256) + 255) >> 9;
 MV_YB = (MV_Y * 2 * (ScaleFactor - 256) + 255) >> 9;
 }
 else { // Current frame is quarter-pel MV resolution
 MV_XF = (MV_X * 2 * ScaleFactor + 128) >> 8;
 MV_YF = (MV_Y * 2 * ScaleFactor + 128) >> 8;
 MV_XB = (MV_X * 2 * (ScaleFactor - 256) + 128) >> 8;
 MV_YB = (MV_Y * 2 * (ScaleFactor - 256) + 128) >> 8;
 }
 }
 else { // Backward reference frame is quarter-pel MV resolution
 if (Current frame is half-pel MV resolution) {
 MV_XF = (MV_X * ScaleFactor + 255) >> 9;
 MV_YF = (MV_Y * ScaleFactor + 255) >> 9;
 MV_XB = (MV_X * (ScaleFactor - 256) + 255) >> 9;
 MV_YB = (MV_Y * (ScaleFactor - 256) + 255) >> 9;
 }
 else { // Current frame is quarter-pel MV resolution
 MV_XF = (MV_X * ScaleFactor + 128) >> 8;
 MV_YF = (MV_Y * ScaleFactor + 128) >> 8;
 MV_XB = (MV_X * (ScaleFactor - 256) + 128) >> 8;

SMPTE 421M

© 2006 SMPTE 291

 MV_YB = (MV_Y * (ScaleFactor - 256) + 128) >> 8;
 }
 }
}

Figure 126: Scaling of Direct Mode MVs in Interlace Field Pictures

In the pseudo-code of Figure 126, ScaleFactor shall be computed in exactly the same way as described in section
8.4.5.4. Scale_Direct_MV uses the same logic as was used for progressive B pictures in section 8.4.5.4 (but without
pull-back) to obtain the forward and backward pointing MVs.

The polarity of the reference fields used for the forward and backward predictors in direct mode shall be the same as the
reference polarity field used by the co-located macroblock in the reference anchor field. If the co-located macroblock
was coded as intra, then the reference field used is of the same polarity as the field being decoded.

Examples:
1. If the current B field is a top field and the co-located macroblock in the reference anchor field referenced the

bottom field then its reference polarity is opposite. Therefore, the forward and backward predictors reference
the bottom field in the forward and backward reference fields.

2. If the current B field is a bottom field and the co-located macroblock in the reference anchor field referenced
the bottom field then its reference polarity is same. Therefore, the forward and backward predictors reference
the bottom field in the forward and backward reference fields.

3. If the current B field is a bottom field and the co-located macroblock in the reference anchor field is coded as
intra then its reference polarity is same. Therefore, the forward and backward predictors reference the bottom
field in the forward and backward reference fields.

There shall be no computation of direct mode MVs for macroblocks (MB’s) that are not using the direct mode
prediction (e.g. forward or backward), unlike for progressive B frame.

10.4.5.7 Motion Vector Decoding Process

The following sections describe the motion vector decoding process for B interlace field picture macroblocks. This is
very similar to the motion vector decoding process used for P interlace field pictures (10.3.5.4) with the following
additional information.

10.4.5.7.1 Interlace Field Picture Coordinate System

This shall be identical to P interlace field pictures as defined in 10.3.5.4.1. Likewise, the motion vector resolution is
either half-pel or quarter-pel depending on the MVMODE.

10.4.5.7.2 Decoding Motion Vector Differential

This shall be identical to P interlace field pictures as defined in 10.3.5.4.2. BMV1 and BMV2 syntax elements shall be
used instead of MVDATA in the 1-MV case, but they are treated exactly the same way. Also, when the prediction type
(BMVTYPE) is interpolated, BMV1 shall correspond to the forward and BMV2 shall correspond to the backward
motion vector residual.

10.4.6 MV Prediction in B fields
Motion compensation shall be performed in both the forward and backward directions for B fields. The following sub-
sections define how to perform motion vector prediction in B fields in the forward and backward directions. Separate
prediction contexts are used for forward and backward mode MVs. The forward prediction context shall be used to
predict forward MVs and the backward prediction context shall be used for the prediction of backward MVs.

10.4.6.1 Populating the forward and backward prediction contexts

The forward and backward motion vector contexts shall be used to predict forward and backward motion vectors
respectively. For Interpolated macroblocks, the forward prediction buffer shall be used to predict the forward MV, i.e.
BMV1, and the backward buffer to predict the backward MV, i.e. BMV2. When the MB is of type Direct or

SMPTE 421M

© 2006 SMPTE 292

Interpolated, then the forward MV component shall be buffered in the forward buffer and the backward MV component
shall be buffered in the backward buffer. The actual prediction logic in each case shall be identical to that described for
the two reference P field case in section 10.3.5.4.3.

When the MB is of type Forward, the forward MV shall be buffered after it is decoded in the forward prediction buffer.
Then the backward component is predicted from the backward buffer and used to fill in the corresponding position in
the backward buffer.

Note: This differs from the progressive case, where the backward component of the direct mode (MV_XB , MV_YB) is
used.

When the MB is of type Backward, the backward MV shall be buffered after it is decoded in the backward prediction
buffer. Then the forward component is predicted from the forward buffer and used to fill in the corresponding position
in the forward buffer.

Note: This differs from the progressive case, where the forward component of the direct mode (MV_XF , MV_YF) is
used.

This procedure is illustrated with an example. Let MB:(12,13) be decoded and it is forward predicted. The forward MV
is computed and is inserted in the buffer of forward MVs. In the backward MV buffer, the MV prediction logic is used
to fill in the position (12, 13).

When filling a buffer with the predicted motion vector, the MV type shall be set to 1-MV prior to the prediction process
and the motion vector shall be set to be the dominant MV predictor.

For intra coded macroblocks, the “intra motion vector” shall be used to fill in both forward and backward motion
prediction planes.

Note: Any consistent representation of “intra motion vector” can be chosen by the decoder implementation. e.g. If the
MVs are being stored in a 2-byte short array, then the “intra motion vector” could be represented as a unique large
constant that is filled into the MV array to indicate that the MB was coded as intra.

10.4.6.2 Forward MV Prediction in B fields

Forward MV prediction for both B fields shall be identical to P field MV prediction as defined in section 10.3.5.4.3,
except for the method of deriving the reference frame distance. The forward reference frame distance shall be computed
from the BFRACTION syntax element in the B interlace field picture header and from the REFDIST syntax element in
the backward reference frame header. The forward reference frame distance shall be computed as:

Forward Reference Frame Distance (FRFD) = ((Numerator * FrameReciprocal * REFDIST) >> 8)

The Numerator and FrameReciprocal values shall be derived from the value of BFRACTION as defined in section
8.4.5.4. The REFDIST value used above shall be derived from the corresponding syntax element in the backward
reference frame header as defined in section 9.1.1.43.

10.4.6.3 Backward MV Prediction in B fields

Backward MV prediction for the second B field in the frame shall be identical to P field MV prediction as defined in
section 10.3.5.4.3.

Backward MV prediction for the first B field in the frame shall be identical to P field MV prediction with exception that
the MV scaling is different to that defined in section 10.3.5.4.3.4 and Figure 119. For this case, scaleforopposite_x,
scaleforopposite_y, scaleforsame_x and scaleforsame_y shall be defined in the pseudo-code of Figure 127.

scaleforopposite_x (n) {
 int scaledvalue
 if (abs (n) > 255)
 scaledvalue = n
 else {
 if (abs (n) < SCALEZONE1_X)
 scaledvalue = (n * SCALEOPP1) >> 8

SMPTE 421M

© 2006 SMPTE 293

 else {
 if (n < 0)
 scaledvalue = ((n * SCALEOPP2) >> 8) – ZONE1OFFSET_X
 else
 scaledvalue = ((n * SCALEOPP2) >> 8) + ZONE1OFFSET_X
 }
 }
 if (scaledvalue > range_x – 1)
 scaledvalue = range_x – 1
 if (scaledvalue _x < -range_x)
 scaledvalue = -range_x

 return scaledvalue
}
scaleforopposite_y (n) {
 int scaledvalue
 if abs (n) > 63)
 scaledvalue = n
 else {
 if (abs (n) < SCALEZONE1_Y)
 scaledvalue = (n * SCALEOPP1) >> 8
 else {
 if (n < 0)
 scaledvalue = ((n * SCALEOPP2) >> 8) – ZONE1OFFSET_Y
 else
 scaledvalue = ((n * SCALEOPP2) >> 8) + ZONE1OFFSET_Y
 }
 }
 if (current field is bottom field and reference field is top field) {
 if (scaledvalue > range_y / 2)
 scaledvalue = range_y / 2
 if (scaledvalue < -(range_y / 2) + 1)
 scaledvalue = -(range_y / 2) + 1
 }
 else {
 if (scaledvalue > (range_y / 2) – 1)
 scaledvalue = (range_y / 2) – 1
 if (scaledvalue < -(range_y / 2)
 scaledvalue = -(range_y / 2)
 }

 return scaledvalue
}

scaleforsame_x (n) {
 int scaledvalue
 scaledvalue = (n * SCALESAME) >> 8

SMPTE 421M

© 2006 SMPTE 294

 return scaledvalue
}

scaleforsame_y (n) {
 int scaledvalue
 scaledvalue = ((n * SCALESAME) >> 8)
 return scaledvalue
}

Figure 127: Backward MV Predictor Scaling for the First Field in Interlace Field B Pictures

The values range_x and range_y depend on MVRANGE and shall be specified as in Table 75.

For the case where the current field is the first field, the values of SCALESAME, SCALEOPP1, SCALEOPP2,
SCALEZONE1_X, SCALEZONE1_Y, ZONE1OFFSET_X and ZONE1OFFSET_Y shall be as defined in Table 115.

The backward reference frame distance (BRFD) shall be computed from the REFDIST syntax element in the backward
reference frame header and from the forward reference frame distance (FRFD). The backward reference frame distance
shall be computed as:

Backward Reference Frame Distance (BRFD) = REFDIST – FRFD - 1

If BRFD < 0 then BRFD = 0.

The REFDIST syntax element shall be decoded according to section 9.1.1.43 and the forward reference frame distance
(FRFD) shall be computed as described in section 10.4.6.2.

Table 115: B Interlace Field Picture Backward MV Predictor Scaling Values for when Current Field is First

Backward Reference Frame Distance (BRFD)

0 1 2 3 or greater

SCALESAME 171 205 219 228

SCALEOPP1 384 320 299 288

SCALEOPP2 230 239 244 246

SCALEZONE1_X 43 51 55 57

SCALEZONE1_Y 11 13 14 14

ZONE1OFFSET_X 26 17 12 10

ZONE1OFFSET_Y 7 4 3 3

10.4.6.3.1 Hybrid Motion Vectors

Hybrid motion vectors shall not be allowed in B interlace field pictures.

10.4.6.3.2 Reconstructing Motion Vectors

Reconstructing motion vectors shall be identical to those of a P interlace field picture, for both luma and color-
difference motion vector computation as defined in section 10.3.5.4.4.

10.4.6.4 Coded Block Pattern

The CBPCY syntax element shall be identical in syntax and semantics to that used with P interlace field pictures as
defined in section 10.3.5.5.

SMPTE 421M

© 2006 SMPTE 295

10.4.7 Block Layer Decode
The block layer decoding process for B interlace field pictures, except for motion compensation which involves bi-
directional prediction, shall be identical to that used in P interlace field pictures as defined in section 10.3.6.

10.5 Interlace Frame I Picture Decoding
The following sub-sections define the process for decoding interlace frame I pictures.

10.5.1 Macroblock Layer Decode
Figure 101 shows the elements that make up the intra MB layer. Each macroblock shall be either frame or field coded
as indicated by FIELDTX (9.1.1.18, 9.1.3.1) which indicates the internal organization of a macroblock. FIELDTX == 1
indicates that the macroblock is field coded and FIELDTX == 0 indicates that the macroblock is frame coded. For
frame coded macroblocks, the luma blocks shall be interlaced with each field occurring alternatively. For field coded
macroblocks, before the permutation the top two luma blocks shall contain only the lines from top field while the
bottom two luma blocks shall contain only lines from the bottom field. After the permutation, the luma blocks shall be
interlaced with each lines occurring alternatively. The Cb/Cr blocks shall always remain interlaced (i.e. containing
alternating lines from each field) for both field coded and frame coded macroblocks.

10.5.2 Block Decode
This section describes the process used to reconstruct the blocks which is very similar to advanced profile progressive I
picture’s block decoding as defined in section 8.1.3. Figure 128 shows the process used to reconstruct the 8x8 blocks.

Figure 128: Intra Block Decode

The DC coefficients shall be coded differentially using neighboring block’s DC coefficients as defined in section 8.1.3.
The quantized DC value for the current block shall be obtained by adding the DC predictor to the DC differential. The
process of DC inverse quantization and DC differential decoding shall be the same as advanced profile I picture.

The ACPRED flag (9.1.1.19, 9.1.3.3) for each macroblock shall indicate whether some of AC coefficients are coded
differentially. If the AC coefficients are differentially coded, then the AC coefficients for the current block shall be
obtained by adding the AC predictor (either the quantized AC coefficients of the first row of the top block or the first
column of the left block) to the AC differential. The process of decoding AC (possibly differential) coefficient coding
shall be the same as advanced profile progressive I picture with the exception of the selection of the zigzag scan pattern
and the prediction direction.

The zigzag scan used for each block shall be selected as follows:
• If ACPRED is FALSE, then each block shall use the Intra Mode 8x8 scan shown in Table 242.
• If ACPRED is TRUE, then for each block, the prediction direction shall be computed using the algorithm

described in Figure 58 and
o the Intra Mode 8x8 scan shall be used when use_ac_prediction is FALSE,
o the Intra Horizontal Scan (Table 234) shall be used if use_ac_prediction is TRUE and the prediction

direction is TOP, and
o the Intra Vertical Scan (Table 235) shall be used if use_ac_prediction is TRUE and the prediction

direction is LEFT.

SMPTE 421M

© 2006 SMPTE 296

After reconstruction of the TRANSFORM coefficients, the resulting 8 × 8 blocks shall be processed by a separable
two-dimensional inverse transform of size 8 by 8 as defined in section 8.1.3.10. The inverse transform output has a
dynamic range of 10 bits. Subsequent to the inverse transform, the process of overlap smoothing shall be carried out if
signaled. Finally, the constant value of 128 shall be added to the reconstructed and possibly overlap smoothed intra
block. This result shall be clamped to the range [0 255] and forms the reconstruction prior to loop filtering. In
addition, the decoded luma blocks shall be permuted if the current macroblock is field coded. The decoder color-
difference blocks shall not be permuted.

10.5.2.1 DC Predictor

The DC predictor shall be obtained from one of the previously decoded adjacent blocks. Figure 38 shows the current
block and the candidate predictors from the adjacent blocks. The values A, B and C represent the quantized DC values
for the top, top-left and left adjacent blocks respectively. The FIELDTX flag shall not affect the DC/AC prediction
process. For example, the adjacent blocks for block 0 of the current macroblock are always the block 3, block 2, block
1 of the top-left, top, and left macroblocks, respectively.

The adjacent blocks A, B, C are considered missing if they are outside the picture boundary or if the blocks are not intra
coded (the last provision is for intra blocks in Interlace frame P or B pictures only). As defined in section 7.1.2, with
respect to prediction, the first row of macroblocks in the slice shall be considered to be the first row of macroblocks in
the picture.

The prediction direction shall be calculated the same way as shown in Figure 58.

In addition, the DC predictor shall be scaled in the same way as advanced profile progressive I picture (section 8.1.3.9)
if the MQUANT of the predictor blocks are different from that of the current block.

10.5.2.2 AC Prediction

If AC prediction is turned on for the current block, then the AC coefficients on either the top row or the left column can
be differentially encoded. The decision for the prediction direction is based on the DC predictor. There are three
cases, DC is predicted from the left block, the top block, or not predicted.

• If DC is predicted from the top block, then the top row of the current block shall be differentially coded.

• If DC is predicted from the left block, then the left column of the current block shall be differentially coded.

• If DC is not predicted, then the AC coefficients shall not be differentially coded.

The AC coefficients in the predicted row or column shall be added to the corresponding decoded AC coefficients in the
current block to produce the fully reconstructed quantized Transform coefficient block. In addition, if the macroblock
quantizers of the predictor blocks are different from that of the current block, the AC predictor shall be scaled in the
same way as advanced profile progressive I picture (section 8.1.3.9). As in progressive pictures, the product pDC *

pDCSTEP , and the product pAC * pSTEP product shall not exceed the signed 12 bit range, i.e., these product

values shall be limited to ≥ -2048 && ≤ 2047.

10.6 Interlace BI Frame Decoding
Interlace BI Frames are B frames where all macroblocks are intra coded. The syntax and decoding processes of
Interlace BI frames shall be identical to that of I, but Interlace BI Frames shall not be used as an anchor or reference
frame to predict other frames.

10.7 Interlace Frame P Picture Decoding
The following sub-sections define the process for decoding interlace frame P pictures.

10.7.1 Skipped Frames
In the advanced profile, a skipped frame shall be signaled by the PTYPE syntax element in the picture header. If a
frame is signaled as skipped, then it shall be treated as if it were a P frame which was identical to the reference frame.

SMPTE 421M

© 2006 SMPTE 297

Therefore, the reconstruction of the skipped frame can be treated conceptually as copying the reference frame pixel data
and setting the buffered motion vectors (for subsequent direct mode vector computation) to (0,0).

10.7.2 Out-of-bounds Reference Pixels
The previously decoded anchor frame shall be used as the reference for motion-compensated predictive coding of the
current frame P picture. The motion vectors used to locate the predicted blocks in the reference frame can include pixel
locations that are outside the boundary of the reference frame. In this case the boundary pixels shall be replicated to
form out-of-bounds reference pixels as described in section 8.3.2.

10.7.3 Macroblock Layer Decode
In interlace frame P pictures, each inter-coded macroblock shall be motion compensated in frame mode using either 1
or 4 motion vector(s), or in field mode using either 2 or 4 motion vectors. Frame motion compensation treats a
macroblock as a whole entity while field motion compensation treats a macroblock as composed of two separate fields.
A macroblock that is inter-coded shall not contain any intra blocks. In addition, the residual after motion
compensation may be coded in frame transform mode or field transform mode, where these modes are the same as the
modes for interlace frame I picture defined in section 10.5.1. More specifically, the luma component of the residual data
values shall be re-arranged according to fields if it is coded in field transform mode and shall remain unchanged if it is
coded in frame transform mode. The color-difference component shall remain the same (i.e., without re-arrangement) in
both cases.

A macroblock may also be coded as intra. In this case, the decoding process shall be the same as I macroblock decoding
in interlace frame I picture as defined in section 10.5.1.

The motion compensation may be restricted to not include 4 (both field/frame) motion vectors and this is signaled
through 4MVSWITCH (9.1.1.28). The type of motion compensation / residual coding shall be jointly indicated for
each macroblock through MBMODE and SKIPMB. MBMODE employs different set of tables according to
4MVSWITCH. The motion vectors shall be in quarter pixel units. The luma interpolation for deriving subpixel
motion shall be bicubic and the color-difference interpolation for deriving subpixel motion shall be bilinear as defined
in sections 8.3.6.5.2 and 8.3.6.5.1.

Macroblocks in interlace frame P pictures shall be one of 5 types: 1-MV, 2 Field MV, 4 Frame MV, 4 Field MV, and
Intra. The first four types of macroblock shall be inter-coded while the last type shall be intra-coded. The
macroblock type shall be signaled by the MBMODE syntax element in the macroblock layer along with the skip bit.
MBMODE shall jointly encode macroblock types along with various pieces of information regarding the macroblock
for different types of macroblock.

10.7.3.1 Inter Macroblock Types

The following sub-sections define four types of motion compensation:

10.7.3.1.1 1-MV Macroblock

In 1-MV macroblocks, the displacement of the four luma blocks shall be represented by a single motion vector. A
corresponding color-difference motion vector shall be derived to represent the displacements of each of the two 8x8
color-difference blocks.

Note: 1-MV macroblocks can also be called 1 Frame MV macroblocks as they are motion compensated in frame mode.

10.7.3.1.2 2 Field MV Macroblock

"2 Field MV" is a macroblock with two motion vectors where one motion vector describes the displacement of the top
field of the MB, and the other motion vector describes the displacement of the bottom field of the MB. In 2 Field MV
macroblocks, the displacement of each field of the luma blocks shall be defined by a different motion vector (see Figure
129). The top field motion vector shall describe the displacement of the even lines of the luma blocks while the
bottom field motion vector shall describe the displacement of the odd lines of the luma blocks. Using the top field
motion vector, a corresponding top field color-difference motion vector shall be derived that describes the displacement
of the even lines of the color-difference blocks. Similarly, a bottom field color-difference motion vector shall be
derived from the bottom field motion vector that describes the displacements of the odd lines of the color-difference
blocks.

SMPTE 421M

© 2006 SMPTE 298

Figure 129: Two Field MV Macroblock

10.7.3.1.3 4 Frame MV Macroblock

"4 Frame MV" is a macroblock with four motion vectors where each of the motion vectors describes the displacement
of one of the four luma blocks in the MB. In 4 Frame MV macroblocks, each one of the four luma block’s displacement
shall be defined by a different motion vector (see Figure 130). Similarly, each color-difference block shall be motion
compensated using four derived color-difference motion vector that describes the displacement of the four 4x4
subblocks. The color-difference motion vector of each 4x4 subblock shall be derived as described in section 10.7.3.7,
from the motion vectors of the spatially co-located luma block.

Figure 130: 4 Frame MV Macroblock

10.7.3.1.4 4 Field MV Macroblock

"4 Field MV" is a macroblock with four motion vectors, where two motion vectors describe the displacement of the top
field of the MB, and the other two motion vectors describe the displacement of the bottom field of the MB. In 4 Field
MV macroblocks, the displacement of each field in the luma blocks shall be defined by two different motion vectors
(see Figure 131). The even lines of the luma blocks are subdivided vertically to form two eight by eight regions. The
displacement of the left region shall be described by the top left field block motion vector and the displacement of the
right region shall be described by the top right field block motion vector. Similarly, the odd lines in the luma blocks
are subdivided vertically to form two eight by eight regions. The displacement of the left region shall be described by
the bottom left field block motion vector and the displacement of the right region shall be described by the bottom right
field block motion vector. Similarly, each color-difference block is partitioned into four regions in the same way as
the luma blocks and each region shall be motion compensated using a derived field color-difference motion vector.

MV1' MV2'

MV3' MV4'

MV 1 MV2

MV 3 MV4

Luma Blocks

Color-difference Block

SMPTE 421M

© 2006 SMPTE 299

Figure 131: 4 Field MV Macroblock – Luma Block

Figure 132: 4 Field MV Macroblock – Color-difference Block

10.7.3.2 4MVBP and 2MVBP

For 4 frame MV macroblocks, the 4MVBP shall be present to signal whether each of the four frame block motion
vectors exist. The ordering shall be as follows:

 Bit 3 = top left frame mv.

 Bit 2 = top right frame mv.

 Bit 1 = bottom left frame mv.

 Bit 0 = bottom right frame mv.

For 4 field MV macroblocks, the 4MVBP shall be present to signal whether each of the four field block motion vectors
exist. The ordering shall be as follows:

 Bit 3 = top left field mv.

 Bit 2 = top right field mv.

 Bit 1 = bottom left field mv.

 Bit 0 = bottom right field mv.

Luma Blocks

Top Left
Field Block MV

Bottom Left
Field Block MV

Top Right
Field Block MV

Bottom Right
 Field Block MV

Derived Top
Left Field MV

Color-difference Block

Derived Bottom
Left Field MV

Derived Top
Right Field MV

Derived Bottom
Right Field MV

SMPTE 421M

© 2006 SMPTE 300

For 2 field MV macroblocks, the 2MVBP shall be present to signal whether each of the 2 field motion vectors exist.
The ordering shall be as follows:

 Bit 1 = top field mv.

 Bit 0 = bottom field mv.

10.7.3.3 Skipped Macroblock Signaling

The SKIPMB syntax element (9.1.1.32) shall indicate the skip condition for a macroblock.

If SKIPMB == 1, then the current macroblock shall be skipped and there shall be no other information sent after the
SKIPMB field. The skip condition implies that the current macroblock is 1-MV with zero differential motion vector
(i.e. the macroblock is motion compensated using its 1-MV motion predictor) and there are no coded blocks (CBP ==
0).

If the SKIPMB field is not 1, then the MBMODE field shall be decoded to indicate the type of macroblock, types of
transform for an inter-coded macroblock, and the presence of differential motion vector for the 1-MV macroblock, as
defined in section 10.7.3.4.

10.7.3.4 Macroblock Mode Signaling

MBMODE jointly specifies
a) the type of macroblock: either one of the 4 inter macroblock types (MVTYPEMB): 1-MV, 4 Frame MV, 2

Field MV, 4 Field MV, or the Intra macroblock type,
b) types of transform for inter-coded macroblock: one of field or frame or zero coded blocks (i.e. CBP == 0), and
c) whether there is differential motion vector for the 1-MV macroblock.

MBMODE shall take one of 15 possible values as defined below.

Let <MVP> denote the signaling of whether the nonzero 1-MV differential motion vector is present or absent
in a 1-MV macroblock.

Let <Field/Frame transform> denote the signaling of whether the residual of the macroblock is a) frame
transform coded, b) field transform coded, or c) zero coded blocks (i.e. CBP == 0).

Then the MBMODE shall signal the following information jointly:

MBMODE = { <1-MV, MVP, Field/Frame transform>, <2 Field MV, Field/Frame transform>, <4 Frame
MV, Field/Frame transform>, <4 Field MV, Field/Frame transform>, <Intra>};

The case where <1-MV, MVP=0, CBP=0> is not signaled by MBMODE, but shall be signaled by the
skip condition.

For inter-coded macroblocks, the CBPCY syntax element shall not be decoded when the <Field/Frame Transform> in
MBMODE indicates no coded blocks.

If the <Field/Frame transform> in MBMODE indicates field or frame transform, then CBPCY shall be decoded. The
decoded <Field/frame Transform> is used to set the flag FIELDTX. If it indicates that the macroblock is field transform
coded, FIELDTX shall be set to one. If it indicates that the macroblock is frame transform coded, FIELDTX shall be set
to zero. If it indicates a zero-coded block, FIELDTX shall be set to the same type as the motion vector, i.e., FIELDTX
is set to 1 if the motion vector is a FIELD MV (2 Field MV or 4 Field MV) and set to 0 if the motion vector is a
FRAME MV (1-MV or 4 Frame MV).

For non 1-MV inter-coded macroblocks, an additional field is sent to indicate which of the differential motion vectors is
non-zero. In the case of 2 Field MV macroblocks, the 2MVBP field shall be sent to indicate which of the two motion
vectors contain nonzero differential motion vectors. Similarly, the 4MVBP field shall be sent to indicate which of the
four motion vectors contain nonzero differential motion vectors.

For intra-coded macroblocks, the Field/Frame transform and zero coded blocks shall be coded in separate fields.

10.7.3.5 Motion Vector Predictors

The process of computing the motion vector predictor(s) for the current macroblock consists of two steps:

SMPTE 421M

© 2006 SMPTE 301

First, three candidate motion vectors for the current macroblock are gathered from its neighboring
macroblocks. Figure 133 shows the neighboring macroblock from which the candidate motion vectors are
selected. The order of the collection of candidate motion vectors is important and it shall start from A, to B,
and ends at C. A predictor candidate shall be considered non-existent if either the corresponding block is
outside the frame boundary, or if the corresponding block is part of a different slice. Thus, motion vector
prediction shall not be performed across slice boundaries.

Second, the motion vector predictor(s) for the current macroblock shall be computed from the set of candidate
motion vectors.

Current
MB - D

Candidate
MB - A

Candidate
MB - B

Candidate
MB - C

Current
MB - D

Candidate
MB - A

Candidate
MB - B

Candidate
MB - C

Not last MB in MB row Last MB in MB row

Figure 133: Candidate (Spatial) Neighboring Macroblocks for Interlace Frame Picture

The following sections describe how the candidate motion vectors are collected for different types of macroblock and
how the motion vector predictor(s) is computed. For Figure 134 through Figure 144, the values "A", "B" and "C" are
the candidate motion vectors defined in 10.7.3.5.

10.7.3.5.1 1-MV Candidate Motion Vectors Derivation

The pseudo-code of Figure 134 shall be used to collect the (possibly) three candidate motion vectors for 1-MV:

if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the top right block MV of A to the set of candidate motion vectors.
 } else if (A is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of A and add the
 resulting MV to the set of candidate motion vectors.
 } else if (A is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of A and add the resulting MV to the set of candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of candidate motion vectors.

SMPTE 421M

© 2006 SMPTE 302

 } else if (B is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of B and add the
 resulting MV to the set of candidate motion vectors.
 } else if (B is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top left block field MV and bottom left
 block field MV of B and add the resulting MV to the set of candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of C and add the
 resulting MV to the set of candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Average (as defined in section 10.7.3.5.5) the top left block field MV and bottom left
 block field MV of C and add the resulting MV to the
 set of candidate motion vectors.
 } else { // C is top left MB
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of C and add the resulting MV to the
 set of candidate motion vectors.
 }
 }
}

Figure 134: Candidate Motion Vector Derivation for ‘1-MV’ in Interlace Frame

10.7.3.5.2 4 Frame MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the four frame block motion vectors
in the current macroblock, shall be collected.

The pseudo-code of Figure 135 shall be used to collect the (possibly) three candidate motion vectors for the top left
frame block MV:

// Top Left Block MV
if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.

SMPTE 421M

© 2006 SMPTE 303

 } else if (A is 4 Frame MV) {
 Add the top right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of A and add the
 resulting MV to the set of candidate motion vectors.
 } else if (A is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of A and add the resulting MV to the set
 of candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of B and add the
 resulting MV to the set of candidate motion vectors.
 } else if (B is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top left block field MV and bottom left
 block field MV of B and add the resulting MV to the set
 of candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of C and add the
 resulting MV to the set of candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Average (as defined in section 10.7.3.5.5) the top left block field MV and bottom left
 block field MV of C and add the resulting MV to the

SMPTE 421M

© 2006 SMPTE 304

 set of candidate motion vectors.
 } else { // C is top left MB
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of C and add the resulting MV to the
 set of candidate motion vectors.
 }
 }
}

Figure 135: Candidate MV Derivation for Top Left block in ‘4 Frame MV’ in Interlace Frame

The pseudo-code of Figure 136 shall be used to collect the (possibly) three candidate motion vectors for the top right
frame block MV:

// Top Right Block MV
Add the top left block MV of the current MB to the set of
candidate motion vectors.

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom right block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of B and add the
 resulting MV to the set of candidate motion vectors.
 } else if (B is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of B and add the resulting MV to the set
 of candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of C and add the

SMPTE 421M

© 2006 SMPTE 305

 resulting MV to the set of candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Average (as defined in section 10.7.3.5.5) the top left block field MV and bottom left
 block field MV of C and add the resulting MV to the
 set of candidate motion vectors.
 } else { // C is top left MB
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of C and add the resulting MV to the
 set of candidate motion vectors.
 }
 }
}

Figure 136: Candidate MV Derivation for Top Right block in ‘4 Frame MV’ in Interlace Frame

The pseudo-code of Figure 137 shall be used to collect the (possibly) three candidate motion vectors for the bottom left
frame block MV:

// Bottom Left Block MV
if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the bottom right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Average (as defined in section 10.7.3.5.5) the two field motion vectors of A and add the
 resulting MV to the set of candidate motion vectors.
 } else if (A is 4 Field MV) {
 Average (as defined in section 10.7.3.5.5) the top right block field MV and bottom right
 block field MV of A and add the resulting MV to the set
 of candidate motion vectors.
 }
}

Add the top left block MV of the current MB to the set of
candidate motion vectors.

Add the top right block MV of the current MB to the set of candidate motion vectors.

Figure 137: Candidate MV Derivation for Bottom Left block in ‘4 Frame MV’ in Interlace Frame

The pseudo-code of Figure 138 shall be used to collect the three candidate motion vectors for the bottom right frame
block MV:

// Bottom Right Block MV
Add the bottom left block MV of the current MB to the set of candidate motion vectors.

SMPTE 421M

© 2006 SMPTE 306

Add the top left block MV of the current MB to the set of candidate motion vectors.

Add the top right block MV of the current MB to the set of candidate motion vectors.

Figure 138: Candidate MV Derivation for Bottom Left block in ‘4 Frame MV’ in Interlace Frame

10.7.3.5.3 2 Field MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the two field motion vectors in the
current macroblock, shall be collected.

The pseudo-code of Figure 139 shall be used to collect the (possibly) three candidate motion vectors for the top field
MV:

// Top Field MV
if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the top right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Add the top field MV of A to the set of candidate motion
 vectors.
 } else if (A is 4 Field MV) {
 Add the top right field block MV of A to the set of
 candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the top field MV of B to the set of candidate motion
 vectors.
 } else if (B is 4 Field MV) {
 Add the top left field block MV of B to the set of
 candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {

SMPTE 421M

© 2006 SMPTE 307

 Add MV of C to the set of candidate motion vector.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the top field MV of C to the set of candidate motion
 vector.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Add the top left field block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the top right field block MV of C to the set of
 candidate motion vectors.
 }
 }
}

Figure 139: Candidate MV Derivation for Top Field MV in ‘2 Field MV’ in Interlace Frame

The pseudo-code of Figure 140 shall be used to collect the (possibly) three candidate motion vectors for the bottom
field MV:

// Bottom Field MV
if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the bottom right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Add the bottom field MV of A to the set of candidate
 motion vectors.
 } else if (A is 4 Field MV) {
 Add the bottom right field block MV of A to the set of
 candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.

SMPTE 421M

© 2006 SMPTE 308

 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the bottom field MV of B to the set of candidate
 motion vectors.
 } else if (B is 4 Field MV) {
 Add the bottom left field block MV of B to the set of
 candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the bottom field MV of C to the set of
 candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Add the bottom left field block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right field block MV of C to the set
 of candidate motion vectors.
 }
 }
}

Figure 140: Candidate MV Derivation for Bottom Field MV in ‘2 Field MV’ in Interlace Frame

10.7.3.5.4 4 Field MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the four field blocks in the current
macroblock, shall be collected.

The pseudo-code of Figure 141 shall be used to collect the (possibly) three candidate motion vectors for the top left
field block MV:

// Top Left Field Block MV

SMPTE 421M

© 2006 SMPTE 309

if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the top right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Add the top field MV of A to the set of
 candidate motion vectors.
 } else if (A is 4 Field MV) {
 Add the top right field block MV of A to the set of
 candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the top field MV of B to the set of
 candidate motion vectors.
 } else if (B is 4 Field MV) {
 Add the top left field block MV of B to the set of
 candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the top field MV of C to the set of
 candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Add the top left field block MV of C to the set of

SMPTE 421M

© 2006 SMPTE 310

 candidate motion vectors.
 } else { // C is top left MB
 Add the top right field block MV of C to the set of
 candidate motion vectors.
 }
 }
}

Figure 141: Candidate MV Derivation for Top Left MV in ‘4 Field MV’ in Interlace Frame

The pseudo-code of Figure 142 shall be used to collect the (possibly) three candidate motion vectors for the top right
field block MV:

// Top Right Field Block MV
Add the top left field block MV of the current MB to the set of
candidate motion vectors.

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom right block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the top field MV of B to the set of
 candidate motion vectors.
 } else if (B is 4 Field MV) {
 Add the top right field block MV of B to the set of
 candidate motion vectors.
 }
}

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the top field MV of C to the set of
 candidate motion vectors.
 } else if (C is 4 Field MV) {

SMPTE 421M

© 2006 SMPTE 311

 if (C is top right MB) {
 Add the top left field block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the top right field block MV of C to the set of
 candidate motion vectors.
 }
 }
}

Figure 142: Candidate MV Derivation for Top Right MV in ‘4 Field MV’ in Interlace Frame

The pseudo-code of Figure 143 shall be used to collect the (possibly) three candidate motion vectors for the bottom left
field block MV:

// Bottom Left Field Block MV
if (A exists and A is not intra coded) {
 if (A is 1 MV) {
 Add MV of A to the set of candidate motion vectors.
 } else if (A is 4 Frame MV) {
 Add the bottom right block MV of A to the set of
 candidate motion vectors.
 } else if (A is 2 Field MV) {
 Add the bottom field MV of A to the set of
 candidate motion vectors.
 } else if (A is 4 Field MV) {
 Add the bottom right field block MV of A to the set of
 candidate motion vectors.
 }
}

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom left block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the bottom field MV of B to the set of
 candidate motion vectors.
 } else if (B is 4 Field MV) {
 Add the bottom left field block MV of B to the set of
 candidate motion vectors.
 }
}

SMPTE 421M

© 2006 SMPTE 312

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the bottom field MV of C to the set of
 candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Add the bottom left field block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right field block MV of C to the set
of candidate motion vectors.
 }
 }
}

Figure 143: Candidate MV Derivation for Bottom Left MV in ‘4 Field MV’ in Interlace Frame

The pseudo-code of Figure 144 shall be used to collect the (possibly) three candidate motion vectors for the bottom
right field block MV:

// Bottom Right Field Block MV
Add the bottom left field block MV of the current MB to the set of candidate motion vectors.

if (B exists and B is not intra coded) {
 if (B is 1 MV) {
 Add MV of B to the set of candidate motion vectors.
 } else if (B is 4 Frame MV) {
 Add the bottom right block MV of B to the set of
 candidate motion vectors.
 } else if (B is 2 Field MV) {
 Add the bottom field MV of B to the set of
 candidate motion vectors.
 } else if (B is 4 Field MV) {
 Add the bottom right field block MV of B to the set of
 candidate motion vectors.
 }
}

SMPTE 421M

© 2006 SMPTE 313

if (C exists and C is not intra coded) {
 if (C is 1 MV) {
 Add MV of C to the set of candidate motion vectors.
 } else if (C is 4 Frame MV) {
 if (C is top right MB) {
 Add the bottom left block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right block MV of C to the set of
 candidate motion vectors.
 }
 } else if (C is 2 Field MV) {
 Add the bottom field MV of C to the set of
 candidate motion vectors.
 } else if (C is 4 Field MV) {
 if (C is top right MB) {
 Add the bottom left field block MV of C to the set of
 candidate motion vectors.
 } else { // C is top left MB
 Add the bottom right field block MV of C to the set
 of candidate motion vectors.
 }
 }
}

Figure 144: Candidate MV Derivation for Bottom Left MV in ‘4 Field MV’ in Interlace Frame

10.7.3.5.5 Average Field Motion Vectors

Given two field motion vectors (MVX1, MVY1) and (MVX2, MVY2), the average operation used to form a candidate
motion vector (MVXA, MVYA) shall be:

MVXA = (MVX1 + MVX2 + 1) >> 1;

MVYA = (MVY1 + MVY2 + 1) >> 1;

10.7.3.5.6 Computing Frame MV predictor(s) from Candidate Motion Vectors

This section defines how the MV predictor is computed for frame MVs given the set of candidate motion vectors. The
operation shall be the same for computing the predictor for 1-MV or for each one of the four frame block MVs (4-MV
Frame).

Let TotalValidMV denote the total number of motion vector(s) in the set of candidate motion vectors (TotalValidMV
= 0, 1, 2, or 3).

Let ValidMV array denote the motion vector in the set of candidate motion vectors.

The pseudo-code of Figure 145 defines how the MV predictor (PMVx, PMVy) shall be computed.

if (TotalValidMV >= 2) {
 // Note that if there are only two valid MVs, then the
 // third ValidMV is set to be (0, 0)

SMPTE 421M

© 2006 SMPTE 314

 PMVx = median3 (ValidMVx [0], ValidMVx [1], ValidMVx [2]);
 PMVy = median3 (ValidMVy [0], ValidMVy [1], ValidMVy [2]);
} else if (TotalValidMV is 1) {
 PMVx = ValidMVx [0];
 PMVy = ValidMVy [0];
} else {
 PMVx = 0;
 PMVy = 0;
}

Figure 145: Computation of Frame MV Predictors from Candidate Motion Vectors

10.7.3.5.7 Computing Field MV predictor(s) from Candidate Motion Vectors

This section defines how the MV predictor(s) are computed for field MVs given the set of candidate motion vectors.
The operation shall be the same for computing the predictor for each of the two field MVs or for each one of the four
field block MVs (4-MV Frame).

First, the candidate motion vectors are separated into two sets, where one set contains only motion vectors that point to
the same field as the current field and the other set contains motion vectors that point to the opposite field. Assuming
that the motion vectors are represented in quarter pixel units, then the pseudo-code of Figure 146 shall be used on its y
component to verify whether a candidate motion vector points to the same field:

if (ValidMVy & 4) {
 ValidMV points to the opposite field.
} else {
 ValidMV points to the same field.
}

Figure 146: Classifying Candidate Motion Vectors as Same Field or Opposite Field

Let SameFieldMV and OppFieldMV denote the two sets and let NumSameFieldMV and NumOppFieldMV denote the
number of motion vectors that belongs to each set. The motion vectors in each set are ordered starting with predictor
A if it exists, followed by predictor B if it exists, and then predictor C if it exists. For example, if the set of
SameFieldMV contains only predictor B and predictor C, then SameFieldMV[0] equals to predictor B. The pseudo-
code of Figure 147 shall define how the MV predictor (PMVx, PMVy) is computed:

if (TotalValidMV == 3) {
 if (NumSameFieldMV == 3 || NumOppFieldMV == 3) {
 PMVx = median3 (ValidMVx [0], ValidMVx [1], ValidMVx [2]);
 PMVy = median3 (ValidMVy [0], ValidMVy [1], ValidMVy [2]);
 } else if (NumSameFieldMV >= NumOppFieldMV) {
 PMVx = SameFieldMVx [0];
 PMVy = SameFieldMVy [0];
 } else {
 PMVx = OppFieldMVx [0];
 PMVy = OppFieldMVy [0];
 }
} else if (TotalValidMV == 2) {
 if (NumSameFieldMV >= NumOppFieldMV) {

SMPTE 421M

© 2006 SMPTE 315

 PMVx = SameFieldMVx [0];
 PMVy = SameFieldMVy [0];
 } else {
 PMVx = OppFieldMVx [0];
 PMVy = OppFieldMVy [0];
 }
} else if (TotalValidMV == 1) {
 PMVx = ValidMVx [0];
 PMVy = ValidMVy [0];
} else {
 PMVx = 0;
 PMVy = 0;
}

Figure 147: Computation of Field MV Predictors from Candidate Motion Vectors

10.7.3.6 Decoding Motion Vector Differential

The MVDATA syntax elements contain motion vector differential information for the macroblock. Depending on the
type of motion compensation and motion vector block pattern signaled at each macroblock, there shall be 0 to 4
MVDATA syntax elements per macroblock. More specifically,

• For 1-MV macroblocks, there shall be either 0 or 1 MVDATA syntax element present depending on the MVP
field in MBMODE.

• For 2 Field MV macroblocks, there shall be 0, 1, or 2 MVDATA syntax element(s) present depending on
2MVBP.

• For 4 Frame / Field MV macroblocks, there shall be 0, 1, 2, 3, or 4 MVDATA syntax element(s) present
depending on 4MVBP.

The motion vector differential shall be decoded the same way as one reference field motion vector differential for field
P picture described in section 10.3.5.4.2.1 with no halfpel mode.

10.7.3.7 Reconstructing Motion Vectors

Given the motion vector differential dmv, the luma motion vector shall be reconstructed by adding the differential to
the predictor as follows:

mv_x = (dmv_x + PMVx) smod range_x

mv_y = (dmv_y + PMVy) smod range_y

The smod operation ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x
and range_y depend on MVRANGE and are specified in Table 75.

Given a luma frame or field motion vector, a corresponding color-difference frame or field motion vector is derived to
compensate a portion of the Cb/Cr block (it could be the entire portion). The FASTUVMC syntax element shall be
ignored in interlace frame P and B pictures. The pseudo-code of Figure 148 shall define how a color-difference
motion vector CMV is derived from a luma motion vector LMV.
Int s_RndTbl [] = {0, 0, 0, 1};
Int s_RndTblField [] = {0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12};
CMVX = (LMVX + s_RndTbl[LMVX & 3]) >> 1;
if (LMV is a field motion vector) {
 CMVY = (LMVY >> 4)*8 + s_RndTblField [LMVY & 0xF];
} else {
 CMVY = (LMVY + s_RndTbl[LMVY & 3]) >> 1;

SMPTE 421M

© 2006 SMPTE 316

}

Figure 148: Reconstruction of MV in Interlace Frame Picture

10.7.4 Block Layer Decode
If the current macroblock is intra-coded, then the block layer shall be equivalent to decoding of a macroblock in
interlace frame I pictures as defined in section 10.5.2.

If the current macroblock is inter-coded, then the block layer consists of decoding the residual after motion
compensation and the process shall be the same as defined in section 10.3.6.2.

10.7.4.1 Motion Compensation

The motion compensation process for frame compensated macroblock shall be exactly the same as defined in section
8.3.6.5.

The motion compensation process for field compensated macroblock shall also be the same but with the filtering
process applied to the same field lines. The following process is used to determine the starting location in the
reference frame. Let (x0, y0) denote that frame coordinate of the top left pixel in the current macroblock and let (xs, ys)
denote the top left pixel coordinate of the area inside the macroblock that is to be motion compensated. For the case of
2 field MV, (xs, ys) equals to (x0, y0) for the top field MV, and (xs, ys) equals to (x0, y0+1) for the bottom field MV.
For the case of 4 field MV case, (xs, ys) equals to (x0, y0), (x0+8, y0), (x0, y0+1), or (x0+8, y0+1) for the top-left field
MV, top-right field MV, bottom-left field MV, or bottom-right field MV, respectively. Given a motion vector (mv_x,
mv_y) in quarter-pel unit and its (xs, ys) in integer-pel unit, the starting location (xr, yr) in the reference frame in quarter-
pel unit shall be computed as.

(xr, yr) = (xs * 4 + mv_x, ys * 4 + mv_y);

To determine the starting field line, the vertical component of the starting location shall be truncated to the nearest
integer. The field used for motion compensation is determined based on the truncated value of the vertical start position
(even value = top, odd value = bottom). Thus, the set of lines used for the motion compensation process shall be the
lines with the same polarity as the starting field line (i.e. every other lines extending from the starting field line.) Once
the starting field line is determined, the vertical subpixel part of the starting location shall be interpreted as between the
field lines starting at the starting field line while the horizontal subpixel part of the starting location shall be interpreted
as between each horizontally adjacent sample on the field lines. The interpolation process shall then be performed as
described in section 8.3.6.5 using the field lines. For example, if the starting location is (11.25, 1.75) then the starting
field location shall be line 1 and the set of lines use for motion compensations shall be 1, 3, 5, …, etc. The vertical
subpixel interpolation of .75 and horizontal subpixel interpolation of .25 shall be performed using these lines.

10.8 Interlace Frame B Picture Decoding
Interlace frame B picture decoding shall be the same as interlace P picture decoding, except as described in this section.

The additional elements are summarized here:

1) BFRACTION (9.1.1.40) at the picture level that tells us how to scale the direct mode MVs;

2) DIRECTMB (9.1.1.41) bitplane coding that is sent at the picture layer for direct/non-direct MB’s;

3) DIRECTBBIT bit (9.1.3.14) at the MB level in the case where the direct mode bitplane is coded raw;

4) BMVTYPE (9.1.3.15) at the MB level that indicates if the MB is forward, backward or interpolated;

5) One bit MVSW (9.1.3.16)at the MB level, if the MB is coded in field mode and if BMVTYPE is forward or
backward, to indicate if mode is switched from forward to backward (or backward to forward) in going from the top to
the bottom field’s MV; and

6) The syntax element 4MVSWITCH (9.1.1.28) is not present in interlace B picture headers. Instead, it is implicitly set
to 0. However, 4MVBPTAB syntax element shall always be present in the frame header.

As with B frame MV decoding in progressive and field coding, two buffers are maintained, one each for forward and
backward motion, and the rule “forward predicts forward, backward predicts backward” ahall be used. MV prediction

SMPTE 421M

© 2006 SMPTE 317

follows similar logic as interlace frame P pictures (refer to 10.7.3.5), but separate forward and backward contexts shall
be retained. The holes in the buffer, i.e., the forward buffer location for a MB coded as backward, shall be filled with
what would have been the predicted MV (see section 10.8.6.7.1).

10.8.1 Skipped Anchor Frames
If an anchor frame is coded as skipped then it shall be treated as a P frame which is identical to its reference frame.
Therefore, the reconstruction of that frame can be treated conceptually as a copy of the reference frame. In this case,
both anchor frames shall be identical for the intervening B frames. For example, if the frames are coded as follows in
display order:

I0 B1 P2 B3 P4 B5 S6 (I0 P2 B1 P4 B3 S6 B5 in coding order) where S6 is the skipped frame

then this is treated as:

I0 B1 P2 B3 P4 B5 P4

because the skipped frame (S6) is treated as being identical to its reference (P4).

The motion vectors for the skipped anchor frame shall be set to zero.

10.8.2 Out-of-bounds Reference Pixels
This shall be identical to P interlace frame pictures as defined in section 10.7.2.

10.8.3 BFRACTION
The semantics of BFRACTION shall be identical to that of the corresponding syntax element in progressive B pictures
as defined in 7.1.1.14.

10.8.4 Bitplane coding of direct mode
This shall be identical to progressive B pictures (refer to 8.4.5.1). The syntax element DIRECTMB (9.1.1.41) indicates
if individual macroblocks at the frame level are coded in direct mode.

10.8.5 4MVSWITCH and 4MVBPTAB
The 4MVSWITCH syntax element (see section 9.1.1.28) shall not be present in interlace frame B pictures, and is
always set to 0 in the decoder, i.e. no 4-MV. 4MVBPTAB syntax element (see section 9.1.1.37) shall always be
present.

10.8.6 B Macroblock Layer Decode
At the MB level, the B frame syntax is also similar to P frame MB (refer to Figure 102 and Figure 103). Macroblocks in
interlace frame B pictures shall be one of 3 types: 1-MV, 2 Field MV, or Intra. 4 Frame MV and 4 Field MV modes
shall not be allowed. These modes shall be joint coded the same way as in interlace frame P pictures, with the
MBMODE syntax element as defined in section 10.7.3.4. Each MB may also predicted as forward, backward, direct or
interpolated (using DIRECTMB and BMVTYPE syntax elements). If a MB is of type 1-MV and either forward or
backward, then it uses a single MV. If it is of type 1-MV and direct or interpolated, it uses 2-MVs. If it is of type 2
Field MV and either forward or backward predicted, then it uses 2-MVs. If it is of type 2 Field MV and direct or
interpolated, then it uses 4-MVs.

Frame motion compensation treats a macroblock as a whole entity while field motion compensation treats a macroblock
as composed of two separate fields. Additionally, when field motion compensation is used, the prediction type
(BMVTYPE) may be different for the top and bottom fields. When this kind of field level switching of prediction type
is used, the switching shall be restricted to be from forward to backward or vice-versa, i.e. direct and interpolated
modes are not allowed to switch to a different prediction type at the field level.

I MBs in B frames shall also be the same as those in P frames as defined in 10.7.3.

10.8.6.1 Inter Macroblock Types

Only the 1-MV and 2 field MV prediction types shall apply to B pictures. The following sections describe four types
of motion compensation:

SMPTE 421M

© 2006 SMPTE 318

10.8.6.1.1 1-MV Macroblock

In a 1-MV macroblock, the displacement of the luma blocks shall be represented by a single motion vector when the
prediction type is forward or backward, and by two motion vectors when the type is direct or interpolated.
Corresponding color-difference motion vectors shall be derived in each case as defined in 10.7.3.7. In the case of
interpolated and direct prediction, the motion compensated pixels from forward and backward reference pictures shall
be averaged to form the final prediction as follows:

Average pixel value = (Forward interpolated value + Backward interpolated value + 1) >> 1

10.8.6.1.2 2 Field MV Macroblock

In 2 Field MV macroblock, the displacement of each field of the luma blocks shall be described by a different motion
vector (see section 10.7.3.1.2). Additionally, the prediction type is allowed to switch from forward to backward or
vice-versa in going from the top to the bottom field, thus allowing the top field to be motion compensated from one
reference picture and the bottom field to be motion compensated from the other one. In the case of interpolated and
direct prediction, the motion compensated pixels from forward and backward reference pictures shall be averaged as
described in section 10.8.6.1.1 to form the final prediction.

10.8.6.1.3 4 Frame MV Macroblock

This shall not be present in frame interlaced B pictures.

10.8.6.1.4 4 Field MV Macroblock

This shall not be present in frame interlaced B pictures.

10.8.6.1.5 Interpretation of 2MVBP, 4MVBP and order of motion vectors in B pictures

In a 1-MV macroblock, the 2MVBP syntax element (9.1.3.10) shall be used with interpolated mode to indicate which
of the two MV differentials are present. Bit 1 corresponds to the forward and bit 0 corresponds to the backward motion
vector.

In a 2 field MV macroblock, the 2MVBP syntax element shall be used with forward and backward mode, to indicate for
which of the two fields, motion vector differential is present. Bit 1 corresponds to the top field and bit 0 corresponds to
the bottom field motion vector. The same top/bottom signaling shall be used when MVSW syntax is used to switch
from forward prediction for the top field to backward prediction for the bottom field, or vice-versa.

In a 2 field MV macroblock, the 4MVBP syntax element (9.1.3.11) shall be used with interpolated mode, to indicate
which of the four MV differentials are present. Bit 3 corresponds to the top field forward motion vector, and bit 2
corresponds to the top field backward motion vector, and bit 1 corresponds to the bottom field forward and bit 0 to the
bottom field backward motion vector.

In all cases, the bits of 2MVBP and 4MVBP being set to ‘1’ shall signify that the corresponding motion vector
differential is present, and if it is set to ‘0’ the corresponding motion vector is equal to the predicted motion vector, i.e.
there is no difference to add to the prediction. Also, in all cases the actual order of decoded motion vectors shall be sent
in the same order as the bits in 2MVBP or 4MVBP, e.g. in 2 field MV macroblock using interpolated mode, the first
motion vector to be received by the decoder is the top field forward, and the last (i.e. 4th) motion vector to be received is
the bottom field backward motion vector.

10.8.6.2 Skipped Macroblock Signaling

Macroblock skipping shall be signaled the same way as with P frames as defined in section 10.7.3.3. Skipped
macroblocks shall only be of the 1-MV frame type, i.e. field motion compensation is not allowed. The motion vector
shall be coded with zero differential motion vector (i.e. the macroblock is motion compensated using its 1-MV motion
predictor) and there shall be no coded blocks (CBP == 0). If a macroblock is skipped, then only the BMVTYPE and
DIRECTBBIT (if the bitplane coding is set to the raw mode) information shall be sent for that macroblock, so that the
motion vector(s) is correctly predicted as forward, backward, direct or interpolated.

SMPTE 421M

© 2006 SMPTE 319

10.8.6.3 Macroblock Mode Signaling

The allowed macroblock modes are defined in 10.8.6.1, and the signaling of these allowed modes shall be identical to P
frames as defined in section 10.7.3.4.

10.8.6.4 Prediction Type Decoding (BMVTYPE and MVSW)

The prediction type shall be decoded according to the following rules. If the picture level bitplane DIRECTMB (see
section 9.1.1.41) indicates that a macroblock is of direct type, then the prediction type for that macroblock shall be set
to direct. If DIRECTMB element is coded as raw, then an additional bit at the macroblock level, DIRECTBBIT, shall
be used to decide whether the prediction type is direct or not.

If the prediction type is non-direct, then the BMVTYPE syntax element (see section 9.1.3.15) shall be decoded. This
shall be identical to that used with progressive B pictures as defined in section 7.1.3.14. If the macroblock mode is ‘2-
MV field coded’ and if the BMVTYPE is either forward or backward, then the MVSW bit (see section 9.1.3.16) shall
also be decoded to check whether or not the prediction type changes (i.e. flip from forward to backward or vice-versa)
in going from the top to the bottom field for that macroblock.

10.8.6.5 B Frame Prediction Modes

Inter-coded macroblocks in B frames shall be one of four prediction modes: backward, forward, direct and interpolated.
Additionally, field coded MBs shall have the ability to switch prediction modes from backward to forward, or forward
to backward at the field level.

A macroblock in the forward mode macroblock shall be interpolated from its temporally previous anchor frame,
whereas a macroblock in the backward mode shall be interpolated from the temporally subsequent (in display order)
anchor frame.

The direct and interpolated modes use two motion vectors to predict from the two reference (anchor) frames. Both the
direct and interpolated motion modes shall use round-up averaging for combining the pixel values of the two
interpolated references into one set of macroblock pixels according to the following:

Average pixel value = (Forward interpolated value + Backward interpolated value + 1) >> 1

10.8.6.6 Deriving Direct Mode Motion Vectors

The calculation of direct mode motion vectors is similar to the corresponding computation in progressive B pictures as
defined in section 8.4.5.4. First, motion vectors from the temporally subsequent anchor (I or P) interlace frame picture
shall be buffered. Specifically, two MVs shall be buffered for each MB in the anchor frame. Therefore, in all the
number of MVs buffered shall be equal to 2 × NumberOfMBs.

Nominally, one MV (denoted by MVT) shall be buffered for the top half of the MB or top field, and one MV (denoted
by MVB) shall be buffered for the bottom half or bottom field. The rules for buffering shall be based on the
macroblock coding mode of the co-located MB in the anchor frame as listed below, and are illustrated in Figure 149:

1. If the co-located MB in the anchor is coded as an Intra MB, MVT and MVB shall be set to zero.
2. If the co-located MB in the anchor is coded with 1-MV, MVT and MVB shall be set to that motion vector.
3. If the co-located MB in the anchor is field coded with 2-MVs, MVT and MVB shall be set to the top and

bottom MVs respectively.
4. If the co-located MB in the anchor is coded with 4-MVs (regardless of field or frame coding mode), MVT and

MVB shall be set to the motion vectors of the top left and bottom left blocks. In other words, if the 4-MVs
are respectively MV1, MV2, MV3 and MV4, MVT shall be set to MV1 and MVB to MV3.

All buffered MVs shall be set to (0, 0) when the co-located MB in the temporally subsequent anchor is coded as Intra.
This shall also hold true when the anchor is an I frame.

SMPTE 421M

© 2006 SMPTE 320

Figure 149: Buffering P frame MVs to use in B’s direct mode: motion vectors (MV1, MV2, MV3 and MV4)

corresponding to blocks in the co-located MB of the anchor frame are shown on left; buffered MVs (MVT and
MVB) are shown on right. In general, MVT == MV1 and MVB == MV3.

Subsequently, the forward and backward pointing direct mode motion vectors corresponding to the top and bottom
fields of the direct mode MB shall be calculated by applying the pseudo-code of Figure 150 to MVT and MVB:

Scale_Direct_MV (IN MV_X, IN MV_Y, OUT MV_XF , OUT MV_YF, OUT MV_XB, OUT MV_YB)
{
 MV_XF = (MV_X * ScaleFactor + 128) >> 8;
 MV_YF = (MV_Y * ScaleFactor + 128) >> 8;
 MV_XB = (MV_X * (ScaleFactor - 256) + 128) >> 8;
 MV_YB = (MV_Y * (ScaleFactor - 256) + 128) >> 8;
}

Figure 150: Deriving Direct Mode MVs in Interlace B Frames

In the pseudo-code of Figure 150, ScaleFactor shall be computed as defined in section 8.4.5.4. Scale_Direct_MV shall
use the same logic as used for progressive B pictures in 8.4.5.4 (but without pull-back) to obtain the forward and
backward pointing MVs.

10.8.6.7 Motion Vector Prediction in Interlace Frame B Pictures

MV prediction for interlace frame B pictures shall follow exactly the same rules as with interlace frame P pictures
(10.7.3.5). Separate prediction contexts shall be used for forward and backward mode MVs. The forward prediction
context shall be used to predict forward MVs and the backward prediction context shall be used for the prediction of
backward MVs.

10.8.6.7.1 Populating the forward and backward prediction contexts

Since the causal neighbor MBs to the left and top of the current MB can use different coding modes, there is no
assurance that both forward and backward MVs are available for predicting the MV or MVs of the current MB. The B
frame MV predictor rules define the prediction of both forward and backward MVs, based on the causal entries in two
buffers, the backward MV buffer and the forward MV buffer. Each buffer shall be of size 2 ×NumberOfMBs. In other
words, each buffer accommodates one motion vector for the top field and one motion vector for the bottom field, for
each macroblock in the frame. The population of these buffers shall proceed during the B frame decoding process, as
follows:

1. If the current MB is coded in the Intra mode, the corresponding forward and backward MV buffer entries

(both top and bottom fields) shall be set to zero.

SMPTE 421M

© 2006 SMPTE 321

2. If the current MB is coded using the Interpolated mode, the corresponding forward and backward MV buffer
entries shall be set to the forward and backward motion vectors respectively.

3. If the current MB is coded using the Direct mode, the corresponding forward and backward MV buffer entries
shall be set to the Direct mode forward and backward motion vectors respectively.

4. If the current MB is coded using the Forward mode, the corresponding forward MV buffer entries shall be set
to the forward motion vector(s). For this MB, the population of the backward MV buffer can be viewed as a
two step process:

a. First, 2 Field prediction shall be used to select the candidate predictors, and to compute the actual
prediction.

b. Next, the population of the MV type in the backward MV buffer shall be set to be the same as the
forward MV type, i.e., if the forward MV is 1-MV, the type of MV in the backward MV buffer shall
also be set to be 1-MV, and only the top field MV (computed in the first step) shall be stored. If the
forward MV is of the 2 Field MV, the type of MV in the backward MV buffer shall also be set to 2
Field MV, and both the top and bottom components (computed in the first step) shall be stored.

5. If the current MB is coded using the Backward mode, the corresponding backward MV buffer entries shall be
set to the backward motion vector(s). For this MB, the population of the forward MV buffer can be viewed
as a two step process:

a. First, 2 Field MV prediction shall be used to select the candidate predictors, and to compute the
prediction.

b. Next, the population of the MV type in the forward MV buffer shall be set to be the same as the
backward MV type, i.e., if the backward MV is 1-MV, the MV type in the forward MV buffer shall
also be set to be 1-MV, and only the top field MV (computed in the first step) shall be stored. If the
backward MV is of the 2 Field MV, the MV type in the forward MV buffer shall also be set to 2 Field
MV, and both the top and bottom components (computed in the first step) shall be stored.

6. If the current MB codes the top and bottom fields with opposite direction MVs (i.e. by setting the MB to be
coded with 2MVs, and setting syntax element MVSW = 1), the forward MV buffer entries for both top and
bottom fields shall be set to the forward MV and the backward MV buffer entries for both top and bottom
fields shall be set to the backward MV. In other words, if the top field is encoded using the forward mode,
both forward MV buffer entries shall be set to this value (likewise for the bottom field / backward MV).

When the current MB is coded using 1-MV, the top and bottom field MVs shall be equal to the same motion vector.

10.8.6.7.2 Prediction scheme

The scheme for interlace frame B MV prediction shall be as follows:

1. If the MB is Forward (respectively Backward) predicted, the logic of section 10.7.3.5 shall be used to predict
the forward MV (respectively backward MV) from the causal neighborhood of the forward (respectively
backward) MV buffer.

2. If the MB is coded as Interpolated, the logic of section 10.7.3.5 shall be used to predict the forward MV from
the causal neighborhood of the forward MV buffer, and to predict the backward MV from the causal
neighborhood of the backward MV buffer.

3. If the MB is coded using the Direct mode, Direct mode motion vectors shall be derived using the procedure
described in section 10.8.6.6.

10.8.6.8 Decoding Motion Vector Differential

This shall be identical to P pictures as defined in 10.7.3.6.

10.8.6.9 Reconstructing Motion Vectors

This shall be identical to P pictures as defined in 10.7.3.7.

10.8.7 B Block Layer Decode
Block decoding syntax and operations shall be the same as for P pictures as defined in 10.7.4.

SMPTE 421M

© 2006 SMPTE 322

10.9 Overlapped Transform
If the syntax element OVERLAP (6.2.10) is set to 1, then a filtering operation shall be conditionally performed
(conditions specified in 10.9.1 and 10.9.2) across edges of two neighboring Intra blocks, for both the luma and color-
difference channels.

10.9.1 Overlap Smoothing for Interlace Field Pictures
The overlap smoothing in I, BI, and P interlace field pictures shall be identical to the overlap smoothing for the
corresponding I, BI and P progressive frames in advanced profile as described in Section 8.5.2. No overlap smoothing
shall be performed for B interlace field pictures.

10.9.2 Overlap Smoothing for Interlace Frame Pictures
The overlap smoothing process in I, BI and P interlace frame pictures shall be the identical to the overlap smoothing
for the corresponding I, BI and P progressive frames in advanced profile as described in Section 8.5.2 with the
exception that only the vertical edges between I blocks shall be filtered and horizontal block boundaries shall not be
filtered. No overlap smoothing shall be performed for B interlace frame pictures.

10.10 In-loop Deblock Filtering
If the syntax element LOOPFILTER == 1, then a filtering operation shall be performed on each reconstructed frame in
the case of interlace frame pictures, and on each reconstructed field in the case of interlace field pictures. This filtering
operation shall be performed prior to using the reconstructed frame or the reconstructed field as a reference for motion
predictive coding. Therefore, it is necessary that the decoder perform the filtering operation strictly as defined.

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries, the filtering process shall
operate on the pixels that border neighboring blocks. For P pictures, the block boundaries may occur at every 4th, 8th,
12th, etc pixel row or column, depending on whether an 8x8, 8x4, 4x8 or 4x4 Inverse Transform is used. For I pictures
filtering occurs at every 8th, 16th, 24th, etc pixel row and column.

10.10.1 I Interlace Field Picture In-loop Deblocking
For I pictures, deblock filtering shall be performed at all 8x8 block boundaries. Figure 75 and Figure 76 show the pixels
that are filtered along the horizontal and vertical border regions.

The lines that shall be filtered are defined in formal terms in section 8.6.1.As the figures show, the top horizontal line
and first vertical line shall not be filtered. Although not depicted, the bottom horizontal line and last vertical line are
also not filtered. In more formal terms, the following lines shall be filtered:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size)

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size)

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) are filtered

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) are filtered.

The order in which the pixels are filtered is important. All the horizontal boundary lines in the frame shall be filtered
first followed by the vertical boundary lines.

10.10.2 P Interlace Field Picture In-loop Deblocking
In-loop deblocking of P interlace field pictures shall be as defined in section 8.6.2, and the filtering process shall be as
defined in section 8.6.4.

Note: The boundary between a block or subblock and a neighboring block or subblock is not filtered if both have the
same motion vector (same X and Y component as well as the same reference field), and both have no residual error.
Otherwise, the boundary is filtered.

SMPTE 421M

© 2006 SMPTE 323

10.10.3 B Interlace Field Picture In-loop Deblocking
For B interlace field pictures, all block boundaries shall be filtered, and the filtering process shall be as defined in
section 8.6.4. The internal boundary between adjacent sub-blocks shall be filtered only if either one of the sub-blocks
has at least one non-zero coefficient (i.e. non-zero residual error).

10.10.4 Interlace Frame Pictures In-loop Deblocking
In interlace frame pictures, each macroblock shall be either frame transform coded or field transform coded according
to its FIELDTX flag (see 9.1.1.18, 9.1.3.1, and 10.7.3.4). The state of the FIELDTX flag along with the size of the
transform (4x4, 4x8, 8x4, 8x8) used shall affect where the in-loop deblocking takes place in the macroblock.

10.10.4.1 Field-based Filtering

The filtering process shall be the same as described in section 8.6.4 with one important difference: the filtering shall
always be done using the same field lines, never mixing different field lines. Figure 151 illustrates the field-based
filtering for horizontal and vertical block boundaries.

For a horizontal block boundary, the two top field lines shall be filtered across the block boundary using top field lines
only and the two bottom field lines across the block boundary shall be filtered using bottom field lines only. For a
vertical block boundary, the top field block boundary and the bottom field block boundary shall be filtered separately.

Block Boundary

Horiz. filtering
of bottom field

Horiz. filtering
of top field

Current
Block

Neighboring
Block

Current
Block

Neighboring
BlockBlock Boundary

T

T

T

T

T

T

T

T

B

B

B

B

B

B

B

B

T

T

B

B

Horizontal field based filtering Vertical field based filtering

Vertical filtering of
Top field

Figure 151: Field based horizontal / vertical block boundaries filtering

10.10.4.2 Filtering order

For both inter (P, B) and intra (I) interlace frame pictures, the in-loop deblocking process starts by processing all the
horizontals edges first followed by all the vertical edges. The pseudo-code of Figure 152 describes this filtering process
one macroblock at a time for the sake of simplicity, but the filtering process need not follow this macroblock processing
order. Multiple filtering operations on the same pixels shall follow the same filtering order as that given in the pseudo-
code.

// Processing horizontal edges
int X, Y
for (Y = 0; Y < number of MBs in a column; Y++) {
 for (X = 0; X < number of MBs in a row; X++) {
 Filter horizontal edges of MB located at Yth row, Xth col
 }
}

// Processing vertical edges

SMPTE 421M

© 2006 SMPTE 324

for (Y = 0; Y < number of MBs in a column; Y++) {
 for (X = 0; X < number of MBs in a row; X++) {
 Filter vertical edges of MB located at Yth row, Xth col
 }
}

Figure 152: Edge Ordering for In-loop Deblocking in Interlace Frame

10.10.4.3 Interlace Frame I Picture

In interlace frame I pictures, each macroblock shall be 8x8 transform coded.

For each macroblock, the horizontal block boundary filtering starts by filtering the intra-macroblock horizontal
boundary only if the current macroblock is frame transform coded. Next, the horizontal block boundary between the
current macroblock and the macroblock directly below it (if available) is filtered. The pseudo-code of Figure 153 shall
describe the process of horizontal filtering a macroblock.

// Horizontal filtering of MB
// Luma
if (FIELDTX of current MB is FALSE) {
 - Filter all 16 pixels in row 6 and 8 of Y.
 - Filter all 16 pixels in row 7 and 9 of Y.
}

if (current bottom luma MB edge is not on a picture or slice boundary) {
- Filter all 16 pixels in row 14 and 16 of Y.
- Filter all 16 pixels in row 15 and 17 of Y.
}

// Color-difference
if (current bottom color-difference block edge is not on a picture or slice boundary) {
- Filter all 8 pixels in row 6 and 8 of Cb and Cr.
- Filter all 8 pixels in row 7 and 9 of Cb and Cr.
}

Figure 153: Pseudo-code for Horizontal Filtering in Interlace Frame I Picture

For each macroblock, the vertical block boundary filtering starts by filtering the intra-macroblock vertical boundary and
then followed by the filtering of the inter-macroblock boundary between the current macroblock and the macroblock to
its immediate right (if available). The pseudo-code of Figure 154 shall describe the process of the vertical filtering a
macroblock.

// Vertical filtering of MB
// Luma
- Filter the 8 even numbered pixels in column 7 and 8 of Y.
- Filter the 8 odd numbered pixels in column 7 and 8 of Y.

if (current right luma MB edge in not on a picture boundary) {
- Filter the 8 even numbered pixels in column 15 and 16 of Y.
- Filter the 8 odd numbered pixels in column 15 and 16 of Y.

SMPTE 421M

© 2006 SMPTE 325

}

// Color-difference
if (current right color-difference block edge is not on a picture boundary) {
- Filter the 4 even numbered pixels in column 7 and 8 of Cb.
- Filter the 4 odd numbered pixels in column 7 and 8 of Cb.
- Filter the 4 even numbered pixels in column 7 and 8 of Cr.
- Filter the 4 odd numbered pixels in column 7 and 8 of Cr.
}

Figure 154: Pseudo-code for Vertical Filtering in Interlace Frame I Picture

10.10.4.4 Interlace Frame P, B Picture

In interlace frame P, B pictures, each block shall be either 4x4, 4x8, 8x4, or 8x8 transform coded. When a block does
not contain any coded coefficients, it shall be considered as 8x8 transform coded in the loop filtering process. For
each macroblock, the horizontal block boundary filtering shall occur in the order of block Y0, Y1, Y2, Y3, Cb, and then
Cr. The luma blocks are processed differently according to the value of the FIELDTX element.

Note: The value of FIELDTX is explicitly signaled in intra-coded macroblocks (9.1.3.1), and it is inferred from
MBMODE in inter-coded macroblocks (10.7.3.4).

The pseudo-code of Figure 155 shall describe the process of horizontal filtering a macroblock. As shown in the pseudo-
code, the horizontal boundaries of subblocks located in the top blocks of the first MB row, and the horizontal
boundaries of bottom subblocks located in the last MB row shall not be filtered.

// Horizontal filtering of MB
// Luma
if (FIELDTX of current MB is FALSE) {
 // Block Y0
 if (current MB is not in the first MB row and the transform of Block Y0 is 8x4 or 4x4) {
 - Filter first 8 pixels in row 2 and 4 of Y.
 - Filter first 8 pixels in row 3 and 5 of Y.
 }
 - Filter first 8 pixels in row 6 and 8 of Y.
 - Filter first 8 pixels in row 7 and 9 of Y.
 // Block Y1
 if (current MB is not in the first MB row and the transform of Block Y1 is 8x4 or 4x4) {
 - Filter last 8 pixels in row 2 and 4 of Y.
 - Filter last 8 pixels in row 3 and 5 of Y.
 }
 - Filter last 8 pixels in row 6 and 8 of Y.
 - Filter last 8 pixels in row 7 and 9 of Y.
 // Block Y2
 if (current MB is not in the last MB row and the transform of Block Y2 is 8x4 or 4x4) {
 - Filter first 8 pixels in row 10 and 12 of Y.
 - Filter first 8 pixels in row 11 and 13 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter first 8 pixels in row 14 and 16 of Y.

SMPTE 421M

© 2006 SMPTE 326

 - Filter first 8 pixels in row 15 and 17 of Y.
 }
 // Block Y3
 if (current MB is not in the last MB row and the transform of Block Y3 is 8x4 or 4x4) {
 - Filter last 8 pixels in row 10 and 12 of Y.
 - Filter last 8 pixels in row 11 and 13 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter last 8 pixels in row 14 and 16 of Y.
 - Filter last 8 pixels in row 15 and 17 of Y.
 }
} else {
 // Block Y0
 if (the transform of Block Y0 is 8x4 or 4x4) {
 - Filter first 8 pixels in row 6 and 8 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter first 8 pixels in row 14 and 16 of Y.
 }

 // Block Y1
 if (the transform of Block Y1 is 8x4 or 4x4) {
 - Filter last 8 pixels in row 6 and 8 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter last 8 pixels in row 14 and 16 of Y.
 }
 // Block Y2
 if (the transform of Block Y2 is 8x4 or 4x4) {
 - Filter first 8 pixels in row 7 and 9 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter first 8 pixels in row 15 and 17 of Y.
 }
 // Block Y3
 if (the transform of Block Y3 is 8x4 or 4x4) {
 - Filter last 8 pixels in row 7 and 9 of Y.
 }
 if (current MB is not in the last MB row) {
 - Filter last 8 pixels in row 15 and 17 of Y.
 }
}

// Color-difference
if (current MB is not in the first or last MB row and the transform used for the Cb block is 8x4 or 4x4) {
 - Filter all 8 pixels in row 2 and 4 of Cb.

SMPTE 421M

© 2006 SMPTE 327

 - Filter all 8 pixels in row 3 and 5 of Cb.
}
If (current MB is not in the last MB row) {
 - Filter all 8 pixels in row 6 and 8 of Cb.
 - Filter all 8 pixels in row 7 and 9 of Cb.
}

if (current MB is not in the first or last MB row and the transform used for the Cr block is 8x4 or 4x4) {
 - Filter all 8 pixels in row 2 and 4 of Cr.
 - Filter all 8 pixels in row 3 and 5 of Cr.
}
If (current MB is not in the last MB row) {
 - Filter all 8 pixels in row 6 and 8 of Cr.
 - Filter all 8 pixels in row 7 and 9 of Cr.
}

Figure 155: Pseudo-code for Horizontal Filtering in Interlace Frame P/B Picture

Similarly, for each macroblock, the vertical block boundary filtering shall occur in the order of block Y0, Y1, Y2, Y3,
Cb, and then Cr. The luma blocks shall be processed differently according to the value of the FIELDTX[MB] element
as defined in Figure 156.

Note: The value of FIELDTX is explicitly signaled in intra-coded macroblocks (9.1.3.1), and it is inferred from
MBMODE in inter-coded macroblocks (10.7.3.4).

The pseudo-code of Figure 156 shall describe the process of vertical filtering a macroblock:

// Vertical filtering of MB
// Luma
if (FIELDTX of current MB is FALSE) {
 // Block Y0
 if (the transform of Block Y0 is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels of the first 8 pixels in column 3 and 4 of Y.
 - Filter the 4 odd numbered pixels of the first 8 pixels in column 3 and 4 of Y.
 }
 - Filter the 4 even numbered pixels of the first 8 pixels in column 7 and 8 of Y.
 - Filter the 4 odd numbered pixels of the first 8 pixels in column 7 and 8 of Y.
 // Block Y1
 if (the transform of Block Y1 is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels of the first 8 pixels in column 11 and 12 of Y.
 - Filter the 4 odd numbered pixels of the first 8 pixels in column 11 and 12 of Y.
 }
 if (current MB is not in the last MB column) {
 - Filter the 4 even numbered pixels of the first 8 pixels in column 15 and 16 of Y.
 - Filter the 4 odd numbered pixels of the first 8 pixels in column 15 and 16 of Y.
 }
 // Block Y2
 if (the transform of Block Y2 is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels of the last 8 pixels in column 3 and 4 of Y.

SMPTE 421M

© 2006 SMPTE 328

 - Filter the 4 odd numbered pixels of the last 8 pixels in column 3 and 4 of Y.
 }
 - Filter the 4 even numbered pixels of the last 8 pixels in column 7 and 8 of Y.
 - Filter the 4 odd numbered pixels of the last 8 pixels in column 7 and 8 of Y.
 // Block Y3
 if (the transform of Block Y3 is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels of the last 8 pixels in column 11 and 12 of Y.
 - Filter the 4 odd numbered pixels of the last 8 pixels in column 11 and 12 of Y.
 }
 if (current MB is not in the last MB column) {
 - Filter the 4 even numbered pixels of the last 8 pixels in column 15 and 16 of Y.
 - Filter the 4 odd numbered pixels of the last 8 pixels in column 15 and 16 of Y.
 }
} else {
 // Block Y0
 if (the transform of Block Y0 is 4x8 or 4x4) {
 - Filter the 8 even numbered pixels in column 3 and 4 of Y.
 }
 - Filter the 8 even numbered pixels in column 7 and 8 of Y.
 // Block Y1
 if (the transform of Block Y1 is 4x8 or 4x4) {
 - Filter the 8 even numbered pixels in column 11 and 12 of Y.
 }
 if (current MB is not in the last MB column) {
 - Filter the 8 even numbered pixels in column 15 and 16 of Y.
 }
 // Block Y2
 if (the transform of Block Y2 is 4x8 or 4x4) {
 - Filter the 8 odd numbered pixels in column 3 and 4 of Y.
 }
 - Filter the 8 odd numbered pixels in column 7 and 8 of Y.
 // Block Y3
 if (the transform of Block Y3 is 4x8 or 4x4) {
 - Filter the 8 odd numbered pixels in column 11 and 12 of Y.
 }
 if (current MB is not in the last MB column) {
 - Filter the 8 odd numbered pixels in column 15 and 16 of Y.
 }
}

// Color-difference
if (the transform of Cb Block is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels in column 3 and 4 of Cb.
 - Filter the 4 odd numbered pixels in column 3 and 4 of Cb.
}
if (current MB is not in the last MB column) {

SMPTE 421M

© 2006 SMPTE 329

 - Filter the 4 even numbered pixels in column 7 and 8 of Cb.
 - Filter the 4 odd numbered pixels in column 7 and 8 of Cb.
}

if (the transform of Cr Block is 4x8 or 4x4) {
 - Filter the 4 even numbered pixels in column 3 and 4 of Cr.
 - Filter the 4 odd numbered pixels in column 3 and 4 of Cr.
}
if (current MB is not in the last MB column) {
 - Filter the 4 even numbered pixels in column 7 and 8 of Cr.
 - Filter the 4 odd numbered pixels in column 7 and 8 of Cr.
}

Figure 156: Pseudo-code for Vertical Filtering in Interlace Frame P/B Picture

11 Tables
The tables of this section are referenced elsewhere in this specification and are aggregated here to improve the reading
of the other sections. In most cases, the coefficients in these tables are required to be used in the decoding processes.

11.1 Interlace Pictures MV Block Pattern VLC Tables

11.1.1 4-MV Block Pattern Tables
Table 116: 4-MV Block Pattern Table 0

4-MV
Coded
Pattern

VLC
Codewor

d

VLC
Codewor

d Size
0 14 5
1 58 6
2 59 6
3 25 5
4 12 5
5 26 5
6 15 5
7 15 4
8 13 5
9 24 5
10 27 5
11 0 3
12 28 5
13 1 3
14 2 3
15 2 2

Table 117: 4-MV Block Pattern Table 1

SMPTE 421M

© 2006 SMPTE 330

4-MV
Coded
Pattern

VLC
Codewor

d

VLC
Codewor

d Size
0 8 4
1 18 5
2 19 5
3 4 4
4 20 5
5 5 4
6 30 5
7 11 4
8 21 5
9 31 5
10 6 4
11 12 4
12 7 4
13 13 4
14 14 4
15 0 2

Table 118: 4-MV Block Pattern Table 2

4-MV
Coded
Pattern

VLC
Codewor

d

VLC
Codewor

d Size
0 15 4
1 6 4
2 7 4
3 2 4
4 8 4
5 3 4
6 28 5
7 9 4
8 10 4
9 29 5
10 4 4
11 11 4
12 5 4
13 12 4
14 13 4
15 0 3

Table 119: 4-MV Block Pattern Table 3

4-MV
Coded
Pattern

VLC
Codewor

d

VLC
Codewor

d Size
0 0 2
1 11 4

SMPTE 421M

© 2006 SMPTE 331

2 12 4
3 4 4
4 13 4
5 5 4
6 30 5
7 16 5
8 14 4
9 31 5
10 6 4
11 17 5
12 7 4
13 18 5
14 19 5
15 10 4

11.1.2 2-MV Block Pattern Tables
Table 120: Interlace Frame 2 MVP Block Pattern Table 0

Top Bottom VLC
Codeword

VLC
Size

0 0 2 2

0 1 1 2

1 0 0 2

1 1 3 2

Table 121: Interlace Frame 2 MVP Block Pattern Table 1

Top Bottom VLC
Codeword

VLC
Size

0 0 1 1

0 1 0 2

1 0 2 3

1 1 3 3

Table 122: Interlace Frame 2 MVP Block Pattern Table 2

Top Bottom VLC
Codeword

VLC
Size

0 0 2 3

0 1 0 2

1 0 3 3

1 1 1 1

Table 123: Interlace Frame 2 MVP Block Pattern Table 3

SMPTE 421M

© 2006 SMPTE 332

Top Bottom VLC
Codeword

VLC
Size

0 0 1 1

0 1 3 3

1 0 2 3

1 1 0 2

11.2 Interlace CBPCY VLC Tables

Table 124: Interlaced CBPCY Table 0

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 12058 15 33 686 11
2 12059 15 34 687 11
3 6028 14 35 1506 12
4 144 9 36 310 10
5 680 11 37 622 11
6 681 11 38 623 11
7 3015 13 39 765 11
8 145 9 40 158 9
9 682 11 41 318 10
10 683 11 42 319 10
11 1504 12 43 383 10
12 74 8 44 80 8
13 150 9 45 66 8
14 151 9 46 67 8
15 189 9 47 44 7
16 146 9 48 81 8
17 684 11 49 164 9
18 685 11 50 165 9
19 1505 12 51 190 9
20 152 9 52 83 8
21 306 10 53 68 8
22 307 10 54 69 8
23 377 10 55 45 7
24 308 10 56 84 8
25 618 11 57 70 8
26 619 11 58 71 8
27 764 11 59 46 7
28 78 8 60 3 3
29 64 8 61 0 3
30 65 8 62 1 3
31 43 7 63 1 1
32 147 9

SMPTE 421M

© 2006 SMPTE 333

Table 125: Interlaced CBPCY Table 1

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 65 7 33 20 7
2 66 7 34 21 7
3 256 9 35 44 8
4 67 7 36 92 8
5 136 8 37 93 9
6 137 8 38 94 9
7 257 9 39 95 9
8 69 7 40 38 7
9 140 8 41 93 8
10 141 8 42 94 8
11 258 9 43 95 8
12 16 6 44 13 6
13 34 7 45 52 7
14 35 7 46 53 7
15 36 7 47 27 6
16 71 7 48 20 6
17 16 7 49 39 7
18 17 7 50 42 7
19 259 9 51 43 7
20 37 7 52 14 6
21 88 8 53 56 7
22 89 8 54 57 7
23 90 8 55 29 6
24 91 8 56 15 6
25 90 9 57 60 7
26 91 9 58 61 7
27 92 9 59 31 6
28 12 6 60 5 3
29 48 7 61 9 4
30 49 7 62 0 3
31 25 6 63 3 2
32 9 6

Table 126: Interlaced CBPCY Table 2

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 50 6 33 234 8
2 51 6 34 235 8
3 26 5 35 489 9
4 38 6 36 74 7
5 228 8 37 442 9
6 229 8 38 443 9
7 486 9 39 475 9
8 39 6 40 32 6
9 230 8 41 222 8

SMPTE 421M

© 2006 SMPTE 334

10 231 8 42 223 8
11 487 9 43 242 8
12 14 5 44 34 6
13 99 7 45 85 7
14 108 7 46 88 7
15 119 7 47 45 6
16 40 6 48 15 5
17 232 8 49 112 7
18 233 8 50 113 7
19 488 9 51 120 7
20 123 7 52 35 6
21 218 8 53 89 7
22 219 8 54 92 7
23 236 8 55 47 6
24 245 8 56 36 6
25 440 9 57 93 7
26 441 9 58 98 7
27 474 9 59 48 6
28 33 6 60 2 3
29 75 7 61 31 5
30 84 7 62 6 4
31 43 6 63 0 2
32 41 6

Table 127: Interlaced CBPCY Table 3

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 40 6 33 499 9
2 41 6 34 500 9
3 157 8 35 501 9
4 0 4 36 17 6
5 490 9 37 978 10
6 491 9 38 979 10
7 492 9 39 305 9
8 1 4 40 9 5
9 493 9 41 350 9
10 494 9 42 351 9
11 495 9 43 156 8
12 5 4 44 16 5
13 240 8 45 168 8
14 241 8 46 169 8
15 59 7 47 56 7
16 2 4 48 6 4
17 496 9 49 242 8
18 497 9 50 243 8
19 498 9 51 77 7
20 63 6 52 17 5
21 348 9 53 170 8

SMPTE 421M

© 2006 SMPTE 335

22 349 9 54 171 8
23 153 8 55 57 7
24 16 6 56 18 5
25 976 10 57 172 8
26 977 10 58 173 8
27 304 9 59 58 7
28 15 5 60 6 3
29 158 8 61 22 5
30 159 8 62 23 5
31 251 8 63 14 4
32 3 4

Table 128: Interlaced CBPCY Table 4

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 60 6 33 105 7
2 61 6 34 108 7
3 31 5 35 5 7
4 10 5 36 96 7
5 97 7 37 26 8
6 98 7 38 27 8
7 2 7 39 53 8
8 11 5 40 19 6
9 99 7 41 14 7
10 100 7 42 15 7
11 3 7 43 21 7
12 7 5 44 45 6
13 3 6 45 109 7
14 4 6 46 110 7
15 11 6 47 56 6
16 12 5 48 8 5
17 101 7 49 8 6
18 102 7 50 9 6
19 4 7 51 12 6
20 18 6 52 46 6
21 10 7 53 111 7
22 11 7 54 114 7
23 20 7 55 58 6
24 27 7 56 47 6
25 24 8 57 115 7
26 25 8 58 0 6
27 52 8 59 59 6
28 44 6 60 7 4
29 103 7 61 20 5
30 104 7 62 21 5
31 53 6 63 4 3
32 13 5

SMPTE 421M

© 2006 SMPTE 336

Table 129: Interlaced CBPCY Table 5

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 56 6 33 154 8
2 57 6 34 155 8
3 157 8 35 156 8
4 10 4 36 25 6
5 145 8 37 974 10
6 146 8 38 975 10
7 147 8 39 215 9
8 11 4 40 9 5
9 148 8 41 488 9
10 149 8 42 489 9
11 150 8 43 144 8
12 3 4 44 15 5
13 238 8 45 232 8
14 239 8 46 233 8
15 54 7 47 246 8
16 12 4 48 5 4
17 151 8 49 240 8
18 152 8 50 241 8
19 153 8 51 55 7
20 8 5 52 16 5
21 484 9 53 234 8
22 485 9 54 235 8
23 106 8 55 247 8
24 24 6 56 17 5
25 972 10 57 236 8
26 973 10 58 237 8
27 214 9 59 52 7
28 14 5 60 0 3
29 158 8 61 62 6
30 159 8 62 63 6
31 245 8 63 2 4
32 13 4

Table 130: Interlaced CBPCY Table 6

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 60 6 33 229 8
2 61 6 34 230 8
3 463 9 35 128 8
4 0 3 36 46 6
5 191 8 37 2021 11
6 224 8 38 2022 11
7 508 9 39 2023 11
8 1 3 40 22 5
9 225 8 41 1012 10

SMPTE 421M

© 2006 SMPTE 337

10 226 8 42 1013 10
11 509 9 43 1014 10
12 9 4 44 25 5
13 497 9 45 258 9
14 498 9 46 259 9
15 499 9 47 260 9
16 2 3 48 10 4
17 227 8 49 500 9
18 228 8 50 501 9
19 510 9 51 502 9
20 17 5 52 26 5
21 1006 10 53 261 9
22 1007 10 54 262 9
23 1008 10 55 263 9
24 33 6 56 27 5
25 2018 11 57 376 9
26 2019 11 58 377 9
27 2020 11 59 462 9
28 24 5 60 29 5
29 1015 10 61 189 8
30 1022 10 62 190 8
31 1023 10 63 496 9
32 3 3

Table 131: Interlaced CBPCY Table 7

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size

Coded
Block

Pattern

VLC
Codewor

d

VLC
Codewor

d Size
1 3 6 33 52 7
2 4 6 34 53 7
3 438 10 35 17 7
4 4 3 36 22 6
5 46 7 37 105 10
6 47 7 38 106 10
7 14 7 39 107 10
8 5 3 40 10 5
9 48 7 41 54 9
10 49 7 42 55 9
11 15 7 43 216 9
12 3 4 44 30 6
13 10 8 45 442 10
14 11 8 46 443 10
15 20 8 47 444 10
16 6 3 48 4 4
17 50 7 49 21 8
18 51 7 50 22 8
19 16 7 51 23 8
20 5 5 52 31 6
21 48 9 53 445 10
22 49 9 54 446 10

SMPTE 421M

© 2006 SMPTE 338

23 50 9 55 447 10
24 9 6 56 0 5
25 102 10 57 16 9
26 103 10 58 17 9
27 104 10 59 18 9
28 29 6 60 28 6
29 439 10 61 217 9
30 440 10 62 218 9
31 441 10 63 19 9
32 7 3

11.3 Interlace MV Tables
Table 132: 2-Field Reference Interlace MV Table 0

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 12 4 42 207 10 84 977 11

1 28 5 43 1395 12 85 408 11

2 11 5 44 9 5 86 489 11

3 0 5 45 35 7 87 1309 12

4 14 6 46 237 8 88 180 12

5 42 7 47 24 7 89 63 8

6 80 8 48 6 7 90 1109 12

7 872 10 49 68 8 91 555 11

8 2 2 50 245 9 92 553 11

9 26 5 51 121 9 93 1105 12

10 4 5 52 1746 11 94 1400 12

11 58 6 53 110 7 95 1970 12

12 29 6 54 43 9 96 1392 12

13 108 7 55 349 10 97 341 13

14 239 8 56 23 9 98 50 8

15 444 9 57 895 10 99 976 12

16 351 10 58 324 10 100 84 11

17 15 4 59 206 10 101 1747 11

18 3 5 60 40 10 102 1393 12

19 28 6 61 171 12 103 1108 12

20 13 6 62 16 6 104 820 12

21 11 7 63 437 9 105 7153 13

22 62 8 64 247 9 106 183 12

SMPTE 421M

© 2006 SMPTE 339

23 167 9 65 166 9 107 41 9

24 326 10 66 123 9 108 7812 14

25 409 11 67 40 9 109 364 13

26 6 4 68 493 10 110 411 11

27 31 6 69 489 10 111 7152 13

28 4 6 70 1789 11 112 1401 12

29 60 7 71 4 7 113 3907 13

30 7 7 72 245 10 114 181 12

31 446 9 73 41 10 115 2209 13

32 139 9 74 650 11 116 42 9

33 44 10 75 651 11 117 365 13

34 1971 12 76 655 11 118 2208 13

35 5 5 77 3577 12 119 1952 12

36 219 8 78 821 12 120 977 12

37 86 8 79 7813 14 121 2789 13

38 236 8 80 238 8 122 340 13

39 82 8 81 701 11 123 2788 13

40 445 9 82 43 10 124 2617 13

41 120 9 83 984 11 125 2616 13

Table 133: 2-Field Reference Interlace MV Table 1

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 3 3 42 7408 13 84 827 10

1 9 4 43 2881 13 85 697 10

2 22 5 44 50 6 86 1771 11

3 16 6 45 230 8 87 1392 11

4 215 8 46 224 8 88 3620 12

5 821 10 47 207 8 89 925 10

6 1396 11 48 171 8 90 1442 12

7 1365 11 49 412 9 91 1443 12

8 0 2 50 683 10 92 3709 12

9 29 5 51 3627 12 93 1518 11

10 9 5 52 5593 13 94 1849 11

11 23 6 53 111 7 95 1364 11

SMPTE 421M

© 2006 SMPTE 340

12 44 7 54 451 9 96 2725 12

13 173 8 55 175 8 97 2724 12

14 884 10 56 191 8 98 887 10

15 1715 11 57 172 8 99 7413 13

16 1399 11 58 381 9 100 3022 12

17 15 4 59 1763 11 101 3705 12

18 24 5 60 3625 12 102 1632 11

19 10 5 61 6532 13 103 1652 11

20 46 6 62 84 7 104 1770 11

21 34 7 63 181 9 105 3708 12

22 380 9 64 378 9 106 3429 12

23 3707 12 65 429 9 107 758 10

24 7049 13 66 409 9 108 5594 13

25 5592 13 67 376 9 109 7048 13

26 8 4 68 856 10 110 1441 12

27 52 6 69 722 11 111 7412 13

28 109 7 70 7243 13 112 1510 11

29 35 7 71 91 8 113 3624 12

30 450 9 72 680 10 114 1397 11

31 886 10 73 817 10 115 3428 12

32 723 11 74 904 10 116 820 10

33 7242 13 75 907 10 117 13067 14

34 13066 14 76 880 10 118 5595 13

35 20 5 77 1811 11 119 2880 13

36 106 7 78 3267 12 120 3023 12

37 114 7 79 7409 13 121 3525 12

38 108 7 80 441 9 122 3626 12

39 227 8 81 1519 11 123 1653 11

40 411 9 82 1848 11 124 1393 11

41 1855 11 83 754 10 125 1363 11

Table 134: 2-Field Reference Interlace MV Table 2

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 4 4 42 244 10 84 4 10

SMPTE 421M

© 2006 SMPTE 341

1 2 4 43 1764 12 85 440 10

2 16 5 44 1 5 86 192 9

3 3 5 45 60 8 87 634 10

4 23 6 46 125 8 88 785 11

5 69 7 47 141 8 89 156 8

6 62 8 48 157 8 90 1569 12

7 126 9 49 49 8 91 409 11

8 3 2 50 110 9 92 796 11

9 2 5 51 662 10 93 247 10

10 40 6 52 205 10 94 995 11

11 30 6 53 37 6 95 854 11

12 21 6 54 329 9 96 393 10

13 71 7 55 50 8 97 5 10

14 2 7 56 137 8 98 107 8

15 333 9 57 54 8 99 2242 12

16 96 9 58 136 8 100 816 12

17 11 4 59 111 9 101 1279 11

18 38 6 60 3 9 102 1264 11

19 36 6 61 797 11 103 849 11

20 20 6 62 14 6 104 1266 11

21 50 7 63 426 10 105 498 10

22 111 8 64 638 10 106 883 11

23 195 9 65 97 9 107 0 8

24 1329 11 66 334 9 108 3137 13

25 1765 12 67 335 9 109 2243 12

26 21 5 68 103 9 110 2540 12

27 63 7 69 255 10 111 994 11

28 45 7 70 387 10 112 772 11

29 1 7 71 54 7 113 1271 11

30 318 9 72 855 11 114 1265 11

31 221 9 73 245 10 115 496 10

32 246 10 74 198 9 116 328 9

33 773 11 75 194 9 117 3136 13

34 817 12 76 665 10 118 2541 12

35 14 5 77 281 9 119 2240 12

36 3 7 78 561 10 120 2241 12

SMPTE 421M

© 2006 SMPTE 342

37 52 7 79 848 11 121 1267 11

38 51 7 80 44 7 122 1278 11

39 26 7 81 399 10 123 254 10

40 330 9 82 1328 11 124 499 10

41 197 9 83 663 10 125 425 10

Table 135: 2-Field Reference Interlace MV Table 3

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 0 3 42 16462 15 84 2580 12

1 4 4 43 5175 13 85 699 11

2 47 6 44 43 6 86 401 11

3 82 7 45 133 8 87 2127 12

4 16 7 46 167 8 88 5176 13

5 173 9 47 160 8 89 175 9

6 1291 11 48 332 9 90 2967 12

7 400 11 49 666 10 91 1155 13

8 3 2 50 812 12 92 5179 13

9 22 5 51 8499 14 93 811 12

10 7 5 52 5162 13 94 579 12

11 13 6 53 81 7 95 5163 13

12 187 8 54 644 10 96 2392 14

13 371 9 55 172 9 97 10687 14

14 201 10 56 258 9 98 73 9

15 1295 11 57 69 9 99 2668 12

16 5932 13 58 68 9 100 5339 13

17 3 3 59 2075 12 101 1197 13

18 17 5 60 1630 13 102 5342 13

19 5 5 61 3255 14 103 2126 12

20 67 7 62 24 7 104 5172 13

21 35 8 63 1292 11 105 599 12

22 75 9 64 530 10 106 11866 14

23 814 12 65 740 10 107 519 10

24 11867 14 66 515 10 108 5173 13

25 1154 13 67 148 10 109 5177 13

SMPTE 421M

© 2006 SMPTE 343

26 9 4 68 290 11 110 3254 14

27 42 6 69 2074 12 111 5178 13

28 20 6 70 1621 13 112 404 11

29 42 7 71 51 8 113 1620 13

30 264 9 72 698 11 114 8501 14

31 1482 11 73 582 12 115 21372 15

32 1626 13 74 578 12 116 348 10

33 8502 14 75 2670 12 117 576 12

34 8498 14 76 1036 11 118 4114 13

35 11 5 77 2056 12 119 21373 15

36 19 7 78 8500 14 120 2393 14

37 65 7 79 16463 15 121 4248 13

38 184 8 80 373 9 122 5174 13

39 372 9 81 1029 11 123 1631 13

40 256 9 82 583 12 124 8230 14

41 5338 13 83 298 11 125 8503 14

Table 136: 2-Field Reference Interlace MV Table 4

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 5 4 42 966 10 84 295 9

1 25 5 43 1935 11 85 141 9

2 22 5 44 63 6 86 539 10

3 17 5 45 166 8 87 1970 11

4 62 6 46 240 8 88 479 10

5 94 7 47 58 7 89 984 10

6 239 8 48 82 7 90 1892 12

7 226 8 49 78 7 91 3812 12

8 0 2 50 227 8 92 947 11

9 57 6 51 473 9 93 1869 11

10 43 6 52 783 10 94 472 10

11 38 6 53 16 6 95 1500 11

12 40 6 54 477 9 96 2122 12

13 18 6 55 167 8 97 1177 11

14 194 8 56 247 8 98 965 10

SMPTE 421M

© 2006 SMPTE 344

15 237 9 57 34 7 99 7566 13

16 285 10 58 146 8 100 1893 12

17 13 4 59 964 10 101 1077 11

18 49 6 60 751 10 102 1905 11

19 42 6 61 1890 11 103 450 10

20 37 6 62 121 7 104 280 10

21 32 6 63 143 9 105 956 11

22 92 7 64 474 9 106 897 11

23 493 9 65 135 8 107 903 11

24 589 10 66 232 8 108 31539 15

25 1904 11 67 186 8 109 4247 13

26 6 4 68 374 9 110 4246 13

27 122 7 69 238 9 111 7885 13

28 96 7 70 944 10 112 3737 12

29 79 7 71 133 8 113 3868 12

30 72 7 72 281 10 114 3869 12

31 57 7 73 782 10 115 3813 12

32 390 9 74 264 9 116 284 10

33 531 10 75 466 9 117 31538 15

34 3782 12 76 268 9 118 15768 14

35 15 5 77 1907 11 119 7567 13

36 38 7 78 1060 11 120 3736 12

37 95 7 79 1076 11 121 3943 12

38 117 7 80 113 8 122 957 11

39 112 7 81 1501 11 123 896 11

40 39 7 82 449 10 124 1176 11

41 475 9 83 935 10 125 902 11

Table 137: 2-Field Reference Interlace MV Table 5

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 13 4 42 1887 11 84 363 9

1 16 5 43 3153 12 85 957 10

2 46 6 44 21 5 86 705 10

3 57 6 45 71 7 87 1580 11

SMPTE 421M

© 2006 SMPTE 345

4 13 6 46 238 8 88 7678 13

5 116 7 47 226 8 89 14 7

6 237 8 48 234 8 90 1438 11

7 182 8 49 9 8 91 1471 11

8 1 2 50 362 9 92 218 11

9 2 4 51 707 10 93 1577 11

10 0 5 52 1437 11 94 1412 11

11 48 6 53 61 6 95 3767 12

12 41 6 54 8 8 96 2826 12

13 112 7 55 473 9 97 1645 13

14 243 8 56 50 8 98 12 7

15 140 8 57 14 8 99 1918 11

16 358 9 58 366 9 100 1436 11

17 9 4 59 812 10 101 1912 11

18 51 6 60 1627 11 102 1886 11

19 120 7 61 6507 13 103 1882 11

20 6 7 62 2 5 104 1581 11

21 196 8 63 15 8 105 823 12

22 11 8 64 472 9 106 820 12

23 355 9 65 141 8 107 407 9

24 204 10 66 180 8 108 7767 13

25 1470 11 67 484 9 109 7652 13

26 31 5 68 103 9 110 6506 13

27 47 6 69 791 10 111 7766 13

28 100 7 70 1940 11 112 3152 12

29 24 7 71 34 6 113 2879 12

30 198 8 72 958 10 114 7764 13

31 10 8 73 789 10 115 2827 12

32 354 9 74 52 9 116 398 9

33 704 10 75 55 9 117 438 12

34 3827 12 76 734 10 118 7765 13

35 7 5 77 108 10 119 3252 12

36 15 7 78 3838 12 120 2878 12

37 227 8 79 1644 13 121 3766 12

38 202 8 80 40 6 122 7653 13

39 178 8 81 971 10 123 7679 13

SMPTE 421M

© 2006 SMPTE 346

40 399 9 82 940 10 124 821 12

41 942 10 83 53 9 125 439 12

Table 138: 2-Field Reference Interlace MV Table 6

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 1 3 42 717 13 84 346 12

1 11 5 43 1037585 21 85 359 12

2 25 6 44 20 6 86 3531 13

3 111 8 45 173 9 87 1413 14

4 42 9 46 170 9 88 1037591 21

5 117 10 47 20 8 89 1015 11

6 2027 12 48 168 9 90 16213 15

7 355 12 49 339 10 91 1037592 21

8 1 1 50 232 11 92 3548 13

9 14 5 51 510 12 93 1414 14

10 26 6 52 3535 13 94 16214 15

11 62 7 53 120 8 95 1037593 21

12 28 8 54 440 10 96 16215 15

13 45 9 55 338 10 97 1037594 21

14 356 12 56 254 11 98 442 10

15 2028 12 57 689 11 99 1415 14

16 357 12 58 349 12 100 1416 14

17 4 4 59 352 12 101 3551 13

18 6 6 60 1037586 21 102 690 13

19 54 7 61 1037587 21 103 1037595 21

20 127 8 62 122 8 104 3534 13

21 174 9 63 688 11 105 1014 13

22 344 12 64 485 10 106 1037596 21

23 348 12 65 233 11 107 4052 13

24 1389 14 66 252 11 108 1037597 21

25 1037584 21 67 1766 12 109 1037598 21

26 0 4 68 3528 13 110 1037599 21

27 4 6 69 1412 14 111 518784 20

28 123 8 70 1037588 21 112 518785 20

SMPTE 421M

© 2006 SMPTE 347

29 243 9 71 171 9 113 1388 14

30 59 9 72 3550 13 114 518786 20

31 2029 12 73 345 10 115 518787 20

32 691 13 74 1012 11 116 886 11

33 716 13 75 3529 13 117 1417 14

34 1390 14 76 3530 13 118 1418 14

35 24 6 77 506 12 119 518788 20

36 62 9 78 1037589 21 120 518789 20

37 23 8 79 1037590 21 121 3549 13

38 30 8 80 252 9 122 518790 20

39 175 9 81 511 12 123 518791 20

40 1015 13 82 484 10 124 1419 14

41 1391 14 83 175 11 125 32425 16

Table 139: 2-Field Reference Interlace MV Table 7

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 3 2 42 25902 16 84 1608 12

1 14 5 43 214727 20 85 1602 12

2 15 6 44 62 7 86 3206 13

3 126 8 45 57 8 87 3212 13

4 98 9 46 53 8 88 214732 20

5 198 10 47 51 8 89 58 10

6 3289 13 48 415 10 90 6583 14

7 1598 13 49 448 11 91 67 11

8 2 2 50 3290 13 92 807 11

9 2 4 51 214728 20 93 140 12

10 0 5 52 214729 20 94 141 12

11 24 6 53 11 8 95 3213 13

12 12 8 54 208 10 96 214733 20

13 105 9 55 414 10 97 214734 20

14 57 10 56 34 10 98 823 11

15 1799 13 57 56 10 99 3301 13

16 3198 14 58 398 11 100 133 12

17 2 3 59 798 12 101 806 11

SMPTE 421M

© 2006 SMPTE 348

18 13 5 60 12948 15 102 839 12

19 27 7 61 572 14 103 3236 13

20 15 8 62 50 8 104 3199 14

21 410 10 63 18 9 105 3354 14

22 1607 12 64 19 9 106 214735 20

23 6711 15 65 113 9 107 808 11

24 214724 20 66 413 10 108 107360 19

25 13421 16 67 32 10 109 107361 19

26 1 4 68 3207 13 110 3288 13

27 30 6 69 3264 13 111 1676 13

28 127 8 70 214730 20 112 12949 15

29 10 8 71 824 11 113 12950 15

30 225 10 72 1619 12 114 25903 16

31 1633 12 73 418 11 115 26328 16

32 3300 13 74 810 11 116 817 11

33 214725 20 75 802 11 117 1798 13

34 214726 20 76 3303 13 118 573 14

35 29 7 77 132 12 119 118 11

36 48 8 78 287 13 120 3265 13

37 13 8 79 214731 20 121 898 12

38 203 9 80 805 11 122 3302 13

39 409 10 81 1609 12 123 26329 16

40 800 11 82 811 11 124 26330 16

41 142 12 83 119 11 125 26331 16

Table 140: 1-Field Reference Interlace MV Table 0

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 5 3 24 502 9 48 105 8

1 12 4 25 500 9 49 506 9

2 30 5 26 57 6 50 479 9

3 18 5 27 127 8 51 503 9

4 12 5 28 39 7 52 112 8

5 52 6 29 106 7 53 477 9

6 117 7 30 113 7 54 3661 13

SMPTE 421M

© 2006 SMPTE 349

7 112 7 31 53 7 55 1831 12

8 0 2 32 113 8 56 914 11

9 8 4 33 104 8 57 456 10

10 27 5 34 476 9 58 459 10

11 8 5 35 39 6 59 1016 10

12 29 6 36 115 8 60 430 9

13 124 7 37 255 8 61 504 9

14 214 8 38 232 8 62 507 9

15 478 9 39 233 8 63 58574 17

16 431 9 40 126 8 64 58575 17

17 5 4 41 505 9 65 29280 16

18 27 6 42 501 9 66 29281 16

19 38 6 43 509 9 67 29282 16

20 30 6 44 62 7 68 29283 16

21 18 6 45 458 10 69 29284 16

22 118 7 46 1017 10 70 29285 16

23 77 8 47 76 8 71 29286 16

Table 141: 1-Field Reference Interlace MV Table 1

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 7 3 24 181 9 48 361 10

1 1 3 25 206 11 49 84 10

2 7 4 26 6 4 50 1147 11

3 22 5 27 68 7 51 415 12

4 1 5 28 15 7 52 11133 14

5 69 7 29 70 7 53 142 8

6 24 8 30 14 7 54 2782 12

7 694 10 31 172 8 55 1145 11

8 6 3 32 50 9 56 1390 11

9 4 4 33 55 9 57 2292 12

10 23 5 34 4587 13 58 5567 13

11 16 5 35 10 5 59 1144 11

12 41 6 36 26 8 60 9172 14

13 44 7 37 287 9 61 44529 16

SMPTE 421M

© 2006 SMPTE 350

14 346 9 38 22 8 62 22265 15

15 102 10 39 20 8 63 712462 20

16 414 12 40 43 9 64 712463 20

17 9 4 41 360 10 65 356224 19

18 40 6 42 85 10 66 356225 19

19 23 6 43 9173 14 67 356226 19

20 0 5 44 87 7 68 356227 19

21 42 6 45 47 9 69 356228 19

22 4 6 46 54 9 70 356229 19

23 91 8 47 46 9 71 356230 19

Table 142: 1-Field Reference Interlace MV Table 2

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 2 3 24 51 8 48 1574 11

1 6 4 25 497 9 49 2037 11

2 7 4 26 2 5 50 3147 12

3 13 4 27 1019 10 51 8144 13

4 7 5 28 499 9 52 4173 15

5 48 6 29 34 8 53 101 9

6 255 8 30 508 9 54 3138 12

7 496 9 31 66 9 55 201 10

8 2 2 32 1571 11 56 1575 11

9 0 4 33 131 10 57 3139 12

10 5 5 34 1568 11 58 3146 12

11 25 5 35 125 7 59 4174 15

12 30 5 36 64 9 60 8145 13

13 7 6 37 67 9 61 4175 15

14 99 7 38 996 10 62 1042 13

15 253 8 39 997 10 63 66766 19

16 35 8 40 401 11 64 66767 19

17 14 4 41 4073 12 65 33376 18

18 27 7 42 261 11 66 33377 18

19 26 7 43 520 12 67 33378 18

SMPTE 421M

© 2006 SMPTE 351

20 6 6 44 252 8 68 33379 18

21 9 6 45 1572 11 69 33380 18

22 24 7 46 1570 11 70 33381 18

23 197 8 47 400 11 71 33382 18

Table 143: 1-Field Reference Interlace MV Table 3

Index VLC
Codeword

VLC
Size

Index VLC
Codewor

d

VLC
Size

Index VLC
Codewor

d

VLC
Size

0 13 4 24 204 8 48 240 8

1 1 4 25 150 8 49 241 8

2 4 4 26 3 4 50 205 8

3 0 4 27 117 7 51 389 9

4 23 5 28 32 6 52 357 10

5 5 5 29 45 6 53 78 7

6 127 7 30 33 6 54 145 8

7 77 7 31 41 7 55 233 8

8 3 3 32 144 8 56 388 9

9 17 5 33 464 9 57 465 9

10 62 6 34 507 9 58 486 9

11 59 6 35 28 5 59 151 8

12 23 6 36 76 7 60 487 9

13 103 7 37 96 7 61 179 9

14 74 7 38 9 6 62 316 9

15 195 8 39 8 6 63 5710 14

16 242 8 40 45 7 64 5711 14

17 10 4 41 159 8 65 2848 13

18 44 6 42 506 9 66 2849 13

19 50 6 43 317 9 67 2850 13

20 61 6 44 49 6 68 2851 13

21 21 6 45 252 8 69 2852 13

22 40 7 46 88 8 70 2853 13

23 147 8 47 146 8 71 2854 13

11.4 Interlace Pictures MB Mode Tables

11.4.1 Interlace Field P / B Pictures Mixed MV MB Mode Tables
Table 144: Mixed MV MB Mode Table 0

SMPTE 421M

© 2006 SMPTE 352

MB
Mode

VLC
Codewor

d

VLC
Size

0 16 6
1 17 6
2 3 2
3 3 3
4 0 2
5 5 4
6 9 5
7 2 2

Table 145: Mixed MV MB Mode Table 1

MB
Mode

VLC
Codewor

d

VLC
Size

0 8 5
1 9 5
2 3 3
3 6 3
4 7 3
5 0 2
6 5 4
7 2 2

Table 146: Mixed MV MB Mode Table 2

MB
Mode

VLC
Codewor

d

VLC
Size

0 16 6
1 17 6
2 5 4
3 3 3
4 0 2
5 3 2
6 9 5
7 2 2

Table 147: Mixed MV MB Mode Table 3

MB
Mode

VLC
Codewor

d

VLC
Size

0 56 6
1 57 6
2 15 4
3 4 3
4 5 3
5 6 3

SMPTE 421M

© 2006 SMPTE 353

6 29 5
7 0 1

Table 148: Mixed MV MB Mode Table 4

MB
Mode

VLC
Codewor

d

VLC
Size

0 52 6
1 53 6
2 27 5
3 14 4
4 15 4
5 2 2
6 12 4
7 0 1

Table 149: Mixed MV MB Mode Table 5

MB
Mode

VLC
Codewor

d

VLC
Size

0 56 6
1 57 6
2 29 5
3 5 3
4 6 3
5 0 1
6 15 4
7 4 3

Table 150: Mixed MV MB Mode Table 6

MB
Mode

VLC
Codewor

d

VLC
Size

0 16 5
1 17 5
2 6 3
3 7 3
4 0 2
5 1 2
6 9 4
7 5 3

Table 151: Mixed MV MB Mode Table 7

MB
Mode

VLC
Codewor

d

VLC
Size

0 56 6

SMPTE 421M

© 2006 SMPTE 354

1 57 6
2 0 1
3 5 3
4 6 3
5 29 5
6 4 3
7 15 4

11.4.2 Interlace Field P / B Pictures 1-MV MB Mode Tables
Table 152: 1-MV MB Mode Table 0

MB
Mode

VLC
Codewor

d

VLC
Size

0 0 5
1 1 5
2 1 1
3 1 3
4 1 2
5 1 4

Table 153: 1-MV MB Mode Table 1

MB
Mode

VLC
Codewor

d

VLC
Size

0 0 5
1 1 5
2 1 1
3 1 2
4 1 3
5 1 4

Table 154: 1-MV MB Mode Table 2

MB
Mode

VLC
Codewor

d

VLC
Size

0 16 5
1 17 5
2 3 2
3 0 1
4 9 4
5 5 3

Table 155: 1-MV MB Mode Table 3

MB
Mode

VLC
Codewor

d

VLC
Size

SMPTE 421M

© 2006 SMPTE 355

0 20 5
1 21 5
2 3 2
3 11 4
4 0 1
5 4 3

Table 156: 1-MV MB Mode Table 4

MB
Mode

VLC
Codewor

d

VLC
Size

0 4 4
1 5 4
2 2 2
3 3 3
4 3 2
5 0 2

Table 157: 1-MV MB Mode Table 5

MB
Mode

VLC
Codewor

d

VLC
Size

0 4 4
1 5 4
2 3 3
3 2 2
4 0 2
5 3 2

Table 158: 1-MV MB Mode Table 6

MB
Mode

VLC
Codewor

d

VLC
Size

0 0 5
1 1 5
2 1 3
3 1 4
4 1 1
5 1 2

Table 159: 1-MV MB Mode Table 7

MB
Mode

VLC
Codewor

d

VLC
Size

0 16 5
1 17 5
2 9 4

SMPTE 421M

© 2006 SMPTE 356

3 5 3
4 3 2
5 0 1

11.4.3 Interlace Frame P Picture 4-MV MBMODE Tables

Table 160: Interlace Frame 4-MV MB Mode Table 0

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 22 5

1-MV 1 Field 17 5

1-MV 1 No CBP 0 2

1-MV 0 Frame 47 6

1-MV 0 Field 32 6

2-MV (F) N/A Frame 10 4

2-MV (F) N/A Field 1 2

2-MV (F) N/A No CBP 3 2

4-MV N/A Frame 67 7

4-MV N/A Field 133 8

4-MV N/A No CBP 132 8

4-MV (F) N/A Frame 92 7

4-MV (F) N/A Field 19 5

4-MV (F) N/A No CBP 93 7

INTRA N/A N/A 18 5

Table 161: Interlace Frame 4-MV MB Mode Table 1

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 3 3

1-MV 1 Field 45 6

1-MV 1 No CBP 0 3

1-MV 0 Frame 7 3

1-MV 0 Field 23 5

2-MV (F) N/A Frame 6 3

2-MV (F) N/A Field 1 3

2-MV (F) N/A No CBP 2 3

SMPTE 421M

© 2006 SMPTE 357

4-MV N/A Frame 10 4

4-MV N/A Field 39 6

4-MV N/A No CBP 44 6

4-MV (F) N/A Frame 8 4

4-MV (F) N/A Field 18 5

4-MV (F) N/A No CBP 77 7

INTRA N/A N/A 76 7

Table 162: Interlace Frame 4-MV MB Mode Table 2

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 15 4

1-MV 1 Field 6 3

1-MV 1 No CBP 28 5

1-MV 0 Frame 9 5

1-MV 0 Field 41 7

2-MV (F) N/A Frame 6 4

2-MV (F) N/A Field 2 2

2-MV (F) N/A No CBP 15 5

4-MV N/A Frame 14 5

4-MV N/A Field 8 5

4-MV N/A No CBP 40 7

4-MV (F) N/A Frame 29 5

4-MV (F) N/A Field 0 2

4-MV (F) N/A No CBP 21 6

INTRA N/A N/A 11 5

Table 163: Interlace Frame 4-MV MB Mode Table 3

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 7 4

1-MV 1 Field 198 9

1-MV 1 No CBP 1 1

1-MV 0 Frame 2 3

1-MV 0 Field 193 9

SMPTE 421M

© 2006 SMPTE 358

2-MV (F) N/A Frame 13 5

2-MV (F) N/A Field 25 6

2-MV (F) N/A No CBP 0 2

4-MV N/A Frame 97 8

4-MV N/A Field 1599 12

4-MV N/A No CBP 98 8

4-MV (F) N/A Frame 398 10

4-MV (F) N/A Field 798 11

4-MV (F) N/A No CBP 192 9

INTRA N/A N/A 1598 12

11.4.4 Interlace Frame P / B Pictures Non 4-MV MBMODE Tables

Table 164: Interlace Frame Non 4-MV MB Mode Table 0

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 9 4

1-MV 1 Field 22 5

1-MV 1 No CBP 0 2

1-MV 0 Frame 17 5

1-MV 0 Field 16 5

2-MV (F) N/A Frame 10 4

2-MV (F) N/A Field 1 2

2-MV (F) N/A No CBP 3 2

INTRA N/A N/A 23 5

Table 165: Interlace Frame Non 4-MV MB Mode Table 1

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 7 3

1-MV 1 Field 0 4

1-MV 1 No CBP 5 6

1-MV 0 Frame 2 2

1-MV 0 Field 1 3

2-MV (F) N/A Frame 1 2

SMPTE 421M

© 2006 SMPTE 359

2-MV (F) N/A Field 6 3

2-MV (F) N/A No CBP 3 5

INTRA N/A N/A 4 6

Table 166: Interlace Frame Non 4-MV MB Mode Table 2

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 1 2

1-MV 1 Field 0 2

1-MV 1 No CBP 10 4

1-MV 0 Frame 23 5

1-MV 0 Field 44 6

2-MV (F) N/A Frame 8 4

2-MV (F) N/A Field 3 2

2-MV (F) N/A No CBP 9 4

INTRA N/A N/A 45 6

Table 167: Interlace Frame Non 4-MV MB Mode Table 3

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1-MV 1 Frame 7 4

1-MV 1 Field 97 8

1-MV 1 No CBP 1 1

1-MV 0 Frame 2 3

1-MV 0 Field 49 7

2-MV (F) N/A Frame 13 5

2-MV (F) N/A Field 25 6

2-MV (F) N/A No CBP 0 2

INTRA N/A N/A 96 8

SMPTE 421M

© 2006 SMPTE 360

11.5 I-Picture CBPCY Tables
Table 168: I-Picture CBPCY VLC Table

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 1 1 32 6 4

1 23 6 33 3 9

2 9 5 34 30 7

3 5 5 35 28 6

4 6 5 36 18 7

5 71 9 37 904 12

6 32 7 38 68 9

7 16 7 39 112 9

8 2 5 40 31 6

9 124 9 41 574 11

10 58 7 42 57 8

11 29 7 43 142 9

12 2 6 44 1 7

13 236 9 45 454 11

14 119 8 46 182 9

15 0 8 47 69 9

16 3 5 48 20 6

17 183 9 49 575 11

18 44 7 50 125 9

19 19 7 51 24 9

20 1 6 52 7 7

21 360 10 53 455 11

22 70 8 54 134 9

23 63 8 55 25 9

24 30 6 56 21 6

25 1810 13 57 475 10

26 181 9 58 2 9

27 66 8 59 70 9

28 34 7 60 13 8

29 453 11 61 1811 13

30 286 10 62 474 10

31 135 9 63 361 10

SMPTE 421M

© 2006 SMPTE 361

11.6 P and B-Picture CBPCY Tables

Table 169: P and B-Picture CBPCY VLC Table 0

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 13 32 1 6

1 6 13 33 7 13

2 15 7 34 1 8

3 13 13 35 7 12

4 13 7 36 14 7

5 11 13 37 12 13

6 3 13 38 4 13

7 13 12 39 14 12

8 5 6 40 1 7

9 8 13 41 9 13

10 49 7 42 97 8

11 10 12 43 11 12

12 12 6 44 7 5

13 114 8 45 58 7

14 102 8 46 52 7

15 119 8 47 62 7

16 1 5 48 4 6

17 54 7 49 103 8

18 96 8 50 1 13

19 8 12 51 9 12

20 10 6 52 11 6

21 111 8 53 56 7

22 5 13 54 101 8

23 15 12 55 118 8

24 12 7 56 4 5

25 10 13 57 110 8

26 2 13 58 100 8

27 12 12 59 30 6

28 13 6 60 2 3

SMPTE 421M

© 2006 SMPTE 362

29 115 8 61 5 3

30 53 7 62 4 3

31 63 7 63 3 2

Table 170: P and B-Picture CBPCY VLC Table 1

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 14 32 1 3

1 9 13 33 240 8

2 1 8 34 1 14

3 18 13 35 19 13

4 5 3 36 18 5

5 14 13 37 15 13

6 237 8 38 4 13

7 26 13 39 27 13

8 3 3 40 1 4

9 121 7 41 122 7

10 3 8 42 2 13

11 22 13 43 23 13

12 13 4 44 1 6

13 16 13 45 17 13

14 6 13 46 7 13

15 30 13 47 31 13

16 2 3 48 1 5

17 10 13 49 11 13

18 1 13 50 2 8

19 20 13 51 21 13

20 12 4 52 19 5

21 241 8 53 246 8

22 5 13 54 238 8

23 28 13 55 29 13

24 16 5 56 17 5

25 12 13 57 13 13

26 3 13 58 236 8

27 24 13 59 25 13

28 28 5 60 58 6

SMPTE 421M

© 2006 SMPTE 363

29 124 7 61 63 6

30 239 8 62 8 13

31 247 8 63 125 7

Table 171: P and B-Picture CBPCY VLC Table 2

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 13 32 1 5

1 201 8 33 102 7

2 25 6 34 1 8

3 231 8 35 415 9

4 5 4 36 24 6

5 221 8 37 3 13

6 1 13 38 2 13

7 3 12 39 244 8

8 2 4 40 3 4

9 414 9 41 54 6

10 2 8 42 3 8

11 241 8 43 484 9

12 16 5 44 17 5

13 225 8 45 114 7

14 195 8 46 200 8

15 492 9 47 493 9

16 2 5 48 3 5

17 412 9 49 413 9

18 1 10 50 1 9

19 240 8 51 4 13

20 7 4 52 13 5

21 224 8 53 113 7

22 98 7 54 99 7

23 245 8 55 485 9

24 1 6 56 4 4

25 220 8 57 111 7

26 96 7 58 194 8

27 5 13 59 243 8

28 9 4 60 5 3

SMPTE 421M

© 2006 SMPTE 364

29 230 8 61 29 5

30 101 7 62 26 5

31 247 8 63 31 5

Table 172: P and B-Picture CBPCY VLC Table 3

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 9 32 1 2

1 28 9 33 29 9

2 12 9 34 13 9

3 44 9 35 45 9

4 3 2 36 5 9

5 36 9 37 37 9

6 20 9 38 21 9

7 52 9 39 53 9

8 2 2 40 2 9

9 32 9 41 33 9

10 16 9 42 17 9

11 48 9 43 49 9

12 8 9 44 9 9

13 40 9 45 41 9

14 24 9 46 25 9

15 28 8 47 29 8

16 1 3 48 1 9

17 30 9 49 31 9

18 14 9 50 15 9

19 46 9 51 47 9

20 6 9 52 7 9

21 38 9 53 39 9

22 22 9 54 23 9

23 54 9 55 55 9

24 3 9 56 4 9

25 34 9 57 35 9

26 18 9 58 19 9

27 50 9 59 51 9

28 10 9 60 11 9

SMPTE 421M

© 2006 SMPTE 365

29 42 9 61 43 9

30 26 9 62 27 9

31 30 8 63 31 8

11.7 DC Differential Tables

11.7.1 Low-motion Tables

Table 173: Low-motion Luma DC Differential VLC Table

DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size

0 1 1 40 151 14 80 197608 23

1 1 2 41 384 14 81 197609 23

2 1 4 42 788 15 82 197610 23

3 1 5 43 789 15 83 197611 23

4 5 5 44 1541 16 84 197612 23

5 7 5 45 1540 16 85 197613 23

6 8 6 46 1542 16 86 197614 23

7 12 6 47 3086 17 87 197615 23

8 0 7 48 197581 23 88 197616 23

9 2 7 49 197577 23 89 197617 23

10 18 7 50 197576 23 90 197618 23

11 26 7 51 197578 23 91 197619 23

12 3 8 52 197579 23 92 197620 23

13 7 8 53 197580 23 93 197621 23

14 39 8 54 197582 23 94 197622 23

15 55 8 55 197583 23 95 197623 23

16 5 9 56 197584 23 96 197624 23

17 76 9 57 197585 23 97 197625 23

18 108 9 58 197586 23 98 197626 23

19 109 9 59 197587 23 99 197627 23

20 8 10 60 197588 23 100 197628 23

21 25 10 61 197589 23 101 197629 23

22 155 10 62 197590 23 102 197630 23

23 27 10 63 197591 23 103 197631 23

24 154 10 64 197592 23 104 395136 24

SMPTE 421M

© 2006 SMPTE 366

25 19 11 65 197593 23 105 395137 24

26 52 11 66 197594 23 106 395138 24

27 53 11 67 197595 23 107 395139 24

28 97 12 68 197596 23 108 395140 24

29 72 13 69 197597 23 109 395141 24

30 196 13 70 197598 23 110 395142 24

31 74 13 71 197599 23 111 395143 24

32 198 13 72 197600 23 112 395144 24

33 199 13 73 197601 23 113 395145 24

34 146 14 74 197602 23 114 395146 24

35 395 14 75 197603 23 115 395147 24

36 147 14 76 197604 23 116 395148 24

37 387 14 77 197605 23 117 395149 24

38 386 14 78 197606 23 118 395150 24

39 150 14 79 197607 23 ESCAPE 395151 24

Table 174: Low-motion Color-difference DC Differential VLC Table

DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size

0 0 2 40 1630 11 80 3163240 22

1 1 2 41 3256 12 81 3163241 22

2 5 3 42 3088 12 82 3163242 22

3 9 4 43 3257 12 83 3163243 22

4 13 4 44 6179 13 84 3163244 22

5 17 5 45 12357 14 85 3163245 22

6 29 5 46 24713 15 86 3163246 22

7 31 5 47 49424 16 87 3163247 22

8 33 6 48 3163208 22 88 3163248 22

9 49 6 49 3163209 22 89 3163249 22

10 56 6 50 3163210 22 90 3163250 22

11 51 6 51 3163211 22 91 3163251 22

12 57 6 52 3163212 22 92 3163252 22

13 61 6 53 3163213 22 93 3163253 22

14 97 7 54 3163214 22 94 3163254 22

15 121 7 55 3163215 22 95 3163255 22

SMPTE 421M

© 2006 SMPTE 367

16 128 8 56 3163216 22 96 3163256 22

17 200 8 57 3163217 22 97 3163257 22

18 202 8 58 3163218 22 98 3163258 22

19 240 8 59 3163219 22 99 3163259 22

20 129 8 60 3163220 22 100 3163260 22

21 192 8 61 3163221 22 101 3163261 22

22 201 8 62 3163222 22 102 3163262 22

23 263 9 63 3163223 22 103 3163263 22

24 262 9 64 3163224 22 104 6326400 23

25 406 9 65 3163225 22 105 6326401 23

26 387 9 66 3163226 22 106 6326402 23

27 483 9 67 3163227 22 107 6326403 23

28 482 9 68 3163228 22 108 6326404 23

29 522 10 69 3163229 22 109 6326405 23

30 523 10 70 3163230 22 110 6326406 23

31 1545 11 71 3163231 22 111 6326407 23

32 1042 11 72 3163232 22 112 6326408 23

33 1043 11 73 3163233 22 113 6326409 23

34 1547 11 74 3163234 22 114 6326410 23

35 1041 11 75 3163235 22 115 6326411 23

36 1546 11 76 3163236 22 116 6326412 23

37 1631 11 77 3163237 22 117 6326413 23

38 1040 11 78 3163238 22 118 6326414 23

39 1629 11 79 3163239 22 ESCAPE 6326415 23

11.7.2 High-motion Tables

Table 175: High-motion Luma DC Differential VLC Table

DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size

0 2 2 40 824 12 80 1993024 26

1 3 2 41 829 12 81 1993025 26

2 3 3 42 171 13 82 1993026 26

3 2 4 43 241 13 83 1993027 26

4 5 4 44 1656 13 84 1993028 26

SMPTE 421M

© 2006 SMPTE 368

5 1 5 45 242 13 85 1993029 26

6 3 5 46 480 14 86 1993030 26

7 8 5 47 481 14 87 1993031 26

8 0 6 48 340 14 88 1993032 26

9 5 6 49 3314 14 89 1993033 26

10 13 6 50 972 15 90 1993034 26

11 15 6 51 683 15 91 1993035 26

12 19 6 52 6631 15 92 1993036 26

13 8 7 53 974 15 93 1993037 26

14 24 7 54 6630 15 94 1993038 26

15 28 7 55 1364 16 95 1993039 26

16 36 7 56 1951 16 96 1993040 26

17 4 8 57 1365 16 97 1993041 26

18 6 8 58 3901 17 98 1993042 26

19 18 8 59 3895 17 99 1993043 26

20 50 8 60 3900 17 100 1993044 26

21 59 8 61 3893 17 101 1993045 26

22 74 8 62 7789 18 102 1993046 26

23 75 8 63 7784 18 103 1993047 26

24 11 9 64 15576 19 104 1993048 26

25 38 9 65 15571 19 105 1993049 26

26 39 9 66 15577 19 106 1993050 26

27 102 9 67 31140 20 107 1993051 26

28 116 9 68 996538 25 108 1993052 26

29 117 9 69 996532 25 109 1993053 26

30 20 10 70 996533 25 110 1993054 26

31 28 10 71 996534 25 111 1993055 26

32 31 10 72 996535 25 112 1993056 26

33 29 10 73 996536 25 113 1993057 26

34 43 11 74 996537 25 114 1993058 26

35 61 11 75 996539 25 115 1993059 26

36 413 11 76 996540 25 116 1993060 26

37 415 11 77 996541 25 117 1993061 26

38 84 12 78 996542 25 118 1993062 26

39 825 12 79 996543 25 ESCAPE 1993063 26

SMPTE 421M

© 2006 SMPTE 369

Table 176: High-motion Color-difference DC Differential VLC Table

DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size DC
Differential

VLC
Codeword

VLC Size

0 0 2 40 51124 16 80 13087336 24

1 1 2 41 51125 16 81 13087337 24

2 4 3 42 25566 15 82 13087338 24

3 7 3 43 51127 16 83 13087339 24

4 11 4 44 51128 16 84 13087340 24

5 13 4 45 51129 16 85 13087341 24

6 21 5 46 102245 17 86 13087342 24

7 40 6 47 204488 18 87 13087343 24

8 48 6 48 13087304 24 88 13087344 24

9 50 6 49 13087305 24 89 13087345 24

10 82 7 50 13087306 24 90 13087346 24

11 98 7 51 13087307 24 91 13087347 24

12 102 7 52 13087308 24 92 13087348 24

13 166 8 53 13087309 24 93 13087349 24

14 198 8 54 13087310 24 94 13087350 24

15 207 8 55 13087311 24 95 13087351 24

16 335 9 56 13087312 24 96 13087352 24

17 398 9 57 13087313 24 97 13087353 24

18 412 9 58 13087314 24 98 13087354 24

19 669 10 59 13087315 24 99 13087355 24

20 826 10 60 13087316 24 100 13087356 24

21 1336 11 61 13087317 24 101 13087357 24

22 1596 11 62 13087318 24 102 13087358 24

23 1598 11 63 13087319 24 103 13087359 24

24 1599 11 64 13087320 24 104 26174592 25

25 1654 11 65 13087321 24 105 26174593 25

26 2675 12 66 13087322 24 106 26174594 25

27 3194 12 67 13087323 24 107 26174595 25

28 3311 12 68 13087324 24 108 26174596 25

29 5349 13 69 13087325 24 109 26174597 25

30 6621 13 70 13087326 24 110 26174598 25

31 10696 14 71 13087327 24 111 26174599 25

SMPTE 421M

© 2006 SMPTE 370

32 10697 14 72 13087328 24 112 26174600 25

33 25565 15 73 13087329 24 113 26174601 25

34 13240 14 74 13087330 24 114 26174602 25

35 13241 14 75 13087331 24 115 26174603 25

36 51126 16 76 13087332 24 116 26174604 25

37 25560 15 77 13087333 24 117 26174605 25

38 25567 15 78 13087334 24 118 26174606 25

39 51123 16 79 13087335 24 ESCAPE 26174607 25

11.8 Transform AC Coefficient Tables

11.8.1 High Motion Intra Tables
Table 177: High Motion Intra VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 1 2 62 7920 15 124 9183 14

1 5 3 63 61 6 125 25 5

2 13 4 64 83 9 126 40 9

3 18 5 65 416 11 127 374 11

4 14 6 66 726 13 128 1181 13

5 21 7 67 3848 14 129 9181 14

6 19 8 68 19 7 130 48 6

7 63 8 69 124 9 131 162 10

8 75 9 70 1985 11 132 751 12

9 287 9 71 1196 14 133 1464 14

10 184 10 72 27 7 134 63 6

11 995 10 73 160 10 135 165 10

12 370 11 74 836 12 136 987 12

13 589 12 75 3961 14 137 2367 14

14 986 12 76 121 7 138 68 7

15 733 13 77 993 10 139 1995 11

16 8021 13 78 724 13 140 2399 15

17 1465 14 79 8966 14 141 99 7

18 16046 14 80 33 8 142 963 12

19 0 4 81 572 10 143 21 8

20 16 5 82 4014 12 144 2294 12

SMPTE 421M

© 2006 SMPTE 371

21 8 7 83 9182 14 145 23 8

22 32 8 84 53 8 146 1176 13

23 41 9 85 373 11 147 44 8

24 500 9 86 1971 13 148 1970 13

25 563 10 87 197 8 149 47 8

26 480 11 88 372 11 150 8020 13

27 298 12 89 1925 13 151 141 8

28 989 12 90 72 9 152 1981 13

29 1290 13 91 419 11 153 142 8

30 7977 13 92 1182 13 154 4482 13

31 2626 14 93 44 9 155 251 8

32 4722 15 94 250 10 156 1291 13

33 5943 15 95 2006 11 157 45 8

34 3 5 96 146 10 158 1984 11

35 17 7 97 1484 13 159 121 9

36 196 8 98 7921 15 160 8031 13

37 75 10 99 163 10 161 122 9

38 180 11 100 1005 12 162 8022 13

39 2004 11 101 2366 14 163 561 10

40 837 12 102 482 11 164 996 10

41 727 13 103 4723 15 165 417 11

42 1983 13 104 1988 11 166 323 11

43 2360 14 105 5255 15 167 503 11

44 3003 14 106 657 12 168 367 12

45 2398 15 107 659 12 169 658 12

46 19 5 108 3978 12 170 743 12

47 120 7 109 1289 13 171 364 12

48 105 9 110 1288 13 172 365 12

49 562 10 111 1933 13 173 988 12

50 1121 11 112 1982 13 174 3979 12

51 1004 12 113 1932 13 175 1177 13

52 1312 13 114 1198 14 176 984 12

53 7978 13 115 3002 14 177 1934 13

54 15952 14 116 8967 14 178 725 13

55 15953 14 117 2970 14 179 8030 13

SMPTE 421M

© 2006 SMPTE 372

56 5254 15 118 5942 15 180 7979 13

57 12 6 119 14 4 181 1935 13

58 36 9 120 69 7 182 1197 14

59 148 11 121 499 9 183 16047 14

60 2240 12 122 1146 11 184 9180 14

61 3849 14 123 1500 13 ESCAPE 74 9

Table 178: High Motion Intra Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 40 2 7 80 9 1

1 0 2 41 2 8 81 9 2

2 0 3 42 2 9 82 9 3

3 0 4 43 2 10 83 9 4

4 0 5 44 2 11 84 10 1

5 0 6 45 2 12 85 10 2

6 0 7 46 3 1 86 10 3

7 0 8 47 3 2 87 11 1

8 0 9 48 3 3 88 11 2

9 0 10 49 3 4 89 11 3

10 0 11 50 3 5 90 12 1

11 0 12 51 3 6 91 12 2

12 0 13 52 3 7 92 12 3

13 0 14 53 3 8 93 13 1

14 0 15 54 3 9 94 13 2

15 0 16 55 3 10 95 13 3

16 0 17 56 3 11 96 14 1

17 0 18 57 4 1 97 14 2

18 0 19 58 4 2 98 14 3

19 1 1 59 4 3 99 15 1

20 1 2 60 4 4 100 15 2

21 1 3 61 4 5 101 15 3

22 1 4 62 4 6 102 16 1

23 1 5 63 5 1 103 16 2

24 1 6 64 5 2 104 17 1

25 1 7 65 5 3 105 17 2

SMPTE 421M

© 2006 SMPTE 373

26 1 8 66 5 4 106 18 1

27 1 9 67 5 5 107 19 1

28 1 10 68 6 1 108 20 1

29 1 11 69 6 2 109 21 1

30 1 12 70 6 3 110 22 1

31 1 13 71 6 4 111 23 1

32 1 14 72 7 1 112 24 1

33 1 15 73 7 2 113 25 1

34 2 1 74 7 3 114 26 1

35 2 2 75 7 4 115 27 1

36 2 3 76 8 1 116 28 1

37 2 4 77 8 2 117 29 1

38 2 5 78 8 3 118 30 1

39 2 6 79 8 4

Table 179: High Motion Intra Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

119 0 1 141 5 1 163 16 1

120 0 2 142 5 2 164 17 1

121 0 3 143 6 1 165 18 1

122 0 4 144 6 2 166 19 1

123 0 5 145 7 1 167 20 1

124 0 6 146 7 2 168 21 1

125 1 1 147 8 1 169 22 1

126 1 2 148 8 2 170 23 1

127 1 3 149 9 1 171 24 1

128 1 4 150 9 2 172 25 1

129 1 5 151 10 1 173 26 1

130 2 1 152 10 2 174 27 1

131 2 2 153 11 1 175 28 1

132 2 3 154 11 2 176 29 1

133 2 4 155 12 1 177 30 1

134 3 1 156 12 2 178 31 1

135 3 2 157 13 1 179 32 1

136 3 3 158 13 2 180 33 1

SMPTE 421M

© 2006 SMPTE 374

137 3 4 159 14 1 181 34 1

138 4 1 160 14 2 182 35 1

139 4 2 161 15 1 183 36 1

140 4 3 162 15 2 184 37 1

Table 180: High Motion Intra Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 19 16 2

1 15 17 2

2 12 18 1

3 11 19 1

4 6 20 1

5 5 21 1

6 4 22 1

7 4 23 1

8 4 24 1

9 4 25 1

10 3 26 1

11 3 27 1

12 3 28 1

13 3 29 1

14 3 30 1

15 3

Table 181: High Motion Intra Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 6 19 1

1 5 20 1

2 4 21 1

3 4 22 1

4 3 23 1

5 2 24 1

6 2 25 1

7 2 26 1

SMPTE 421M

© 2006 SMPTE 375

8 2 27 1

9 2 28 1

10 2 29 1

11 2 30 1

12 2 31 1

13 2 32 1

14 2 33 1

15 2 34 1

16 1 35 1

17 1 36 1

18 1 37 1

Table 182: High Motion Intra Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 30 11 3

2 17 12 2

3 15 13 1

4 9 14 1

5 5 15 1

6 4 16 0

7 3 17 0

8 3 18 0

9 3 19 0

10 3

Table 183: High Motion Intra Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 37

2 15

3 4

4 3

5 1

6 0

SMPTE 421M

© 2006 SMPTE 376

Table 184: High Motion Inter VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 3 57 4188 13 113 13 4

1 3 4 58 14834 14 114 173 9

2 11 5 59 88 7 115 2086 12

3 20 6 60 543 10 116 11596 14

4 63 6 61 3710 12 117 17 5

5 93 7 62 14847 14 118 363 9

6 162 8 63 35 8 119 2943 12

7 172 9 64 739 10 120 20900 15

8 366 9 65 1253 13 121 25 5

9 522 10 66 11840 14 122 539 10

10 738 10 67 161 8 123 5885 13

11 1074 11 68 1470 11 124 29 5

12 1481 11 69 2504 14 125 916 10

13 2087 12 70 131 8 126 10451 14

14 2900 12 71 314 11 127 43 6

15 1254 13 72 5921 13 128 1468 11

16 4191 13 73 68 9 129 23194 15

17 5930 13 74 630 12 130 47 6

18 8370 14 75 14838 14 131 583 12

19 11598 14 76 139 10 132 16 7

20 14832 14 77 1263 13 133 2613 12

21 16757 15 78 23195 15 134 62 6

22 23198 15 79 520 10 135 2938 12

23 4 4 80 7422 13 136 89 7

24 30 5 81 921 10 137 4190 13

25 66 7 82 7348 13 138 38 8

26 182 8 83 926 10 139 2511 14

27 371 9 84 14835 14 140 85 8

28 917 10 85 1451 11 141 7349 13

29 1838 11 86 29667 15 142 87 8

30 2964 12 87 1847 11 143 3675 12

SMPTE 421M

© 2006 SMPTE 377

31 5796 13 88 23199 15 144 160 8

32 8371 14 89 2093 12 145 5224 13

33 11845 14 90 3689 12 146 368 9

34 5 5 91 3688 12 147 144 10

35 64 7 92 1075 11 148 462 9

36 73 9 93 2939 12 149 538 10

37 655 10 94 11768 14 150 536 10

38 1483 11 95 11862 14 151 360 9

39 1162 13 96 11863 14 152 542 10

40 2525 14 97 14839 14 153 580 12

41 29666 15 98 20901 15 154 1846 11

42 24 5 99 3 3 155 312 11

43 37 8 100 42 6 156 1305 11

44 138 10 101 228 8 157 3678 12

45 1307 11 102 654 10 158 1836 11

46 3679 12 103 1845 11 159 2901 12

47 2505 14 104 4184 13 160 2524 14

48 5020 15 105 7418 13 161 8379 14

49 41 6 106 11769 14 162 1164 13

50 79 9 107 16756 15 163 5923 13

51 1042 11 108 9 4 164 11844 14

52 1165 13 109 84 8 165 5797 13

53 11841 14 110 920 10 166 1304 11

54 56 6 111 1163 13 167 14846 14

55 270 9 112 5021 15 ESCAPE 361 9

56 1448 11

Table 185: High Motion Inter Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 33 1 11 66 7 4

1 0 2 34 2 1 67 8 1

2 0 3 35 2 2 68 8 2

3 0 4 36 2 3 69 8 3

4 0 5 37 2 4 70 9 1

5 0 6 38 2 5 71 9 2

SMPTE 421M

© 2006 SMPTE 378

6 0 7 39 2 6 72 9 3

7 0 8 40 2 7 73 10 1

8 0 9 41 2 8 74 10 2

9 0 10 42 3 1 75 10 3

10 0 11 43 3 2 76 11 1

11 0 12 44 3 3 77 11 2

12 0 13 45 3 4 78 11 3

13 0 14 46 3 5 79 12 1

14 0 15 47 3 6 80 12 2

15 0 16 48 3 7 81 13 1

16 0 17 49 4 1 82 13 2

17 0 18 50 4 2 83 14 1

18 0 19 51 4 3 84 14 2

19 0 20 52 4 4 85 15 1

20 0 21 53 4 5 86 15 2

21 0 22 54 5 1 87 16 1

22 0 23 55 5 2 88 16 2

23 1 1 56 5 3 89 17 1

24 1 2 57 5 4 90 18 1

25 1 3 58 5 5 91 19 1

26 1 4 59 6 1 92 20 1

27 1 5 60 6 2 93 21 1

28 1 6 61 6 3 94 22 1

29 1 7 62 6 4 95 23 1

30 1 8 63 7 1 96 24 1

31 1 9 64 7 2 97 25 1

32 1 10 65 7 3 98 26 1

Table 186: High Motion Inter Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

99 0 1 122 4 2 145 14 2

100 0 2 123 4 3 146 15 1

101 0 3 124 5 1 147 16 1

102 0 4 125 5 2 148 17 1

103 0 5 126 5 3 149 18 1

SMPTE 421M

© 2006 SMPTE 379

104 0 6 127 6 1 150 19 1

105 0 7 128 6 2 151 20 1

106 0 8 129 6 3 152 21 1

107 0 9 130 7 1 153 22 1

108 1 1 131 7 2 154 23 1

109 1 2 132 8 1 155 24 1

110 1 3 133 8 2 156 25 1

111 1 4 134 9 1 157 26 1

112 1 5 135 9 2 158 27 1

113 2 1 136 10 1 159 28 1

114 2 2 137 10 2 160 29 1

115 2 3 138 11 1 161 30 1

116 2 4 139 11 2 162 31 1

117 3 1 140 12 1 163 32 1

118 3 2 141 12 2 164 33 1

119 3 3 142 13 1 165 34 1

120 3 4 143 13 2 166 35 1

121 4 1 144 14 1 167 36 1

Table 187: High Motion Inter Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 23 14 2

1 11 15 2

2 8 16 2

3 7 17 1

4 5 18 1

5 5 19 1

6 4 20 1

7 4 21 1

8 3 22 1

9 3 23 1

10 3 24 1

11 3 25 1

12 2 26 1

13 2

SMPTE 421M

© 2006 SMPTE 380

Table 188: High Motion Inter Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 9 19 1

1 5 20 1

2 4 21 1

3 4 22 1

4 3 23 1

5 3 24 1

6 3 25 1

7 2 26 1

8 2 27 1

9 2 28 1

10 2 29 1

11 2 30 1

12 2 31 1

13 2 32 1

14 2 33 1

15 1 34 1

16 1 35 1

17 1 36 1

18 1

Table 189: High Motion Inter Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 26 13 0

2 16 14 0

3 11 15 0

4 7 16 0

5 5 17 0

6 3 18 0

7 3 19 0

8 2 20 0

9 1 21 0

10 1 22 0

SMPTE 421M

© 2006 SMPTE 381

11 1 23 0

12 0

Table 190: High Motion Inter Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 36

2 14

3 6

4 3

5 1

6 0

7 0

8 0

9 0

11.8.2 Low Motion Intra Tables
Table 191: Low Motion Intra VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 1 2 45 156 12 89 18 5

1 6 3 46 317 13 90 232 8

2 15 4 47 59 6 91 76 11

3 22 5 48 28 9 92 310 13

4 32 6 49 20 11 93 57 6

5 24 7 50 2494 12 94 612 10

6 8 8 51 6 7 95 3770 12

7 154 8 52 122 9 96 0 7

8 86 9 53 400 11 97 174 10

9 318 9 54 311 13 98 2460 12

10 240 10 55 27 7 99 31 7

11 933 10 56 8 10 100 1246 11

12 119 11 57 1884 11 101 67 7

13 495 11 58 113 7 102 1244 11

14 154 12 59 215 10 103 3 8

15 93 13 60 2495 12 104 971 12

SMPTE 421M

© 2006 SMPTE 382

16 1 4 61 7 8 105 6 8

17 17 5 62 175 10 106 2462 12

18 2 7 63 1228 11 107 42 8

19 11 8 64 52 8 108 1521 13

20 18 9 65 613 10 109 15 8

21 470 9 66 159 12 110 2558 12

22 638 10 67 224 8 111 51 8

23 401 11 68 22 11 112 2559 12

24 234 12 69 807 12 113 152 8

25 988 12 70 21 9 114 2463 12

26 315 13 71 381 11 115 234 8

27 4 5 72 3771 12 116 316 13

28 20 7 73 20 9 117 46 8

29 158 8 74 246 10 118 402 11

30 9 10 75 484 11 119 310 9

31 428 11 76 203 10 120 106 9

32 482 11 77 2461 12 121 21 11

33 970 12 78 202 10 122 943 10

34 95 13 79 764 12 123 483 11

35 23 5 80 383 11 124 116 11

36 78 7 81 1229 11 125 235 12

37 94 9 82 765 12 126 761 12

38 243 10 83 1278 11 127 92 13

39 429 11 84 314 13 128 237 12

40 236 12 85 10 4 129 989 12

41 1520 13 86 66 7 130 806 12

42 14 6 87 467 9 131 94 13

43 225 8 88 1245 11 ESCAPE 22 7

44 932 10

Table 192: Low Motion Intra Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 29 2 3 57 7 3

1 0 2 30 2 4 58 8 1

SMPTE 421M

© 2006 SMPTE 383

2 0 3 31 2 5 59 8 2

3 0 4 32 2 6 60 8 3

4 0 5 33 2 7 61 9 1

5 0 6 34 2 8 62 9 2

6 0 7 35 3 1 63 9 3

7 0 8 36 3 2 64 10 1

8 0 9 37 3 3 65 10 2

9 0 10 38 3 4 66 10 3

10 0 11 39 3 5 67 11 1

11 0 12 40 3 6 68 11 2

12 0 13 41 3 7 69 11 3

13 0 14 42 4 1 70 12 1

14 0 15 43 4 2 71 12 2

15 0 16 44 4 3 72 12 3

16 1 1 45 4 4 73 13 1

17 1 2 46 4 5 74 13 2

18 1 3 47 5 1 75 13 3

19 1 4 48 5 2 76 14 1

20 1 5 49 5 3 77 14 2

21 1 6 50 5 4 78 15 1

22 1 7 51 6 1 79 15 2

23 1 8 52 6 2 80 16 1

24 1 9 53 6 3 81 17 1

25 1 10 54 6 4 82 18 1

26 1 11 55 7 1 83 19 1

27 2 1 56 7 2 84 20 1

28 2 2

Table 193: Low Motion Intra Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

85 0 1 101 5 1 117 13 1

86 0 2 102 5 2 118 13 2

87 0 3 103 6 1 119 14 1

88 0 4 104 6 2 120 15 1

89 1 1 105 7 1 121 16 1

SMPTE 421M

© 2006 SMPTE 384

90 1 2 106 7 2 122 17 1

91 1 3 107 8 1 123 18 1

92 1 4 108 8 2 124 19 1

93 2 1 109 9 1 125 20 1

94 2 2 110 9 2 126 21 1

95 2 3 111 10 1 127 22 1

96 3 1 112 10 2 128 23 1

97 3 2 113 11 1 129 24 1

98 3 3 114 11 2 130 25 1

99 4 1 115 12 1 131 26 1

100 4 2 116 12 2

Table 194: Low Motion Intra Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 16 11 3

1 11 12 3

2 8 13 3

3 7 14 2

4 5 15 2

5 4 16 1

6 4 17 1

7 3 18 1

8 3 19 1

9 3 20 1

10 3

Table 195: Low Motion Intra Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 4 14 1

1 4 15 1

2 3 16 1

3 3 17 1

4 2 18 1

5 2 19 1

SMPTE 421M

© 2006 SMPTE 385

6 2 20 1

7 2 21 1

8 2 22 1

9 2 23 1

10 2 24 1

11 2 25 1

12 2 26 1

13 2

Table 196: Low Motion Intra Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 20 9 1

2 15 10 1

3 13 11 1

4 6 12 0

5 4 13 0

6 3 14 0

7 3 15 0

8 2 16 0

Table 197: Low Motion Intra Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 26

2 13

3 3

4 1

11.8.3 Low Motion Inter Tables

Table 198: Low Motion Inter VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 4 3 50 384 11 100 4 6

1 20 5 51 1436 14 101 796 12

2 23 7 52 125 8 102 6 6

SMPTE 421M

© 2006 SMPTE 386

3 127 8 53 356 12 103 200 13

4 340 9 54 1901 15 104 13 6

5 498 10 55 2 9 105 474 13

6 191 11 56 397 11 106 7 6

7 101 12 57 5505 13 107 201 13

8 2730 12 58 173 8 108 1 7

9 1584 13 59 96 12 109 46 14

10 5527 13 60 3175 14 110 20 7

11 951 14 61 28 9 111 5526 13

12 11042 14 62 238 13 112 10 7

13 3046 15 63 3 9 113 2754 12

14 11 4 64 719 13 114 22 7

15 55 7 65 217 9 115 347 14

16 98 9 66 5504 13 116 21 7

17 7 11 67 2 11 117 346 14

18 358 12 68 387 11 118 15 8

19 206 13 69 87 12 119 94 15

20 5520 13 70 97 12 120 126 8

21 1526 14 71 49 11 121 171 8

22 3047 15 72 102 12 122 45 9

23 7 5 73 1585 13 123 216 9

24 109 8 74 1586 13 124 11 9

25 3 11 75 172 13 125 20 10

26 799 12 76 797 12 126 691 10

27 1522 14 77 118 12 127 499 10

28 2 6 78 58 11 128 58 10

29 97 9 79 357 12 129 0 10

30 85 12 80 3174 14 130 88 10

31 479 14 81 3 2 131 46 9

32 26 6 82 84 7 132 94 10

33 30 10 83 683 10 133 1379 11

34 2761 12 84 22 13 134 236 12

35 11043 14 85 1527 14 135 84 12

36 30 6 86 5 4 136 2753 12

37 31 10 87 248 9 137 5462 13

SMPTE 421M

© 2006 SMPTE 387

38 2755 12 88 2729 12 138 762 13

39 11051 14 89 95 15 139 385 11

40 6 7 90 4 4 140 5463 13

41 4 11 91 28 10 141 1437 14

42 760 13 92 5456 13 142 10915 14

43 25 7 93 4 5 143 11050 14

44 6 11 94 119 11 144 478 14

45 1597 13 95 1900 15 145 1596 13

46 87 7 96 14 5 146 207 13

47 386 11 97 10 12 147 5524 13

48 10914 14 98 12 5 ESCAPE 13 9

49 4 8 99 1378 11

Table 199: Low Motion Inter Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 27 2 5 54 10 3

1 0 2 28 3 1 55 11 1

2 0 3 29 3 2 56 11 2

3 0 4 30 3 3 57 11 3

4 0 5 31 3 4 58 12 1

5 0 6 32 4 1 59 12 2

6 0 7 33 4 2 60 12 3

7 0 8 34 4 3 61 13 1

8 0 9 35 4 4 62 13 2

9 0 10 36 5 1 63 14 1

10 0 11 37 5 2 64 14 2

11 0 12 38 5 3 65 15 1

12 0 13 39 5 4 66 15 2

13 0 14 40 6 1 67 16 1

14 1 1 41 6 2 68 17 1

15 1 2 42 6 3 69 18 1

16 1 3 43 7 1 70 19 1

17 1 4 44 7 2 71 20 1

18 1 5 45 7 3 72 21 1

19 1 6 46 8 1 73 22 1

SMPTE 421M

© 2006 SMPTE 388

20 1 7 47 8 2 74 23 1

21 1 8 48 8 3 75 24 1

22 1 9 49 9 1 76 25 1

23 2 1 50 9 2 77 26 1

24 2 2 51 9 3 78 27 1

25 2 3 52 10 1 79 28 1

26 2 4 53 10 2 80 29 1

Table 200: Low Motion Inter Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

81 0 1 104 8 1 126 22 1

82 0 2 105 8 2 127 23 1

83 0 3 106 9 1 128 24 1

84 0 4 107 9 2 129 25 1

85 0 5 108 10 1 130 26 1

86 1 1 109 10 2 131 27 1

87 1 2 110 11 1 132 28 1

88 1 3 111 11 2 133 29 1

89 1 4 112 12 1 134 30 1

90 2 1 113 12 2 135 31 1

91 2 2 114 13 1 136 32 1

92 2 3 115 13 2 137 33 1

93 3 1 116 14 1 138 34 1

94 3 2 117 14 2 139 35 1

95 3 3 118 15 1 140 36 1

96 4 1 119 15 2 141 37 1

97 4 2 120 16 1 142 38 1

98 5 1 121 17 1 143 39 1

99 5 2 122 18 1 144 40 1

100 6 1 123 19 1 145 41 1

101 6 2 124 20 1 146 42 1

102 7 1 125 21 1 147 43 1

103 7 2

SMPTE 421M

© 2006 SMPTE 389

Table 201: Low Motion Inter Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 14 15 2

1 9 16 1

2 5 17 1

3 4 18 1

4 4 19 1

5 4 20 1

6 3 21 1

7 3 22 1

8 3 23 1

9 3 24 1

10 3 25 1

11 3 26 1

12 3 27 1

13 2 28 1

14 2 29 1

Table 202: Low Motion Inter Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 5 22 1

1 4 23 1

2 3 24 1

3 3 25 1

4 2 26 1

5 2 27 1

6 2 28 1

7 2 29 1

8 2 30 1

9 2 31 1

10 2 32 1

11 2 33 1

12 2 34 1

13 2 35 1

SMPTE 421M

© 2006 SMPTE 390

14 2 36 1

15 2 37 1

16 1 38 1

17 1 39 1

18 1 40 1

19 1 41 1

20 1 42 1

21 1 43 1

Table 203: Low Motion Inter Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 29 8 1

2 15 9 1

3 12 10 0

4 5 11 0

5 2 12 0

6 1 13 0

7 1 14 0

Table 204: Low Motion Inter Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 43

2 15

3 3

4 1

5 0

11.8.4 Mid Rate Intra Tables

Table 205: Mid Rate Intra VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 2 2 35 83 12 69 22 8

1 6 3 36 85 12 70 23 9

SMPTE 421M

© 2006 SMPTE 391

2 15 4 37 11 5 71 6 10

3 13 5 38 21 7 72 5 11

4 12 5 39 30 9 73 4 11

5 21 6 40 12 10 74 89 12

6 19 6 41 86 12 75 15 6

7 18 6 42 17 6 76 22 9

8 23 7 43 27 8 77 5 10

9 31 8 44 29 9 78 14 6

10 30 8 45 11 10 79 4 10

11 29 8 46 16 6 80 17 7

12 37 9 47 34 9 81 36 11

13 36 9 48 10 10 82 16 7

14 35 9 49 13 6 83 37 11

15 33 9 50 28 9 84 19 7

16 33 10 51 8 10 85 90 12

17 32 10 52 18 7 86 21 8

18 15 10 53 27 9 87 91 12

19 14 10 54 84 12 88 20 8

20 7 11 55 20 7 89 19 8

21 6 11 56 26 9 90 26 8

22 32 11 57 87 12 91 21 9

23 33 11 58 25 8 92 20 9

24 80 12 59 9 10 93 19 9

25 81 12 60 24 8 94 18 9

26 82 12 61 35 11 95 17 9

27 14 4 62 23 8 96 38 11

28 20 6 63 25 9 97 39 11

29 22 7 64 24 9 98 92 12

30 28 8 65 7 10 99 93 12

31 32 9 66 88 12 100 94 12

32 31 9 67 7 4 101 95 12

33 13 10 68 12 6 ESCAPE 3 7

34 34 11

SMPTE 421M

© 2006 SMPTE 392

Table 206: Mid Rate Intra Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 23 0 24 45 3 4

1 0 2 24 0 25 46 4 1

2 0 3 25 0 26 47 4 2

3 0 4 26 0 27 48 4 3

4 0 5 27 1 1 49 5 1

5 0 6 28 1 2 50 5 2

6 0 7 29 1 3 51 5 3

7 0 8 30 1 4 52 6 1

8 0 9 31 1 5 53 6 2

9 0 10 32 1 6 54 6 3

10 0 11 33 1 7 55 7 1

11 0 12 34 1 8 56 7 2

12 0 13 35 1 9 57 7 3

13 0 14 36 1 10 58 8 1

14 0 15 37 2 1 59 8 2

15 0 16 38 2 2 60 9 1

16 0 17 39 2 3 61 9 2

17 0 18 40 2 4 62 10 1

18 0 19 41 2 5 63 11 1

19 0 20 42 3 1 64 12 1

20 0 21 43 3 2 65 13 1

21 0 22 44 3 3 66 14 1

22 0 23

Table 207: Mid Rate Intra Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

67 0 1 79 2 2 91 10 1

68 0 2 80 3 1 92 11 1

69 0 3 81 3 2 93 12 1

70 0 4 82 4 1 94 13 1

71 0 5 83 4 2 95 14 1

SMPTE 421M

© 2006 SMPTE 393

72 0 6 84 5 1 96 15 1

73 0 7 85 5 2 97 16 1

74 0 8 86 6 1 98 17 1

75 1 1 87 6 2 99 18 1

76 1 2 88 7 1 100 19 1

77 1 3 89 8 1 101 20 1

78 2 1 90 9 1

Table 208: Mid Rate Intra Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 27 8 2

1 10 9 2

2 5 10 1

3 4 11 1

4 3 12 1

5 3 13 1

6 3 14 1

7 3

Table 209: Mid Rate Intra Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 8 11 1

1 3 12 1

2 2 13 1

3 2 14 1

4 2 15 1

5 2 16 1

6 2 17 1

7 1 18 1

8 1 19 1

9 1 20 1

10 1

SMPTE 421M

© 2006 SMPTE 394

Table 210: Mid Rate Intra Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 14 15 0

2 9 16 0

3 7 17 0

4 3 18 0

5 2 19 0

6 1 20 0

7 1 21 0

8 1 22 0

9 1 23 0

10 1 24 0

11 0 25 0

12 0 26 0

13 0 27 0

14 0

Table 211: Mid Rate Intra Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 20

2 6

3 1

4 0

5 0

6 0

7 0

8 0

11.8.5 Mid Rate Inter Tables
Table 212: Mid Rate Inter VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 2 2 35 10 10 69 16 7

SMPTE 421M

© 2006 SMPTE 395

1 15 4 36 17 6 70 26 8

2 21 6 37 9 10 71 25 8

3 23 7 38 16 6 72 24 8

4 31 8 39 8 10 73 23 8

5 37 9 40 22 7 74 22 8

6 36 9 41 85 12 75 21 8

7 33 10 42 21 7 76 20 8

8 32 10 43 20 7 77 19 8

9 7 11 44 28 8 78 24 9

10 6 11 45 27 8 79 23 9

11 32 11 46 33 9 80 22 9

12 6 3 47 32 9 81 21 9

13 20 6 48 31 9 82 20 9

14 30 8 49 30 9 83 19 9

15 15 10 50 29 9 84 18 9

16 33 11 51 28 9 85 17 9

17 80 12 52 27 9 86 7 10

18 14 4 53 26 9 87 6 10

19 29 8 54 34 11 88 5 10

20 14 10 55 35 11 89 4 10

21 81 12 56 86 12 90 36 11

22 13 5 57 87 12 91 37 11

23 35 9 58 7 4 92 38 11

24 13 10 59 25 9 93 39 11

25 12 5 60 5 11 94 88 12

26 34 9 61 15 6 95 89 12

27 82 12 62 4 11 96 90 12

28 11 5 63 14 6 97 91 12

29 12 10 64 13 6 98 92 12

30 83 12 65 12 6 99 93 12

31 19 6 66 19 7 100 94 12

32 11 10 67 18 7 101 95 12

33 84 12 68 17 7 ESCAPE 3 7

34 18 6

SMPTE 421M

© 2006 SMPTE 396

Table 213: Mid Rate Inter Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 20 2 3 39 9 2

1 0 2 21 2 4 40 10 1

2 0 3 22 3 1 41 10 2

3 0 4 23 3 2 42 11 1

4 0 5 24 3 3 43 12 1

5 0 6 25 4 1 44 13 1

6 0 7 26 4 2 45 14 1

7 0 8 27 4 3 46 15 1

8 0 9 28 5 1 47 16 1

9 0 10 29 5 2 48 17 1

10 0 11 30 5 3 49 18 1

11 0 12 31 6 1 50 19 1

12 1 1 32 6 2 51 20 1

13 1 2 33 6 3 52 21 1

14 1 3 34 7 1 53 22 1

15 1 4 35 7 2 54 23 1

16 1 5 36 8 1 55 24 1

17 1 6 37 8 2 56 25 1

18 2 1 38 9 1 57 26 1

19 2 2

Table 214: Mid Rate Inter Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

58 0 1 73 12 1 88 27 1

59 0 2 74 13 1 89 28 1

60 0 3 75 14 1 90 29 1

61 1 1 76 15 1 91 30 1

62 1 2 77 16 1 92 31 1

63 2 1 78 17 1 93 32 1

64 3 1 79 18 1 94 33 1

65 4 1 80 19 1 95 34 1

SMPTE 421M

© 2006 SMPTE 397

66 5 1 81 20 1 96 35 1

67 6 1 82 21 1 97 36 1

68 7 1 83 22 1 98 37 1

69 8 1 84 23 1 99 38 1

70 9 1 85 24 1 100 39 1

71 10 1 86 25 1 101 40 1

72 11 1 87 26 1

Table 215: Mid Rate Inter Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 12 14 1

1 6 15 1

2 4 16 1

3 3 17 1

4 3 18 1

5 3 19 1

6 3 20 1

7 2 21 1

8 2 22 1

9 2 23 1

10 2 24 1

11 1 25 1

12 1 26 1

13 1

Table 216: Mid Rate Inter Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 3 21 1

1 2 22 1

2 1 23 1

3 1 24 1

4 1 25 1

5 1 26 1

6 1 27 1

SMPTE 421M

© 2006 SMPTE 398

7 1 28 1

8 1 29 1

9 1 30 1

10 1 31 1

11 1 32 1

12 1 33 1

13 1 34 1

14 1 35 1

15 1 36 1

16 1 37 1

17 1 38 1

18 1 39 1

19 1 40 1

20 1

Table 217: Mid Rate Inter Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 26 7 0

2 10 8 0

3 6 9 0

4 2 10 0

5 1 11 0

6 1 12 0

Table 218: Mid Rate Inter Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 40

2 1

3 0

11.8.6 High Rate Intra Tables
Table 219: High Rate Intra VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 2 54 7961 13 108 72 8

SMPTE 421M

© 2006 SMPTE 399

1 3 3 55 7605 13 109 1996 11

2 13 4 56 9 4 110 2721 12

3 5 4 57 16 5 111 384 9

4 28 5 58 41 6 112 1125 11

5 22 5 59 98 7 113 6405 13

6 63 6 60 243 8 114 994 10

7 58 6 61 173 8 115 3777 12

8 46 6 62 485 9 116 15515 14

9 34 6 63 377 9 117 756 10

10 123 7 64 156 9 118 2248 12

11 103 7 65 945 10 119 1985 11

12 95 7 66 686 10 120 2344 13

13 71 7 67 295 10 121 1505 11

14 38 7 68 1902 11 122 12813 14

15 239 8 69 1392 11 123 3778 12

16 205 8 70 629 11 124 25624 15

17 193 8 71 3877 12 125 7988 13

18 169 8 72 3776 12 126 120 7

19 79 8 73 2720 12 127 341 9

20 498 9 74 2263 12 128 1362 11

21 477 9 75 7756 13 129 6431 13

22 409 9 76 8 5 130 250 8

23 389 9 77 99 7 131 2012 11

24 349 9 78 175 8 132 6407 13

25 283 9 79 379 9 133 172 8

26 1007 10 80 947 10 134 585 11

27 993 10 81 2013 11 135 5041 14

28 968 10 82 1600 11 136 502 9

29 817 10 83 3981 12 137 2786 12

30 771 10 84 3009 12 138 476 9

31 753 10 85 1169 12 139 1261 12

32 672 10 86 40 6 140 388 9

33 563 10 87 195 8 141 6404 13

34 294 10 88 337 9 142 342 9

35 1984 11 89 673 10 143 2521 13

SMPTE 421M

© 2006 SMPTE 400

36 1903 11 90 1395 11 144 999 10

37 1900 11 91 3779 12 145 2345 13

38 1633 11 92 7989 13 146 946 10

39 1540 11 93 101 7 147 15208 14

40 1394 11 94 474 9 148 757 10

41 1361 11 95 687 10 149 5040 14

42 1130 11 96 631 11 150 802 10

43 628 11 97 2249 12 151 15209 14

44 3879 12 98 6017 13 152 564 10

45 3876 12 99 37 7 153 31029 15

46 3803 12 100 280 9 154 1991 11

47 3214 12 101 1606 11 155 51251 16

48 3083 12 102 2726 12 156 1632 11

49 3082 12 103 6016 13 157 31028 15

50 2787 12 104 201 8 158 587 11

51 2262 12 105 801 10 159 51250 16

52 1168 12 106 3995 12 160 2727 12

53 1173 12 107 6430 13 161 7960 13

 ESCAPE 122 7

Table 220: High Rate Intra Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 42 0 43 84 2 9

1 0 2 43 0 44 85 2 10

2 0 3 44 0 45 86 3 1

3 0 4 45 0 46 87 3 2

4 0 5 46 0 47 88 3 3

5 0 6 47 0 48 89 3 4

6 0 7 48 0 49 90 3 5

7 0 8 49 0 50 91 3 6

8 0 9 50 0 51 92 3 7

9 0 10 51 0 52 93 4 1

10 0 11 52 0 53 94 4 2

11 0 12 53 0 54 95 4 3

12 0 13 54 0 55 96 4 4

SMPTE 421M

© 2006 SMPTE 401

13 0 14 55 0 56 97 4 5

14 0 15 56 1 1 98 4 6

15 0 16 57 1 2 99 5 1

16 0 17 58 1 3 100 5 2

17 0 18 59 1 4 101 5 3

18 0 19 60 1 5 102 5 4

19 0 20 61 1 6 103 5 5

20 0 21 62 1 7 104 6 1

21 0 22 63 1 8 105 6 2

22 0 23 64 1 9 106 6 3

23 0 24 65 1 10 107 6 4

24 0 25 66 1 11 108 7 1

25 0 26 67 1 12 109 7 2

26 0 27 68 1 13 110 7 3

27 0 28 69 1 14 111 8 1

28 0 29 70 1 15 112 8 2

29 0 30 71 1 16 113 8 3

30 0 31 72 1 17 114 9 1

31 0 32 73 1 18 115 9 2

32 0 33 74 1 19 116 9 3

33 0 34 75 1 20 117 10 1

34 0 35 76 2 1 118 10 2

35 0 36 77 2 2 119 11 1

36 0 37 78 2 3 120 11 2

37 0 38 79 2 4 121 12 1

38 0 39 80 2 5 122 12 2

39 0 40 81 2 6 123 13 1

40 0 41 82 2 7 124 13 2

41 0 42 83 2 8 125 14 1

Table 221: High Rate Intra Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

126 0 1 138 4 1 150 10 1

127 0 2 139 4 2 151 10 2

128 0 3 140 5 1 152 11 1

SMPTE 421M

© 2006 SMPTE 402

129 0 4 141 5 2 153 11 2

130 1 1 142 6 1 154 12 1

131 1 2 143 6 2 155 12 2

132 1 3 144 7 1 156 13 1

133 2 1 145 7 2 157 13 2

134 2 2 146 8 1 158 14 1

135 2 3 147 8 2 159 14 2

136 3 1 148 9 1 160 15 1

137 3 2 149 9 2 161 16 1

Table 222: High Rate Intra Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 56 8 3

1 20 9 3

2 10 10 2

3 7 11 2

4 6 12 2

5 5 13 2

6 4 14 1

7 3

Table 223: High Rate Intra Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 4 9 2

1 3 10 2

2 3 11 2

3 2 12 2

4 2 13 2

5 2 14 2

6 2 15 1

7 2 16 1

8 2

Table 224: High Rate Intra Delta Run Indexed by Level Table (Last == 0)

SMPTE 421M

© 2006 SMPTE 403

Level Delta Run Level Delta Run

1 14 29 0

2 13 30 0

3 9 31 0

4 6 32 0

5 5 33 0

6 4 34 0

7 3 35 0

8 2 36 0

9 2 37 0

10 2 38 0

11 1 39 0

12 1 40 0

13 1 41 0

14 1 42 0

15 1 43 0

16 1 44 0

17 1 45 0

18 1 46 0

19 1 47 0

20 1 48 0

21 0 49 0

22 0 50 0

23 0 51 0

24 0 52 0

25 0 53 0

26 0 54 0

27 0 55 0

28 0 56 0

Table 225: High Rate Intra Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 16

2 14

3 2

SMPTE 421M

© 2006 SMPTE 404

4 0

11.8.7 High Rate Inter Tables

Table 226: High Rate Inter VLC Table

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 2 2 59 7 5 118 31989 15

1 0 3 60 472 9 119 117 7

2 30 5 61 728 11 120 3364 12

3 4 5 62 7975 13 121 63977 16

4 18 6 63 13460 14 122 46 7

5 112 7 64 53 6 123 7970 13

6 26 7 65 993 10 124 33 7

7 95 8 66 1436 12 125 1359 13

8 71 8 67 14531 14 126 20 7

9 467 9 68 12 6 127 14916 14

10 181 9 69 357 10 128 228 8

11 87 9 70 7459 13 129 31991 15

12 949 10 71 5688 14 130 94 8

13 365 10 72 104 7 131 29061 15

14 354 10 73 1683 11 132 55 8

15 1998 11 74 14917 14 133 11379 15

16 1817 11 75 32 7 134 475 9

17 1681 11 76 3984 12 135 23005 16

18 710 11 77 31990 15 136 455 9

19 342 11 78 232 8 137 26923 15

20 3986 12 79 1423 12 138 422 9

21 3374 12 80 11503 15 139 22757 16

22 3360 12 81 69 8 140 180 9

23 1438 12 82 2874 13 141 127952 17

24 1128 12 83 497 9 142 176 9

25 678 12 84 15174 14 143 45513 17

26 7586 13 85 423 9 144 998 10

27 7264 13 86 5750 14 145 92016 18

28 6723 13 87 86 9 146 366 10

SMPTE 421M

© 2006 SMPTE 405

29 2845 13 88 26922 15 147 255906 18

30 2240 13 89 909 10 148 283 10

31 1373 13 90 58121 16 149 1023629 20

32 3 3 91 170 10 150 217 10

33 10 5 92 116241 17 151 1023631 20

34 119 7 93 735 11 152 168 10

35 229 8 94 46009 17 153 182051 19

36 473 9 95 712 11 154 1865 11

37 997 10 96 232480 18 155 929924 20

38 358 10 97 432 11 156 1686 11

39 1684 11 98 91024 18 157 364101 20

40 338 11 99 3999 12 158 734 11

41 1439 12 100 92017 18 159 728200 21

42 7996 13 101 3792 12 160 561 11

43 6731 13 102 464963 19 161 1859850 21

44 1374 13 103 3370 12 162 433 11

45 12 4 104 1023628 20 163 7439405 23

46 125 7 105 1121 12 164 3371 12

47 68 8 106 1023630 20 165 3719703 22

48 992 10 107 2919 13 166 3375 12

49 1897 11 108 1375 13 167 1456403 22

50 3633 12 109 63 6 168 1458 12

51 7974 13 110 109 9 169 1456402 22

52 1372 13 111 3728 12 170 1129 12

53 27 5 112 1358 13 171 7439404 23

54 226 8 113 19 6 172 6722 13

55 933 10 114 281 10 173 2241 13

56 713 11 115 2918 13 ESCAPE 115 7

57 7971 13 116 11 6

58 15175 14 117 565 11

Table 227: High Rate Inter Indexed Run and Level Table (Last == 0)

Index Run Level Index Run Level Index Run Level

0 0 1 37 1 6 74 7 3

1 0 2 38 1 7 75 8 1

SMPTE 421M

© 2006 SMPTE 406

2 0 3 39 1 8 76 8 2

3 0 4 40 1 9 77 8 3

4 0 5 41 1 10 78 9 1

5 0 6 42 1 11 79 9 2

6 0 7 43 1 12 80 9 3

7 0 8 44 1 13 81 10 1

8 0 9 45 2 1 82 10 2

9 0 10 46 2 2 83 11 1

10 0 11 47 2 3 84 11 2

11 0 12 48 2 4 85 12 1

12 0 13 49 2 5 86 12 2

13 0 14 50 2 6 87 13 1

14 0 15 51 2 7 88 13 2

15 0 16 52 2 8 89 14 1

16 0 17 53 3 1 90 14 2

17 0 18 54 3 2 91 15 1

18 0 19 55 3 3 92 15 2

19 0 20 56 3 4 93 16 1

20 0 21 57 3 5 94 16 2

21 0 22 58 3 6 95 17 1

22 0 23 59 4 1 96 17 2

23 0 24 60 4 2 97 18 1

24 0 25 61 4 3 98 18 2

25 0 26 62 4 4 99 19 1

26 0 27 63 4 5 100 19 2

27 0 28 64 5 1 101 20 1

28 0 29 65 5 2 102 20 2

29 0 30 66 5 3 103 21 1

30 0 31 67 5 4 104 21 2

31 0 32 68 6 1 105 22 1

32 1 1 69 6 2 106 22 2

33 1 2 70 6 3 107 23 1

34 1 3 71 6 4 108 24 1

35 1 4 72 7 1

36 1 5 73 7 2

SMPTE 421M

© 2006 SMPTE 407

Table 228: High Rate Inter Indexed Run and Level Table (Last == 1)

Index Run Level Index Run Level Index Run Level

109 0 1 131 8 2 153 19 2

110 0 2 132 9 1 154 20 1

111 0 3 133 9 2 155 20 2

112 0 4 134 10 1 156 21 1

113 1 1 135 10 2 157 21 2

114 1 2 136 11 1 158 22 1

115 1 3 137 11 2 159 22 2

116 2 1 138 12 1 160 23 1

117 2 2 139 12 2 161 23 2

118 2 3 140 13 1 162 24 1

119 3 1 141 13 2 163 24 2

120 3 2 142 14 1 164 25 1

121 3 3 143 14 2 165 25 2

122 4 1 144 15 1 166 26 1

123 4 2 145 15 2 167 26 2

124 5 1 146 16 1 168 27 1

125 5 2 147 16 2 169 27 2

126 6 1 148 17 1 170 28 1

127 6 2 149 17 2 171 28 2

128 7 1 150 18 1 172 29 1

129 7 2 151 18 2 173 30 1

130 8 1 152 19 1

Table 229: High Rate Inter Delta Level Indexed by Run Table (Last == 0)

Run Delta Level Run Delta Level

0 32 13 2

1 13 14 2

2 8 15 2

3 6 16 2

4 5 17 2

5 4 18 2

6 4 19 2

SMPTE 421M

© 2006 SMPTE 408

7 3 20 2

8 3 21 2

9 3 22 2

10 2 23 1

11 2 24 1

12 2

Table 230: High Rate Inter Delta Level Indexed by Run Table (Last == 1)

Run Delta Level Run Delta Level

0 4 16 2

1 3 17 2

2 3 18 2

3 3 19 2

4 2 20 2

5 2 21 2

6 2 22 2

7 2 23 2

8 2 24 2

9 2 25 2

10 2 26 2

11 2 27 2

12 2 28 2

13 2 29 1

14 2 30 1

15 2

Table 231: High Rate Inter Delta Run Indexed by Level Table (Last == 0)

Level Delta Run Level Delta Run

1 24 17 0

2 22 18 0

3 9 19 0

4 6 20 0

5 4 21 0

6 3 22 0

SMPTE 421M

© 2006 SMPTE 409

7 2 23 0

8 2 24 0

9 1 25 0

10 1 26 0

11 1 27 0

12 1 28 0

13 1 29 0

14 0 30 0

15 0 31 0

16 0 32 0

Table 232: High Rate Inter Delta Run Indexed by Level Table (Last == 1)

Level Delta Run

1 30

2 28

3 3

4 0

11.9 Zigzag Tables

11.9.1 Intra zigzag tables
Table 233: Intra Normal Scan

0 8 1 2 9
1
6

2
4

1
7

1
0 3 4

1
1

1
8

2
5

3
2

4
0

3
3

4
8

2
6

1
9

1
2 5 6

1
3

2
0

2
7

3
4

4
1

5
6

4
9

5
7

4
2

3
5

2
8

2
1

1
4 7

1
5

2
2

2
9

3
6

4
3

5
0

5
8

5
1

5
9

4
4

3
7

3
0

2
3

3
1

3
8

4
5

5
2

6
0

5
3

6
1

4
6

3
9

4
7

5
4

6
2

5
5

6
3

Table 234: Intra Horizontal Scan

0 1 8 2 3 9
1
6

2
4

1
7

1
0 4 5

1
1

1
8

2
5

3
2

4
0

4
8

3
3

2
6

1
9

1
2 6 7

1
3

2
0

2
7

3
4

4
1

5
6

4
9

5
7

4
2

3
5

2
8

2
1

1
4

1
5

2
2

2
9

3
6

4
3

5
0

5
8

5
1

4
4

3
7

3
0

2
3

3
1

3
8

4
5

5
2

5
9

6
0

5
3

4
6

3
9

4
7

5
4

6
1

6
2

5
5

6
3

SMPTE 421M

© 2006 SMPTE 410

Table 235: Intra Vertical Scan

0 8
1
6 1

2
4

3
2

4
0 9 2 3

1
0

1
7

2
5

4
8

5
6

4
1

3
3

2
6

1
8

1
1 4 5

1
2

1
9

2
7

3
4

4
9

5
7

5
0

4
2

3
5

2
8

2
0

1
3 6 7

1
4

2
1

2
9

3
6

4
3

5
1

5
8

5
9

5
2

4
4

3
7

3
0

2
2

1
5

2
3

3
1

3
8

4
5

6
0

5
3

4
6

3
9

4
7

5
4

6
1

6
2

5
5

6
3

11.9.2 Inter zigzag tables
Table 236: Inter 8x8 Scan for Simple and Main Profiles and Progressive Mode in Advanced Profile

0 8 1 2 9
1
6

2
4

1
7

1
0 3 4

1
1

1
8

2
5

3
2

4
0

4
8

5
6

4
1

3
3

2
6

1
9

1
2 5

6
1
3

2
0

2
7

3
4

4
9

5
7

5
8

5
0

4
2

3
5

2
8

2
1

1
4 7

1
5

2
2

2
9

3
6

4
3

5
1

5
9

6
0

5
2

4
4

3
7

3
0

2
3

3
1

3
8

4
5

5
3

6
1

6
2

5
4

4
6

3
9

4
7

5
5

6
3

Table 237: Inter 8x4 Scan for Simple and Main Profiles

0 1 2 8 3 9
1
0

1
6 4

1
1

1
7

2
4

1
8

1
2 5

1
9

2
5

1
3

2
0

2
6

2
7 6

2
1

2
8

1
4

2
2

2
9 7

3
0

1
5

2
3

3
1

Table 238: Inter 4x8 Scan for Simple and Main Profiles

0 4 1 8 5 1
2

9 2 1
6

6 1
3

2
0

1
0

2
4

1
7

1
4

2
8

2
1

1
8

3 2
5

2
9

7 2
2

1
1

2
6

1
5

3
0

1
9

2
3

2
7

3
1

Table 239: Inter 4x4 Scan for Simple and Main Profiles and Progressive Mode in Advanced Profile

0 4 8 1 5 1
2

9 2 6 1
0

1
3

3 7 1
4

1
1

1
5

Table 240: Progressive Mode Inter 8x4 Scan for Advanced Profile

0 8 1
1
6 2 9

1
0 3

2
4

1
7 4

1
1

1
8

1
2 5

1
9

2
5

1
3

2
0

2
6

2
7 6

2
1

2
8

1
4

2
2

2
9 7

3
0

1
5

2
3

3
1

Table 241: Progressive Mode Inter 4x8 Scan for Advanced Profile

SMPTE 421M

© 2006 SMPTE 411

0 1 4 2 5 8 9 1
2

6 1
6

1
3

1
0

2
0

3 1
7

1
4

2
4

7 2
8

2
1

1
8

2
5

2
9

2
2

1
1

2
6

1
5

3
0

1
9

2
3

2
7

3
1

Table 242: Interlace Mode Inter 8x8 Scan for Advanced Profile (Also used for Intra Mode 8x8 scan for Interlace
Frame Pictures)

0 8 1
1
6

2
4 9 2

3
2

4
0

4
8

5
6

1
7

1
0 3

2
5

1
8

1
1 4

3
3

4
1

4
9

5
7

2
6

3
4

4
2

5
0

5
8

1
9

1
2 5

2
7

2
0

1
3 6

3
5

2
8

2
1

1
4 7

1
5

2
2

2
9

3
6

4
3

5
1

5
9

6
0

5
2

4
4

3
7

3
0

2
3

3
1

3
8

4
5

5
3

6
1

6
2

5
4

4
6

3
9

4
7

5
5

6
3

Table 243: Interlace Mode Inter 8x4 Scan for Advanced Profile

0 8
1
6

2
4 1 9 2

1
7

2
5

1
0 3

1
8

2
6 4

1
1

1
9

1
2 5

1
3

2
0

2
7 6

2
1

2
8

1
4

2
2

2
9 7

3
0

1
5

2
3

3
1

Table 244: Interlace Mode Inter 4x8 Scan for Advanced Profile

0 1 2 4 8 5 1
2

9 6 3 1
6

2
0

2
4

2
8

1
3

1
0

1
7

1
4

2
1

1
8

2
5

2
9

7 2
2

1
1

2
6

1
5

3
0

1
9

2
3

2
7

3
1

Table 245: Interlace Mode Inter 4x4 Scan for Advanced Profile

0 4 8 1
2

1 5 9 2 1
3

6 1
0

3 1
4

7 1
1

1
5

11.10 Motion Vector Differential Tables

Table 246: Motion Vector Differential VLC Table 0

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 6 25 167 10 50 21 5

1 2 7 26 49 8 51 22 5

2 3 7 27 194 10 52 39 6

3 8 8 28 195 10 53 204 9

4 576 14 29 581 14 54 103 8

5 3 6 30 582 14 55 23 5

SMPTE 421M

© 2006 SMPTE 412

6 2 5 31 583 14 56 24 5

7 6 6 32 292 13 57 25 5

8 5 7 33 293 13 58 104 7

9 577 14 34 294 13 59 410 10

10 578 14 35 13 6 60 105 7

11 7 6 36 2 3 61 106 7

12 8 6 37 7 5 62 107 7

13 9 6 38 24 6 63 108 7

14 40 8 39 50 8 64 109 7

15 19 9 40 102 9 65 220 8

16 37 10 41 295 13 66 411 10

17 82 9 42 13 5 67 442 9

18 21 7 43 7 4 68 222 8

19 22 7 44 8 4 69 443 9

20 23 7 45 18 5 70 446 9

21 579 14 46 50 7 71 447 9

22 580 14 47 103 9 72 7 3

23 166 10 48 38 6

24 96 9 49 20 5

Table 247: Motion Vector Differential VLC Table 1

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 5 25 3012 14 50 58 6

1 4 7 26 3013 14 51 163 8

2 5 7 27 3014 14 52 236 8

3 3 6 28 3015 14 53 237 8

4 4 6 29 3016 14 54 3023 14

5 3 5 30 3017 14 55 119 7

6 4 5 31 3018 14 56 120 7

7 5 6 32 3019 14 57 242 8

8 20 7 33 3020 14 58 122 7

9 6 5 34 3021 14 59 486 9

10 21 7 35 3022 14 60 1512 13

11 44 8 36 1 2 61 487 9

SMPTE 421M

© 2006 SMPTE 413

12 45 8 37 4 3 62 246 8

13 46 8 38 15 6 63 494 9

14 3008 14 39 160 8 64 1513 13

15 95 9 40 161 8 65 495 9

16 112 9 41 41 6 66 1514 13

17 113 9 42 6 3 67 1515 13

18 57 8 43 11 4 68 1516 13

19 3009 14 44 42 6 69 1517 13

20 3010 14 45 162 8 70 1518 13

21 116 9 46 43 6 71 1519 13

22 117 9 47 119 9 72 31 5

23 3011 14 48 56 6

24 118 9 49 57 6

Table 248: Motion Vector Differential VLC Table 2

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 3 25 276 11 50 297 11

1 512 12 26 277 11 51 298 11

2 513 12 27 278 11 52 299 11

3 514 12 28 279 11 53 300 11

4 515 12 29 280 11 54 301 11

5 2 3 30 281 11 55 302 11

6 3 4 31 282 11 56 303 11

7 258 11 32 283 11 57 304 11

8 259 11 33 284 11 58 305 11

9 260 11 34 285 11 59 306 11

10 261 11 35 286 11 60 307 11

11 262 11 36 1 1 61 308 11

12 263 11 37 5 5 62 309 11

13 264 11 38 287 11 63 310 11

14 265 11 39 288 11 64 311 11

15 266 11 40 289 11 65 312 11

16 267 11 41 290 11 66 313 11

17 268 11 42 6 4 67 314 11

SMPTE 421M

© 2006 SMPTE 414

18 269 11 43 7 4 68 315 11

19 270 11 44 291 11 69 316 11

20 271 11 45 292 11 70 317 11

21 272 11 46 293 11 71 318 11

22 273 11 47 294 11 72 319 11

23 274 11 48 295 11

24 275 11 49 296 11

Table 249: Motion Vector Differential VLC Table 3

Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size Index VLC
Codeword

VLC Size

0 0 15 25 6 10 50 5 3

1 1 11 26 14 11 51 18 5

2 1 15 27 8 10 52 29 6

3 2 15 28 106 15 53 152 8

4 3 15 29 107 15 54 77 7

5 4 15 30 108 15 55 24 5

6 1 12 31 15 11 56 25 5

7 5 15 32 109 15 57 26 5

8 4 12 33 9 10 58 39 6

9 3 11 34 55 14 59 108 7

10 5 12 35 10 10 60 13 9

11 8 12 36 1 4 61 109 7

12 6 15 37 2 4 62 55 6

13 9 12 38 1 5 63 56 6

14 10 12 39 2 7 64 57 6

15 11 12 40 3 8 65 116 7

16 12 12 41 12 9 66 11 10

17 7 15 42 6 5 67 153 8

18 104 15 43 2 3 68 234 8

19 14 12 44 6 4 69 235 8

20 105 15 45 7 5 70 118 7

21 4 10 46 28 6 71 119 7

22 10 11 47 7 8 72 15 4

23 15 12 48 15 5

SMPTE 421M

© 2006 SMPTE 415

24 11 11 49 8 4

SMPTE 421M

© 2006 SMPTE 416

12 Bibliography
J. Ribas-Corbera, P.A. Chou, and S.L. Regunathan, “A generalized hypothetical reference decoder for H.264/AVC,”

IEEE Transactions on Circuits and Systems for Video Technology, Aug. 2003.

ISO/IEC 13818-2:2000, Information Technology – Generic Coding of Moving Pictures and Associated Audio
Information: Video (MPEG-2/H.262), Annex C “Video Buffering Verifier,” 2nd Edition, 2000.

J. Taylor, DVD De-Mystified, 2nd Ed McGraw-Hill, 2001.

Recommendation ITU-T H.263, “Video Coding for Low Bit Rate Communication”, Annex B “Hypothetical Reference
Decoder,” Jan 1998.

SMPTE RP 227, “SMPTE Recommended Practice: VC-1 Bitstream Transport Encodings”.

SMPTE RP 186 – 1995, “Video Index Information Coding for 525- and 625- Line Television Systems.”

SMPTE 328M – 2000, “Television - MPEG-2 Video Elementary Stream Editing Information.”

SMPTE Registration Authority “http://www.smpte-ra.org/ “

Tien-Ying Kuo and C.-C. Jay Kuo, “Motion-compensated interpolation for low-bit-rate video quality enhancement,”
Conference on Applications of Digital Image Processing XXI, SPIE's Annual Meeting, San Diego, CA, July 19-
24, 1998.

Recommendation ITU-R BT.1358, “Studio parameters of 625 and 525 line progressive scan television systems”, 1998.

Recommendation ITU-T H.320, “Narrow-band visual telephone systems and terminal equipment”, March 2004.

Recommendation ITU-T H.264 and ISO/IEC 14496-10, “Advanced video coding for generic audiovisual services”,
May 2003.

SMPTE 421M

© 2006 SMPTE 417

Annex A
 Transform Specification

A.1 Inverse Transform
The inverse transform is similar, but not identical, to an IDCT. The transform matrices defined in Figure 157 and
Figure 158 shall be used for an 8 point inverse transformation and a 4 point inverse transformation respectively. The
formula in Figure 159 shall be used to compute the inverse transform of 8x8, 8x4, 4x8, and 4x4 blocks.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

491516161594
616166616166
916415154169

1212121212121212
154169916415

166616166616
161594491516

1212121212121212

8T

Figure 157: Matrix for 1-D 8-point Inverse Transform

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

10-2222-10
17171717
22-10-1022

17171717

4T

Figure 158: Matrix for 1-D 4-point Inverse Transform

3)4(>>+⋅= ×× MNMNM TDE

7)641(>>+⋅+⋅′= ×× MNNMNNM CETR

where

{ }8,4, ∈NM

operator ‘·’ represents matrix multiplication

operator ‘ >> ’ represents arithmetic right shift, performed entry-wise on a matrix

operator “ ’ ” represents matrix transpose

T8 is a constant matrix as in Figure 157

T4 is a constant matrix as in Figure 158

SMPTE 421M

© 2006 SMPTE 418

()′= 111100008C

C4 is a zero column vector of length 4

1M is an M length row vector of ones

44844888 ,,, ×××× DDDD are inverse quantized transform coefficient blocks (input).

The inverse quantized transform coefficient values shall not exceed the signed 12 bit range, i.e.
entries of these matrices shall be limited to the range ≥ -2048 and < 2047.

44844888 ,,, ×××× EEEE are intermediate matrices. The values in the intermediate matrices
shall be limited to the range >-4096 and <4095.

44844888 ,,, ×××× RRRR are inverse transformed blocks (output). The inverse transformed
values shall be limited to the range >-512 and <511.

Figure 159: Definition of Inverse Transform

A.2 Forward Transform (Informative)
The forward transform can be implemented in scaled integer arithmetic or using floating point or other representations.
The matrix-multiplication representation of the forward transform shown below is purely an analytical representation
unlike for the inverse transform where the matrix multiplies specifically referred to integer multiplications with 16 bit
registers. Rounding between stages can be done as necessary and this choice is left to the encoder.

The 4x4, 4x8, 8x4 and 8x8 transforms of the data matrix D can be calculated using the following set of equations for
these four cases:

where the operator o is a component-wise multiplication, and D̂ represents the transform coefficient matrix. The
normalization matrices ijN are given by:

ijij ccN ′=

where i and j represent rows and columns of the normalization matrix, and the column vectors c are

′
⎟
⎠
⎞

⎜
⎝
⎛=

′
⎟
⎠
⎞

⎜
⎝
⎛=

289
8

292
8

289
8

288
8

289
8

292
8

289
8

288
8

292
8

289
8

292
8

289
8

8

4

c

c

()
()
()
() 888

884

448

444

ˆ

ˆ

ˆ

ˆ

NTDTD

NTDTD

NTDTD

NTDTD

o

o

o

o

′=

′=

′=

′=

SMPTE 421M

© 2006 SMPTE 419

Annex B
Spatial Alignment of Video Samples in Variable Resolution Coding

B.1 Spatial alignment of samples in down-sampled frame
The samples of the down-sampled frame have the following spatial alignment with respect to the samples of the frame
at the original resolution.

Figure 160: Relative Spatial Alignment of the video samples of the Down-sampled Frame, and video samples of

the Original Frame.

The following definitions are used for the down-sampling pseudo-code examples:

Nu = number of samples in up-sampled (full resolution) line
Nd = number of samples in a down-sampled (half resolution) line

Note: The term ‘line’ refers to all the samples in a horizontal row or vertical column in a Y, Cb or Cr component plane.
Down-sampling operations are identical for both rows and columns, so the following examples are illustrated using one
dimensional line of samples. In cases where both vertical and horizontal down-sampling is performed, the horizontal
lines are down-sampled first, followed by the vertical lines.

For luma lines:

Nd = Nu / 2 (where Nu is the number of samples in a full resolution luma line)
if ((Nd & 15) != 0)
 Nd = Nd + 16 – (Nd & 15)

For color-difference lines:

Nd = Nu / 2 (where Nu is the number of samples in a full resolution color-difference line)
if ((Nd & 7) != 0)
 Nd = Nd + 8 – (Nd & 7)

Figure 161: Example of down-sampling one dimensional line for luma and color-difference.

B.2 Decoder up-sampling

SMPTE 421M

© 2006 SMPTE 420

At the decoder, up-sampling may be applied to the decoded frame if the value of the RESPIC syntax element as defined
in Table 38 indicates that the display resolution is greater than the coded resolution. In this case, attention should be
paid to the relative spatial positioning of the samples produced from the encoder down-sampling when implementing
the up-sampling process. In particular, decoders may implement up-sampling according to the reverse of the algorithm
described in Annex B.1.

B.3 Encoder down-sampling (informative)
On the encoder side, down-sampling is applied to the input frame if the current coding resolution is smaller than the
original resolution. In the main profile, the RESPIC syntax element specifies the scaling of the current relative to the
full resolution frame as defined in section 8.1.1.3 and Table 38.

The encoder can implement down-sampling according to the algorithm described in Annex B.1.

B.4 Anti-alias filtering (informative)
Filters can be added to reduce alias artifacts. These filter coefficients are implementation dependent and optional.

SMPTE 421M

© 2006 SMPTE 421

Annex C
 Hypothetical reference decoder

Coded video bitstreams shall meet the constraints imposed by a hypothetical reference decoder (HRD) defined in this
annex. The HRD is conceptually connected to the output of an encoder, and consists of a buffer, a decoder and a
display unit, as illustrated in Figure 162.

Figure 162: Components of an HRD: decoder buffer, decoder and display unit

The HRD does not mandate buffering, decoding, or display mechanisms for decoder implementations. Its purpose is to
limit the encoder’s bit rate fluctuations according to a basic buffering model, so that the resources necessary to decode
the bitstream are predictable.

The HRD can operate in constant-delay mode or variable-delay mode. Constant-delay is appropriate for most
applications, including broadcast, streaming, packaged media (e.g., DVD), etc. Variable-delay is appropriate for video
conferencing.

All computations in this Annex are done with infinite precision real-values, so that no rounding errors propagate.

C.1 Leaky bucket model

C.1.1 Leaky bucket algorithm
The buffering model that governs the operation of the HRD is known as a leaky bucket. The algorithm is defined in
this section. A leaky bucket shall be characterized by three parameters (R, B, F) where:

• R is the peak transmission bit rate (in bits per second) at which bits enter the decoder buffer,
• B is the capacity (in bits) of the decoder buffer and
• F is the initial decoder buffer fullness (in bits)2, which shall be smaller than or equal to B.

In the HRD, the video bitstream shall be received at bit rate smaller than or equal to the peak transmission rate R, and it
shall be stored in a decoder buffer of size B until the buffer fullness reaches F bits. This time is referred to as the
initial delay. The decoder then removes the bits for the first video frame of the sequence from the buffer, and decodes
that frame. The bits for the following frames are also removed and decoded at subsequent time intervals. If a frame is
coded as two interlaced fields, the bits for both fields shall be removed together as a pair and decoded. From the

2 A leaky bucket may also be specified by parameters (R, B, Fe), where Fe is the initial encoder buffer fullness. Here, the initial decoder buffer
fullness F has been chosen.

SMPTE 421M

© 2006 SMPTE 422

perspective of the leaky buffer model, the removal of bits from the buffer and the decoding operation are treated as
instantaneous.

Figure 163 illustrates the decoder buffer fullness as a function of time for a bitstream that is contained in a leaky bucket
of parameters (R, B, F). The decoder buffer fullness β i after removing frame i, with i > 1, shall be as follows:

 β1 = F – b1

β i
 = min(B, β i–1 + Ri (ti – ti–1))– bi ,

(C.1)

where ti is the decoding time for frame i, and bi is the number of bits for frame i, and frame 1 is the first frame. The
parameter Ri is the average bit rate (in bits per second) that enters the buffer during the time interval (ti, ti-1) and shall be
such that Ri <= R for all i. In Figure 163, the transmission rate happens to be constant and equal to the peak R, and
hence Ri = R for all i.

In the leaky bucket model defined for this HRD, the decoder buffer may fill up, but shall not overflow. The buffer
fullness at any time instant shall be less than or equal to B. As a result, in equation (C.1), the min(B, x) operator
implies that β i <= B, for all i. An example of a decoder buffer that fills up in several periods of time is shown in
Figure 164.

When the decoder buffer is full, the encoder shall not send any more bits until there is room in the buffer.

Note: This phenomenon occurs frequently in practice. For example, a Digital Video Disc includes a video coded
bitstream of average rate 4-6 Mbps, while the disk drive speed or peak rate R is about 10 Mbits/sec. Since the bit rate
used in most time intervals is less than 10 Mbits/sec, the decoder buffer is often full. More generally, if an encoder is
producing fewer bits than those available in the channel, the decoder buffer will stop filling up.

Figure 163: Decoder buffer fullness - contained

The plot illustrates an example of decoder buffer fullness when decoding a generic video bitstream that is contained in a
leaky bucket of parameters (R, B, F). R is the peak incoming (or channel) bit rate in bits/sec, and in this case the
transmission rate is constant and equal to the peak R throughout the video sequence. B is the buffer size in bits and F is
the initial decoder buffer fullness in bits. D = F/R is the initial or start-up (buffer) delay in seconds. The number of bits
for the ith frame is bi. The coded video frames are removed from the buffer (typically according to the video frame
rate), as shown by the drops in buffer fullness, and are decoded instantaneously.

b2

F

t1 t2 t3

b0

b1

tn

bn

B

0
seconds

bits slopeR

D

t0 -D

SMPTE 421M

© 2006 SMPTE 423

Figure 164: Decoder buffer fullness – maximum

Plot of decoder buffer fullness, where the fullness reaches the maximum buffer size B during some time segments. In
this example, such segments are a subset of the intervals (t2, t3) and (t3, t4). When the decoder buffer is full, the encoder
does not send any bits.

Decoder buffer underflow occurs usually if an encoder produces relatively large frames. The decoder buffer fullness
can then be reduced to the point that the bits for the next frame are not available at the nominal decoding time.

A leaky bucket with parameters (R, B, F) is said to contain a coded video bitstream if there is no underflow of the
decoder buffer (i.e., β i >= 0, for all i). A leaky bucket with parameters (R, B, F) shall contain a coded video bitstream
if the following constraints hold:

 β 1 = F – b1

β i
 = min(B, β i–1 + Ri (ti – ti–1)) – bi , i > 1

Ri <= R all i

β i >= 0 all i
(C.2)

C.1.2 Constant delay mode constraints
The bitstream shall meet the restrictions imposed by equation (C.2), so that at least one leaky bucket (R, B, F) contains
the bitstream. The leaky bucket values (R, B, F) shall be signaled to the decoder so that the rate and buffer size
resources necessary to decode this bitstream are predictable.

C.1.3 CBR and VBR bitstreams
A bitstream that meets the constraints of the equations in (C.2) is denoted a variable bit rate or VBR bitstream, e.g., see
ISO/IEC 13818-2.

If the constraints in equation (C.2) apply to a bitstream without the min(B, x) operator (i.e., β i
 = β i–1 + Ri (ti – ti–1) –

bi , for all i), and if Ri = R for all i, and if there is no buffer overflow (i.e., β i + bi <= B, for all i), the bitstream is denoted
a constant bit rate or CBR bitstream.

Since CBR bitstreams are a special case of VBR bitstreams, they are subject to the same constraints.

C.2 Multiple leaky buckets
A bitstream may be contained in multiple leaky buckets.

For example, if a video stream is contained in a leaky bucket with parameters (R, B, F), it can also be contained in a
leaky bucket with a larger buffer size (R, B’, F), B’ > B, or in a leaky bucket with a higher peak transmission bit rate
(R’, B, F), R’ > R, or in a leaky bucket with larger initial buffer fullness (R, B, F’), F’ > F, F ≤ B. Moreover, it can
also be contained in a leaky bucket with a lower peak transmission bit rate (R’, B, F), R’ < R, if the video is time-
limited. In the worst case, as R’ approaches 0, the buffer size and initial buffer fullness can be as large as the
bitstream itself. In short, a video bitstream can be transmitted at any peak transmission bit rate (regardless of the

t2 t3

B

0
seconds

bits slopeR

t4 t5 t6 t1

SMPTE 421M

© 2006 SMPTE 424

average bit rate of the sequence) without suffering decoder buffer underflow, as long as the buffer size and initial delay
are large enough.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

x 10
4

B
m

in
 (

K
bi

ts
)

Rmin (Kbits/sec)
Figure 165: Illustration of peak bit rate Rmin and buffer size Bmin values for a given video bitstream. This curve indicates
that in order to transmit the stream at a peak bit rate R, the decoder needs to buffer at least Bmin(R) bits. Observe that
higher peak rates require smaller buffer sizes. Alternatively, if the size of the decoder buffer is B, the minimum peak
rate required for transmitting the bitstream is the associated Rmin(B).

Further, for any value of the peak transmission bit rate R, and assuming Ri = R for all i in equation (C.2), there exists
the minimum buffer size Bmin and the minimum initial buffer fullness Fmin that shall contain the video bitstream. These
minimum values may be computed using a simple search using the constraints in (C.2), as demonstrated in Ribas-
Corbera et al. 2003. By computing Bmin for each R, one can plot a curve of optimum R-B values such as the one in
Figure 165.

C.3 Bitstream syntax for the hypothetical reference decoder

C.3.1 Constant-delay mode, Advanced profile constraints.
The bitstream shall signal N leaky bucket models, each of which shall contain the video bitstream, as defined in (C.2).
The desired value of N shall be selected by the encoder (where N > 0).

The parameter values of these leaky buckets shall be expressed as follows:

 (R1, B1, F1), (R2, B2, F2), … , (RN, BN, FN), (C.3)

The HRD syntax element values shall be communicated to the decoder by the Transport Layer for video bitstreams
conformant to the Simple and Main profiles.

The HRD syntax element values shall be in the sequence header for Advanced profile bitstreams, except for variable-
delay mode. The sequence header for the Advanced profile is defined in Section 6.1, and the HRD syntax element is
defined in section 6.1.15.1.

Note: The number of bits used in prior frames does not affect the equations in (C.2) to determine the leaky bucket
constraints for the remaining frames of the video bitstream, and hence the leaky bucket values may be modified
throughout the video bitstream. Also, an encoder may want to use fewer leaky buckets later in the bitstream to avoid
syntax overhead.

The following HRD syntax elements that need to be signaled are defined in Table 13 and Table 15.

Note: the syntax is an example encoding and not a syntax element.

SMPTE 421M

© 2006 SMPTE 425

hrd_num_leaky_buckets – A number between 0 and 31 that shall specify the number of leaky buckets N. See 6.1.15.1
for definition.

hrd_rate[n] and bit_rate_exponent – These syntax elements shall define the peak transmission rate Rn in bits per
second for the nth leaky bucket. See 6.1.15.1 for definition.

hrd_buffer[n] and buffer_size_exponent – These syntax elements define the buffer size Bn in bits for the nth leaky
bucket. See 6.1.15.1 for definition.

hrd_full[n] – This syntax element shall define the decoder buffer fullness as an upwards rounded fraction of the buffer
size Bn, in units of Bn/256. See 6.2.12 for definition. Its value shall be computed as follows:

 hrd_full[n] = 1
),min(

256 , −⎥
⎥

⎤
⎢
⎢

⎡ +
×

n

inin

B
bB β

 (C.4)

where min(Bn, β i,n + bi) is the decoder buffer fullness in bits before removing the current ith frame.

In equation (C.2), the decoder buffer fullness after removing the ith frame equals β i. (C.4) uses a similar notation for
the equivalent value β i,n, but the subscript n denotes the nth leaky bucket.

The ⎡ ⎤x operator rounds up the value of x to the nearest higher integer. For example, ⎡ ⎤14.3 = 15.

Observe that in the first frame of the video stream (i.e., i=1), the initial buffer fullness Fn = (β 1,n + b1).

If the number of leaky buckets N =0, the leaky bucket used shall be (R1, B1, F1), where R1 and B1 correspond to the
values Rmax and Bmax for the given profile and level of the bitstream, as defined in Annex D and the initial buffer
fullness shall equal the buffer size, i.e., F1=B1

C.3.2 Encoder considerations (informative)
In practice, an encoder can do the following:

(a) Pre-select the leaky bucket values in (C.3) and encode the bitstream with a rate control that makes sure that all of

the leaky bucket constraints are met.
(b) Encode the bitstream and then use the equations in (C.2) to compute a set of leaky buckets containing the bitstream

at N different values of R.
(c) Do both (a) and (b), i.e., pre-select the leaky buckets and later compute more after the bitstream is encoded.

Approach (a) could be applied to live or on-demand transmission applications, while (b) and (c) only apply to on-
demand.. If N=1, the hypothetical reference decoder is a subset of the Video Buffering Verifier of ISO/IEC 13818-2.

C.4 Interpolating leaky buckets (informative)
The curve of (Rmin, Bmin) pairs, or that of (Rmin, Fmin) for any bitstream (such as the one in Figure 165) is piecewise linear
and convex. This is discussed in Ribas-Corbera et al. 2003. Because of the convexity, if N points of the curve are
provided, the decoder can linearly interpolate the values to arrive at some points (Rinterp, Binterp, Finterp) that are slightly
but safely larger than (Rmin, Bmin, Fmin).

As mentioned earlier, the leaky buckets in (C.3) are ordered from smallest to largest bit rate, i.e., Rn < Rn+1. Let us
assume that the encoder computes these leaky bucket models correctly and hence Bn > Bn+1. Figure 166 illustrates a set
of N leaky bucket models and their interpolated or extrapolated (R, B) values.

SMPTE 421M

© 2006 SMPTE 426

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)
(RN,BN)

B
(bits)

B (bits)

TRRBB)(11 −+=

R (bits/sec)

Figure 166: Example of (R, B) values available for the generalized hypothetical reference decoder (GHRD), all of which are

guaranteed to contain the bitstream. T is the time length or duration of the encoded video sequence.

The interpolated buffer size B between points n and n+1 follow the straight line:

 1
11

1
+

++

+

−
−

+
−
−

= n
nn

n
n

nn

n B
RR

RR
B

RR
RR

B , Rn < R < Rn+1. (C.5)

Likewise, the initial decoder buffer fullness F can be linearly interpolated:

1
11

1
+

++

+

−
−

+
−
−

= n
nn

n
n

nn

n F
RR

RR
F

RR
RR

F , Rn < R < Rn+1. (C.6)

The resulting leaky bucket with parameters (R, B, F) is guaranteed to contain the bitstream, because the minimum
buffer size Bmin is convex in both R and F, that is, the minimum buffer size Bmin corresponding to any convex
combination (R,F) = a(Rk,Fk) + (1-a)(Rk+1,Fk+1), 0 < a < 1, is less than or equal to B = aBk + (1-a)Bk+1.

As discussed earlier, if R is larger than RN, the leaky bucket (R, BN, FN) will also contain the bitstream, and hence BN
and FN are the buffer size and initial decoder buffer fullness recommended when R ≥ RN. If R is smaller than R1, then
the upper bound B = B1 + (R1-R)T may be used (and one may set F = B), where T is the time length of the video
sequence in seconds. These (R, B) values outside the range of the N points are also shown in Figure 166.

Using equations (C.5) and (C.6), when the transmission peak rate of a given encoding/decoding system is known, the
decoder can determine a nearly minimum leaky bucket buffer size and delay. Alternatively, knowing the physical buffer
size, a smart decoder can ask a transmitter to use the smallest peak rate that will enable decoding in such buffer size. In
short, the leaky bucket model values in equation (C.3) can be linearly interpolated or extrapolated to be able to
determine nearly optimum leaky buckets.

C.5 Display issues (informative)
The leaky bucket model does not address the case when a video frame is displayed in the HRD display unit. A decoder,
including this HRD, will normally display frames in the proper order. For example, if a frame is composed of two
fields, it is assumed that the field that comes first in time will be displayed first. P frames and B frames could also be re-
ordered properly before display. Nevertheless, constraints on display times (e.g., according to the decoding times t1, t2,
etc.) are beyond the scope of this standard.

C.6 Time-conformant decoders
Time-conformant decoders ensure a fixed end-to-end delay, and hence they are of interest for most video coding
applications (e.g., video broadcast, video on demand, DVD playback, etc.), while non time-conformant decoders are

SMPTE 421M

© 2006 SMPTE 427

common mainly for video conferencing. A practical time-conformant decoder decodes bitstreams without buffer
underflow.

Given a fixed transmission rate and decoder buffer size, a time-conformant decoder implementation shall buffer enough
data initially to prevent buffer underflow during the decoding process. Such a decoder shall therefore operate according
to either one of the N leaky buckets, or one of the interpolated leaky buckets defined in equations (C.5) and (C.6).

Given a channel rate R, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find a
minimum value of B and F, the physical buffer size in the decoder shall be larger than or equal to B, and shall buffer at
least F bits before starting the decoding process.

Given a physical buffer size B, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find a
minimum value of R and F, shall ensure that the channel rate is larger than or equal to R, and shall buffer at least F bits
before starting the decoding process.

C.7 Variable-delay mode
This section refers to the variable-delay mode of operation in the HRD, which is useful for video conferencing
applications.

This mode of operation in the HRD is signaled when HRD parameters are not signaled in the sequence header, i.e.
when HRD_PARAM_FLAG is equal to value 0. In this mode:

• The leaky bucket shall be (R1, B1, F1), where R1 and B1 correspond to the values Rmax and Bmax for the given

profile and level of the bitstream, as defined in Annex D.
• The initial buffer fullness shall equal the buffer size, i.e., F1=B1. In practice, F1 may equal the number of bits for the

first frame, i.e., F1= b1.
• The decoder buffer in the HRD shall be examined every T seconds, where T is the inverse of the maximum frame

rate in the example column of Table 253, for the respective profile and level of the given bitstream. If at least one
complete coded picture is in the buffer, then all the data for the earliest picture in the bitstream order shall be
instantaneously removed. Immediately before removing the picture, the buffer fullness shall be less than B1.

In this mode, the HRD shall wait until a complete video frame has arrived at the buffer before decoding the frame. As a
result, the delay is minimized for a given frame, but the end-to-end delay is not constant. This mode enables the
encoder to send big pictures to the decoder while preventing buffer overflow.

The variable-delay mode of operation is similar to the low-delay mode in ISO/IEC 13818-2, or the default HRD
operating mode in ITU-T H.263.

C.8 Benefits of multiple leaky buckets (informative)
In the constant-delay mode, prior hypothetical reference decoders operate with a fixed peak bit rate, buffer size, and
initial delay. However, in many of today’s video applications (e.g., video streaming through the Internet) the peak
transmission bit rate varies according to the network path (e.g., how the user connects to the network: by dial-up
modem, ISDN, xDSL, cable modem, etc.) and also fluctuates in time according to network conditions (e.g., congestion,
the number of users connected, etc.) In addition, the bitstreams are delivered to a variety of devices with different
buffer capabilities (e.g., hand-sets, PDAs, PCs, set-top-boxes, DVD-like players, etc.) and are created for scenarios with
different delay requirements (e.g., low-delay streaming, progressive download or pseudo-streaming, etc.) The multiple
leaky bucket approach used in the HRD of this standard is more flexible than prior HRDs and enables a system to
decode a bitstream at different peak transmission bit rates, and with different buffer sizes and start-up delays.

To be more concrete, given a desired peak transmission bit rate, a time-conformant decoder selects the smallest buffer
size and delay (according to the available leaky bucket data) such that it will be able to decode the bitstream without
suffering from buffer underflow. Conversely, for a given buffer size, the hypothetical decoder selects and operates at
the minimum required peak transmission bit rate.

There are multiple benefits of this generalized hypothetical reference decoder. For example, a content provider can
create a bitstream once, and a server can deliver it to multiple devices of different capabilities, using a variety of
channels having different peak transmission bit rates. Or a server and a terminal can negotiate the best leaky bucket for

SMPTE 421M

© 2006 SMPTE 428

the given networking conditions, e.g., the one that produces the lowest start-up (buffer) delay, or the one that requires
the lowest peak transmission bit rate for the given buffer size of the device.

C.9 Default bit rates
The following default maximum bit rates shall be used in the HRD model in the absence of explicit signaling:

Table 250: Maximum Bit Rate as a function of Profiles and Levels

Profile Level Rmax[profile,level] VBVmax[profile,level]

Simple Low 96,000 bits/sec 327,680 bits = 40 x 1024 bytes

 Medium 384,000 bits/sec 1261568 bits = 154 x 1024 bytes

Main Low 2,000,000 bits/sec 5013504 bits = 612 x 1024 bytes

 Medium 10,000,000 bits/sec 10010624 bits = 1222 x 1024 bytes

 High 20,000,000 bits/sec 40009728 bits = 4884 x 1024 bytes

Advanced L0 2,000,000 bits/sec 4096000 bits = 500 x 1024 bytes

 L1 10,000,000 bits/sec 20480000 bits = 2,500 x 1024 bytes

 L2 20,000,000 bits/sec 40960000 bits = 5,000 x 1024 bytes

 L3 45,000,000 bits/sec 90112000 bits = 11,000 x 1024 bytes

 L4 135,000,000 bits/sec 270336000 bits = 33,000 x 1024 bytes

SMPTE 421M

© 2006 SMPTE 429

Annex D
 Profile and Levels

A profile is a defined subset of the syntax of the standard, with a specific set of coding tools, algorithms,
and syntax associated with it. A level is a defined set of constraints on the values which can be taken by
the parameters (such as bit rate and buffer size) within a particular profile. Within the same profile,
higher levels generally imply higher requirements in processing speed and memory.

Encoders produce bitstreams conformant to a given profile and level, and decoders decode bitstreams
conformant to a set of given profiles and levels. Note that a bitstream conformant to a particular
profile/level combination is also conformant with all higher levels at the same profile (i.e. with the
exception of the highest level, each level is a sub-set of all higher levels within a given profile). Therefore,
profiles and levels are critical to ensure interoperability between encoders, coded bitstreams, and decoders.

D.1 Overview (Informative)
There are three profiles in this recommendation, Simple, Main and Advanced:

• The Simple profile targets low-rate internet streaming and low-complexity applications such as mobile

communications, or playback of media in personal digital assistants. There are two levels in this
profile.

• The Main profile targets high-rate internet applications such as streaming, movie delivery via IP, or
TV/VOD over IP. This profile contains three levels.

• The Advanced profile targets broadcast applications, such as digital TV, DVD, or HDTV. It is the only
profile that supports interlaced content. In addition, this profile contains the required syntax elements
to transmit video bitstreams conformant to this standard into generic systems, such as MPEG-2
Transport or Program Streams (ISO/IEC 13818-2). This profile contains five levels.

Table 251 lists all the profiles and levels, and the label associated to each of them.

Note: For definition of profile, see section 6.1.1 and Annex J.1.1. For definition of level, see section 6.1.2
and Annex J.1.2.

SMPTE 421M

© 2006 SMPTE 430

Profile Level Label

Low SP@LL Simple

Medium SP@ML

Low MP@LL

Medium MP@ML

Main

High MP@HL

L0 AP@L0

L1 AP@L1

L2 AP@L2

L3 AP@L3

Advanced

L4 AP@L4

Table 251: List of profiles and levels defined in this standard.

D.2 Profiles (Informative)
Table 252 indicates the constraints on the algorithms or compression features for each of the profiles. If a
compression feature is listed in the table, it is only supported by the profiles marked with “X”. Other
compression features are used in all profiles. Note that dynamic resolution change refers to scaling the
coded picture size by a factor of 2 (via RESPIC syntax element) in the main profile, and to scaling the
coded picture size by arbitrary scaling factors (via transmitted coded size syntax element in the entry-point
header) in the advanced profile. Note that range adjustment refers to range reduction (by a factor of 2 via
the RANGEREDFRM (7.1.1.3) syntax element) in the main profile, and range mapping (via
RANGE_MAPY (6.2.15.1) and RANGE_MAPUV (6.2.16.1) syntax elements) in the advanced profile.

SMPTE 421M

© 2006 SMPTE 431

Compression Feature Simple
profile

Main
Profile

Advanced
Profile

Baseline intra frame compression X X X

Variable-sized transform X X X

Transform Specification X X X

Overlapped transform X X X

4 motion vectors per macroblock X X X

Quarter-pixel motion compensation Y X X X

Quarter-pixel motion compensation Cb,
Cr X X

Start codes X X

Extended motion vectors X X

Loop filter X X

Dynamic resolution change X X

Adaptive macroblock quantization X X

Bidirectional (B) frames X X

Intensity compensation X X

Range adjustment X X

Interlace: Field and frame coding modes X

Sequence level metadata X

Entry point layer X

Display metadata (pan/scan, colorimetry,
sample aspect ratio, pull-down, top field

first, repeat first field, etc.)
 X

Table 252: Codec options in the Simple, Main and Advanced profile.

D.3 Levels
There are several levels for each of the profiles. Each level limits the video resolution, frame rate, HRD bit
rate, HRD buffer requirements, and the motion vector range. These limitations are defined in Table 253.

As explained in Annex C, the encoder can define multiple leaky buckets that contain a given video
bitstream. The HRD is able to decode a bitstream operating according to any of those leaky bucket
parameters, or even according to interpolations or extrapolations of such parameters.

For a bitstream to be conformant to a given profile and level, at least one of the leaky bucket parameters
needs to be within the limits defined by the profile and level. For progressive, the picture rate is described

SMPTE 421M

© 2006 SMPTE 432

by the number of frames per second. For interlace, the picture rate is described by the number of frames per
second. i.e., 15Hz in interlace refers to 15 frames/second (which is equivalent to 30 fields/second).

SMPTE 421M

© 2006 SMPTE 433

Profile @Level MB/s MB/f Examples B I Rmax Bmax MV

[H] x [V]

SP@LL 1,485 99 QCIF, 176x144, 15 Hz 96 20 [-64, 63¾] x [-32, 31¾]

SP@ML 7,200 396 CIF 352x288, 15 Hz

QVGA, 320x240, 24 Hz

 384 77 [-64, 63¾] x [-32, 31¾]

MP@LL 11,880 396 QVGA, 320x240, 24 Hz

CIF 352x288, 30 Hz

x 2,000 306 [-128, 127¾] x [-64, 63¾]

MP@ML 40,500 1,620 480p, 720x480, 30 Hz

576p, 720x576, 25 Hz

x 10,000 611 [-512, 511¾] x [-128, 127¾]

MP@HL 245,760 8,192 1080p, 1920x1080, 25 Hz

1080p, 1920x1080, 30 Hz

x 20,000 2,442 [-1024, 1023¾] x [-256, 255¾]

AP@L0 11,880 396 CIF, 352x288, 25 Hz,

CIF, 352x288, 30 Hz

SIF, 352x240, 30 Hz

x 2,000 250 [-128, 127¾] x [-64, 63¾]

AP@L1 48,600 1,620 480i-SD, 704x480, 30 Hz

576i-SD, 720x576, 25 Hz

x x 10,000 1,250 [-512, 511¾] x [-128, 127¾]

AP@L2 110,400

3,680

480p, 704x480, 60 Hz

720p, 1280x720, 25 Hz

720p, 1280x720, 30 Hz

x x 20,000 2,500 [-512, 511¾] x [-128, 127¾]

AP@L3 245,760 8,192 1080i, 1920x1080, 25 Hz

1080i, 1920x1080, 30 Hz

1080p, 1920x1080, 25 Hz

x x 45,000 5,500 [-1024, 1023¾] x [-256, 255¾]

SMPTE 421M

© 2006 SMPTE 434

1080p, 1920x1080, 30 Hz

720p, 1280x720, 50 Hz

720p, 1280x720, 60 Hz

2048x1024, 30 Hz

AP@L4 491,520 16,384 1080p, 1920x1080, 50 Hz

1080p, 1920x1080, 60 Hz

2048x1536, 24 Hz

2048x2048, 30 Hz

x x 135,000 16,500 [-1024, 1023¾] x [-256, 255¾]

Table 253: Limitations of profiles and levels. Column marked ‘B’ denotes B frames and loop filter support, and ‘I’ denotes interlace support. For
interlace, picture rate is described in frames/second. (Fields/second is twice that value).

SMPTE 421M

© 2006 SMPTE 435

MB/s Maximum number of macroblocks per second

MB/f Maximum number of macroblocks within a frame

Example Example of maximum video resolution and frame rate. Other combinations that meet the profile and
level requirements are also possible. For instance, in AP@L2, both “480p, 50Hz” and “480p, 60Hz”
are supported.

Rmax HRD’s maximum peak transmission bit rate in units of 1,000 bits/sec.

Bmax HRD’s maximum buffer size in units of 16,384 bits

MV [H]x[V] Motion vector range in full pixel units. [H] = horizontal, [V] = vertical.

D.4 Syntax (Informative)
The Simple and Main profiles are communicated to the decoder by the syntax element PROFILE as part of the
initialization metadata as described in Annex J.1.1. The Advanced profile is signaled to the decoder in the bitstream, by
the syntax element PROFILE, which is included in the sequence header as described in Section 6.1.1.

The levels for Simple and Main profile are to be communicated to the decoder by the Transport Layer. The levels for
the Advanced profile are defined in the syntax element LEVEL, which is included in the sequence header, as described
in Section 6.1.2. The following codes are used to signal the levels in this profile:

 000 AP@L0

 001 AP@L1

 010 AP@L2

 011 AP@L3

 100 AP@L4

 101 SMPTE Reserved

 110 SMPTE Reserved

 111 SMPTE Reserved

SMPTE 421M

© 2006 SMPTE 436

Annex E
Start Codes and Emulation Prevention

The beginning of a Bitstream Data Unit (BDU) of compressed video data is signaled by an identifier called Start Code
(SC). A BDU could be, for example, a sequence header, an entry-point header, or a slice (see Table 256 for a
complete list).

This specification defines a sequence of four bytes as the start code which consists of a unique three-byte Start Code
Prefix (SCP), and a one-byte Start Code Suffix (SCS). The SCP shall be the unique sequence of three bytes
(0x000001). The SCS is used to identify the type of BDU that follows the start code. For example, the suffix of the start
code before a picture is different from the suffix of the start code before a slice. Start codes shall always be byte-
aligned.

An Encapsulation Mechanism (EM) is described to prevent emulation of the start code prefix in the bitstream. The
compressed data before encapsulation by an encoder, or after extraction from the encapsulated form by the decoder, is
called a Raw Bitstream Decodable Unit (RBDU), while Encapsulated BDU (EBDU) refers to the data when
encapsulated.

Section E.1 specifies detection of start codes and EBDUs at the decoder, and is normative. Section E.2 deals with
extraction of an RBDU from an EBDU, and is also normative. Section E.3 defines RBDU, EBDU and encapsulation. It
also provides an encoder-side perspective on how start code and encapsulation operate. Section E.4 specifies
constraints on byte stream data patterns. Section E.5 specifies start code suffixes for various BDU types, and is also
normative. The constraints on bitstream construction using start codes are defined in Annex G.

E.1 Detection of Start codes and EBDU
The detection of an EBDU shall start with the search for the start code prefix.

E.1.1 Detection of Start Codes Starting from Byte-Aligned Positions
In a decoder that cannot lose byte-alignment, or once byte alignment has been established, start code detection shall be
conducted by scanning the byte stream to detect the location of two or more consecutive byte-aligned bytes of value
0x00 followed by a byte of value 0x01. A start code prefix detection is declared for each such detected three-byte
string.

Note: In many application environments, the bitstream data is carried in an inherently byte aligned manner and
thus byte alignment loss and recovery is not an issue. Since byte alignment is defined in relation to the
location of the start of the bitstream, byte alignment is considered to always be unambiguously established for
the decoding of correct and error-free conforming bitstreams. This is why the mechanism for recovery of lost
byte alignment is only defined in an informative fashion (see section E.1.2).

When two successive start codes prefixes have been detected, the data bytes of the byte stream starting with the first
byte of the first of the two start code prefixes and ending with the last byte prior to the first byte of the second of the
two start code prefixes shall be considered to be an EBDU.

When the end of the bitstream is detected, the data bytes of the bitstream starting with the first byte of the last start code
prefix in the bitstream and ending with the last byte in the bitstream shall be considered to be an EBDU.

E.1.2 Detection of Start Codes and Byte-Alignment Recovery After Loss of Byte Alignment
in a Decoder (Informative)
In a decoder that has lost byte-alignment (as can happen in some transmission environments such as ITU-T H.320),
start code prefix detection and byte-alignment detection are conducted as follows.

Starting at any alignment position, the decoder scans the byte stream data in a byte-wise fashion. Whenever a string of
three or more consecutive bytes of value 0x00 is found, followed by any non-zero byte, a start code prefix detection is

SMPTE 421M

© 2006 SMPTE 437

declared and byte alignment is understood to have been recovered such that the first non-zero bit in the non-zero byte
will be the last bit of a byte-aligned start code.

Note: The presence of extra zero-valued bytes prior to some start codes (or, equivalently, appended onto the
end of some preceding EBDUs) as described in section E.1 is useful for ensuring that this process will result in
byte alignment recovery.

E.2 Extraction of RBDU from EBDU
The decoder shall perform the extraction process of a raw BDU from an encapsulated BDU as defined below.

Step 1: The start-code suffix shall be used to identify the type of BDU. The bytes that follow the start code suffix, if
any, shall then be further processed as follows.

Step 2: The decoder shall remove all zero-valued bytes at the end of EBDU. After this step, if the BDU payload after
the start code suffix is not null, the last byte of the BDU will contain the '1' bit and any byte-aligning '0' bits that are
present after the end of the RBDU.

Step 3: The bytes used for emulation prevention shall be detected and removed according to the following process:

Whenever a string of two consecutive bytes of value 0x00 are followed by a byte equal to 0x03, the byte equal to
0x03 is understood to be an emulation prevention byte and is discarded. This process is illustrated in Table 254.

Table 254: Decoder Removal of Emulation Prevention Data

Pattern to Replace Replacement Pattern

0x00, 0x00, 0x03, 0x00 0x00, 0x00, 0x00

0x00, 0x00, 0x03, 0x01 0x00, 0x00, 0x01

0x00, 0x00, 0x03, 0x02 0x00, 0x00, 0x02

0x00, 0x00, 0x03, 0x03 0x00, 0x00, 0x03

Step 4: If there are bytes not removed in steps 2 or 3 that follow the start code suffix in the EBDU, in the last byte of
the BDU data processed in step 3, the last non-zero bit is identified, and that non-zero bit plus all the zero bits that
follow, shall be discarded. The result is the RBDU. If there are no bytes not removed in step 2 that follow the start
code suffix in the EBDU, the RBDU shall be considered null.

E.3 Start Codes and Encapsulation – An encoder perspective (Informative)
The EM process for encapsulation of a RBDU to obtain an EBDU is described below.

Step 1: If the RBDU is not null, the EM appends a trailing '1' bit to the end of the RBDU and then stuffs between 0 and
7 bits onto the end of the BDU such that the BDU ends in a byte-aligned location. The value of these stuffing bits is '0'.
As a result, at the end of this step, the BDU is represented in an integer number of bytes, in which the last byte of the
BDU, if present, cannot be a zero-valued byte. The resulting string of bytes is called the payload bytes of the BDU.

Step 2: The encoder can begin an EBDU with any number of zero-valued bytes at the beginning of the EBDU.

Step 3: The start code is formed by starting with the three-byte start code prefix (0x000001), and appending the
appropriate start code suffix that identifies the BDU type as specified in Table 256. If no additional zero-valued bytes
were placed at the beginning of the EBDU, the start code is placed at the beginning of the EBDU. Otherwise, the start
code is placed after the zero-valued bytes that were placed at the beginning of the EBDU.

Step 4: The remainder of the EBDU is formed by processing the payload bytes of the BDU through an emulation
prevention process as follows, and appending the resulting string of bytes in the EBDU after the start code. The
emulation of start code prefixes within the payload bytes of the BDU is eliminated via byte stuffing. The emulation
prevention process is performed by starting at the beginning of the payload bytes of the BDU, and replacing each three-
byte data string within the payload that consists of two consecutive bytes of value 0x00 followed by a byte that contains
zero values in its six MSBs (regardless of the LSB values) with two bytes of value 0x00 followed by a byte equal to

SMPTE 421M

© 2006 SMPTE 438

0x03 followed by a byte equal to the last byte of the original three-byte data string. This process is illustrated in Table
255.

Table 255: Emulation Prevention Pattern Replacement

Pattern to Replace Replacement Pattern

0x00, 0x00, 0x00 0x00, 0x00, 0x03, 0x00

0x00, 0x00, 0x01 0x00, 0x00, 0x03, 0x01

0x00, 0x00, 0x02 0x00, 0x00, 0x03, 0x02

0x00, 0x00, 0x03 0x00, 0x00, 0x03, 0x03

Step 5: The encoder can end an EBDU with any number of zero-valued bytes at the end of the EBDU.

Note 1: Except for the first EBDU and the last EBDU, the decoder cannot distinguish between pre-pended
zero-valued bytes inserted in step 2 and appended zero-valued bytes inserted in step 5.

Note 2: Encoders that produce bitstreams used in application environments (such as ITU-T H.320) in which it
is possible for byte alignment to be lost as a result of errors in bitstream transmission would add some zero-
valued bytes in step 2 or step 5 at least occasionally, as these extra bytes assist in byte alignment recovery for
decoders (see section E.1.2). For example, adding one extra zero-valued byte at the beginning of each
sequence header, entry point header, and picture header is desirable in such application environments.

Note 3: The addition of zero-valued stuffing bytes can also be useful for splicing bitstreams, filling a constant
bit-rate channel when sufficient picture quality has already been attained, etc.

Note 4: The zero-valued stuffing bytes inserted in step 2 or step 5 are not processed through the emulation
prevention mechanism – only the bytes containing the RBDU or the byte-alignment stuffing bits appended to
the end of the RBDU in step 1 need such processing.

E.4 Constraints on Byte Stream Data Patterns
The following byte patterns shall not be present at a byte-aligned position within the bitstream:

a) A string of two consecutive bytes of value 0x00 followed by a byte equal to 0x02.
b) A string of three or more consecutive bytes of value 0x00, if not followed by a byte of value 0x01.
c) A string of two consecutive bytes of value 0x00, followed by a byte of value 0x03, followed by a byte

that has a value that is not one of 0x00, 0x01, or 0x02, or 0x03.

Note: The encapsulation process described in section E.1 can prevent these data patterns. The detection of
these data patterns by a decoder should be considered an indication of an error condition. A loss of byte
alignment should also be considered an error condition. For decoders operating in application environments
in which decoder byte alignment can be lost, the detection of such error conditions should be used as an
indication that byte alignment may have been lost.

E.5 Start Code Suffixes for BDU Types
The start code suffixes for various BDU types are presented in Table 256.

Table 256: Start Code Suffixes for Various BDU Types

Start Code Suffix BDU Type

0x00 SMPTE Reserved

0x01-0x09 SMPTE Reserved

0x0A End-of-Sequence

SMPTE 421M

© 2006 SMPTE 439

0x0B Slice

0x0C Field

0x0D Frame

0x0E Entry-point Header

0x0F Sequence Header

0x10-0x1A SMPTE Reserved

0x1B Slice Level User Data

0x1C Field Level User Data

0x1D Frame Level User Data

0x1E Entry-point Level User Data

0x1F Sequence Level User Data

0x20-0x7F SMPTE Reserved

0x80-0xFF Forbidden

The Sequence Header BDU type is present in the bitstream to identify those BDUs which contain sequence header.
See Section 6.1 for more details on sequence headers.

The Entry-point Header BDU type is present in the bitstream to identify those BDUs which contain entry-point header.
See Section 6.2 for more details on entry-point header.

The Frame BDU type is present in the bitstream to identify those BDUs which contain the frame header and the frame
data.

The Field BDU type is present in the bitstream to identify those BDUs which contain the second field of a picture that
is coded as two separate fields.

The Slice BDU type is present in the bitstream to identify those BDUs which carry the slice data and the slice header.
See Section 7.1.2 for more details on slices and slice header.

Sequence, Entry-point, Frame, Field, and Slice Level User data BDU types are used to transmit any user-defined data
associated with the Sequence, Entry-point, Frame, Field, and Slice respectively. See Annex F for more details.

“End-of-sequence” is an optional BDU type which indicates that the current sequence has ended, and no further data
will be transmitted for this sequence. Note that the transmission of an “end-of-sequence” may be present, but the end of
a sequence shall be inferred from the header of the next sequence.

Start Code Suffix values 0x20 to 0x40 inclusive, are reserved for future use by SMPTE. Bitstreams shall not contain
the start code suffix values 0x20 to 0x40, inclusive. Decoders shall ignore (remove from the bitstream and discard)
these start codes and all data that follow them and precede the next start code in the bitstream, without effect on the
decoding process.

NOTE: This specification for decoder treatment of the reserved start code suffix values 0x20 to 0x40 inclusive, allows
the future specification of additional supplemental information which can be included within bitstreams without harm
to compatibility with deployed decoders.

SMPTE 421M

© 2006 SMPTE 440

Annex F
 User Data

User Data is conveyed as bitstream data units and may be included in the bitstream at the sequence, entry-point, frame,
field, or slice layers. The User Data BDUs for each of these locations are identified by 5 unique start codes (0x1B to
0x1F inclusive) defined in Annex E.

The User Data syntax shall be defined as follows:

Table 257: User-data Syntax

User_data_parameters() Number of bits Descriptor
{
 User_data_identifier 32 uimsbf
 for(n=1; n <= end_of_bdu-1; n++)
 {
 User_data[n] 8 uimsbf
 }
 Flushing_byte (0x80) 8 uimsbf

User_data_identifier is a fixed-length syntax element that identifies the type of user data. This syntax element shall be
encoded using 32 bits and shall be set to a registered value of the format_identifier field as defined in ISO/IEC 13818-1
clauses 2.10, O and P. Note: contact the SMPTE Registration Authority for a list of existing values, and for
registration of new values.

User_data is an array of 8-bit fixed length syntax elements that represent the user data. This data shall not emulate a
start code in any 3 sequential bytes.

Flushing_byte shall be an 8-bit field set to the constant value '0x80'.

User Data shall be accounted for in the HRD buffer model.

User Data is a facility to allow for the carriage of data that can provide extra desirable user features. However, user
data shall not be used for the carriage of proprietary codec performance enhancement information.

SMPTE 421M

© 2006 SMPTE 441

Annex G
 Bitstream Construction Constraints – Advanced Profile

There are 11 distinct start code values defined in Annex E; one value for each of the following start codes: Sequence
start code, entry start code, frame start code, field start code, slice start code, end-of-sequence start code and 5 values
for user data start codes. Each start code is a 32-bit field. For user data, the value of the start code defines the scope of
the user data.

Bitstreams shall be constructed according to the constraints below.

Conventions

The Figures below reference the bitstream constructs defined as follows:

SEQ_SC Sequence Start Code

SEQ_HDR Sequence Header

ENTRY_SC Entry Point Start Code

ENTRY_HDR Entry Point Header

FRM_SC Frame Start Code

FRM_DAT Frame Data (includes a Frame Header)

FLD_SC Field Start Code

FLD1_DAT Field 1 Data (includes a Frame Header)

FLD2_DAT Field 2 Data (includes a Field Header)

SLC_HDR Slide Header

SLC_DAT Slice Data bytes (may include a Frame Header or a Field Header

 depending on location)

UD_SC User Data Start Code

UD_DAT User Data bytes

A conformant bitstream shall be one with any combination of the above start code and header pairs in any order that
conforms to the syntax constraints found in this document. A conformant picture-producing bitstream shall be a
conformant bitstream that shall be further constrained as described here.

• At least one pair of SEQ_SC and SEQ-HDR, and
• At least one pair of ENTRY_SC and ENTRY_HDR, and
• For each picture, one of:

o A pair of FRM_SC and FRM_DAT, or
o A 4-tuple of FRM_SC, FLD1_DAT, FLD_SC, and FLD2_DAT

The SLC_HDR/SLC_DAT, UD_SC/UD_DAT and End of Sequence Start Codes are all optional and need not be
present.

A picture producing bitstream shall be further constrained by the rules defined in the remainder of this Annex.

SMPTE 421M

© 2006 SMPTE 442

G.1 Sequence start code
A sequence start code (value 0x0000010F) shall always be followed immediately by a sequence header. A sequence
header shall always be followed by a user data start code or an entry point start code. The type of the first frame or first
two fields following a sequence start code and a sequence header shall always be either I - if frame coding mode is set
to Progressive or Frame Interlace - or I and P, or P and I, or I and I - if the frame coding mode is set to Field Interlace.

A sequence start code and a sequence header may be inserted at regular or irregular intervals throughout the bitstream.

Note: an encoder can adopt various policies to govern the insertion of sequence start codes and associated headers in a
bitstream.

G.2 End-of-Sequence start code
An end-of-sequence start code (value 0x0000010A) may be inserted to indicate that the current sequence has ended and
no further data will be transmitted for this sequence.

Note: The end of a sequence can be inferred from the sequence header of the next sequence. However, certain
applications can benefit from the flexibility of explicitly indicating the end-of-sequence using this start code.

No data shall follow this start code. .

G.3 Entry point start code
An entry point start code (value 0x0000010E) shall always be followed immediately by an entry point header. In a
bitstream, any entry point start code shall always be located after the last byte of a video frame and before the beginning
of the next video frame. If there is a need to insert an entry point header or an entry point start code and an entry point
header where there is already a sequence header between two consecutive video frames, the entry point header code or
the entry point start code and the entry point header shall always follow the sequence header. An entry point header
shall always be followed by a user data start code or a frame start code.

An entry point start code and an entry point header may be inserted at regular or irregular intervals in the bitstream.

Note: An encoder can adopt various policies to govern the insertion of entry point start codes and associated headers in
a bitstream.

Insertion of any entry point start code and associated header shall always be made to signal a valid entry point in the
bitstream, meaning that the video frames and video fields shall satisfy one of the conditions listed below (depending on
the type of picture).

The purpose of the entry point start code is to signal the presence of special locations in a bitstream where there is no
dependency on past decoded video fields or frames to decode the video frame following immediately the entry point
start code and header. The conditions for achieving this are listed below. These conditions depend on the type of the
first frames/fields past the entry point. The type of the first frame or first two fields following an entry point start code
and an entry point header shall always be either I - if frame coding mode is set to Progressive or Frame Interlace - or I
and P, or P and I, or I and I - if the frame coding mode is set to Field Interlace.

G.3.1 Case of I frame in Progressive mode
Figure 167 below illustrates how an entry point start code and an entry point header may be present before an I frame
when the FCM syntax element (7.1.1.15) is set to '0' (Progressive mode).

Since the frame is intra-coded no additional condition is needed to make this I frame a valid entry point in a bitstream.

SMPTE 421M

© 2006 SMPTE 443

SEQ_SC ENTRY_HDRSEQ_HDR FRM_DAT

I frame

FCM value is 0

….. …..ENTRY_SC FRM_SC

Figure 167: Entry Point Signaled before an I frame (Progressive Picture Coding)

G.3.2 Case of I/P frame in Field Interlace mode
Figure 168 below illustrates how an entry point start code and header may be present before an I/P frame when the
FCM syntax element is set to 11b (Field Interlace mode).

Since the frame is composed of an I field followed by a P field, the following conditions shall be met to make this I/P
frame a valid entry point in a bitstream:

• The value of the NUMREF syntax element (9.1.1.44) in the Field header of the P field of the entry I/P frame
shall be '0'

• The value of the REFFIELD syntax element (9.1.1.45) in the Field header of the P field of the entry I/P frame
shall be '0'

These conditions ensure that the P field is only predicted from the I field and therefore there is no dependency on
frames or fields before the entry point.

SMPTE 421M

© 2006 SMPTE 444

ENTRY_HDR FLD2_DAT

P fieldI field

FLD_SC

FCM value is 11

ENTRY_SC FRM_SC FLD1_DAT

Figure 168: Entry Point Signaled before an I/P Frame (Field Interlace Picture Coding)

G.3.3 Case of P/I frame in Field Interlace mode
Figure 169 below illustrates how an entry point start code and header may be present before a P/I frame when the FCM
syntax element is set to 11b (Field Interlace mode).

Since the frame is composed of a P field followed by an I field, the following conditions shall be met to make this P/I
frame a valid entry point in a bitstream:

• Following the entry I field, a P/P frame (Field interlace mode) shall be present in the bitstream before any
occurrence of P frames (progressive or frame interlaced modes).

• The value of the NUMREF syntax element in the Field header of the first P field following the entry P/I frame
shall be '0'

• The value of the REFFIELD syntax element in the Field header of the first P field following the entry P/I
frame shall be '0'

• Any B frames following the entry P/I frame in the bitstream and for which the presentation time comes later
than the presentation times for that entry P/I frame shall not be encoded as depending on the P/I frame.

• The first (in temporal order) B field of any B/B frames following the entry P/I frame in the bitstream and for
which the presentation time comes later than the presentation times of that P/I frame shall not be encoded as
depending on the P field of the entry P/I frame.

These conditions ensure that the next P/P frame, B frame and B/B frames in the bitstream are only predicted from the
entry I field and not the P field that immediately precedes it.

Note: It is impossible to have a valid entry point if there is a P frame that has been predicted from the P/I frame since
this creates a dependency on the P field of the entry P/I frame.

SMPTE 421M

© 2006 SMPTE 445

ENTRY_HDR FLD2_DAT

I fieldP field

FLD_SC

FCM value is 11

ENTRY_SC FRM_SC FLD1_DAT

Figure 169: Entry Point Signaled before a P/I frame (Field Interlace Picture Coding)

G.3.4 Case of I/I frame in Field Interlace mode
Figure 170 below illustrates how an entry point start code and header may be present before an I/I frame when the FCM
syntax element is set to 11b (Field Interlace mode). The Figure does not show a sequence start code and a sequence
header before the entry point start code but such structures may precede the entry start code.

Since the frame is made of two I fields, no additional condition is needed to make this I/I frame a valid entry point in a
bitstream.

ENTRY_HDR FLD2_DAT

I fieldI field

FLD_SC

FCM value is 11

ENTRY_SC FRM_SC FLD1_DAT

Figure 170: Entry Point Signaled before an I/I frame (Field Interlace Picture Coding)

SMPTE 421M

© 2006 SMPTE 446

G.3.5 Case of I frame in Frame Interlace mode
Figure 171 below illustrates how an entry point start code and header may be present before an I frame when the FCM
syntax element is set to 10b (Frame Interlace mode).

Since the frame is intra-coded no additional condition is needed to make this I frame a valid entry point in a bitstream.

SEQ_SC ENTRY_HDRSEQ_HDR FRM_DAT

I frame

FCM value is 10

….. …..ENTRY_SC FRM_SC

Figure 171: Entry Point Signaled before an I frame (Frame Interlace Coding)

G.4 Frame Start Code
A frame start code (value 0x0000010D) shall always be followed immediately by a frame header. In a bitstream, any
frame start code shall always be located after the last byte of a video frame and before the beginning of the next frame.
In the case of the Progressive or Frame Interlace mode, a frame start code shall signal the beginning of a new video
frame. In the case of the Field Interlace mode, a frame start code shall signal the beginning of a sequence of two
independently coded video fields.

G.5 Field Start Code
A field start code (value 0x0000010C) shall always be followed immediately by a field header. The field start code
shall only be used for Field Interlaced frames and shall only be used to signal the beginning of the second field of the
frame. A field start code shall always be present in Field Interlaced frames. The use of field start codes is forbidden in
any frames encoded according to a Progressive or a Frame Interlace mode.

G.6 Slice Start Code
A slice start code (value 0x0000010B) shall always be followed immediately by a slice header. The slice start code
shall be used to signal the beginning of a video slice.

SMPTE 421M

© 2006 SMPTE 447

G.7 User Data Start Codes
A user data start code (values 0x0000011B – 0x0000011F) shall always be followed by a user data header. The user
data header is a 4-byte field identifying the contents of the user data that follows the header as defined in Annex E. The
last user data byte of a user data structure (byte with value '0x80') shall always be followed by either a sequence start
code or an entry point start code or a frame start code or a field start code or a slice start code or another user data start
code (including any possible padding bytes between them), depending on the type of user data start code.

User data may be present at various locations in a bitstream. Although the value of any user data start code also
specifies its scope (sequence-level, or entry point-level, or frame-level, or field-level, or slice-level user data), its
location in a bitstream shall follow the rules described below. The user data structure at any level may be duplicated as
many times as is needed meaning that a user start code and its user data bytes may be followed immediately by another
user data start code and its user data bytes having the same scope.

G.7.1 Sequence-level user data
Figure 172 below shows sequence-level user data. When present, sequence-level user data shall be located in the
bitstream after the sequence header and immediately before the start code signaling the beginning of the next bitstream
data unit. Flushing bits and padding bytes may precede the first byte of the user data start code. Padding bytes may
precede the first byte of the start code immediately following the last user data byte (that is, the flushing byte of value
0x80).

In Figure 172, the top bitstream illustrates the case where the next BDU is an entry point start code followed by an
entry point header while the bottom bitstream illustrates the case where the next BDU is a frame start code followed by
frame data (including a frame header).

Sequence-level user data shall be applicable to the entire sequence, that is until an end-of-sequence code or another
sequence start code is encountered in the bitstream.

SEQ_HDR ENTRY_HDRUD_SC UD_DAT ENTRY_SCSEQ_SC FRM_SC

SEQ_HDR UD_SC UD_DATSEQ_SC FRM_SC

FRM_DAT

FRM_DAT

Figure 172: Sequence level User Data

G.7.2 Entry-Point level user data

SMPTE 421M

© 2006 SMPTE 448

Figure 173 below shows entry-point level user data. When present, entry- point level user data shall be located in the
bitstream after the entry point header and immediately before the start code signaling the beginning of the start code for
the next BDU – that is the start code signaling the next frame, the next entry point or the next sequence. Flushing bits
and padding bytes may precede the first byte of the user data start code. Padding bytes may precede the first byte of the
start code immediately following the last user data byte (that is, the flushing byte of value 0x80).

Entry-Point level user data shall be applicable to the sequence of video frames in the bitstream until another entry point
start code or a sequence start code is encountered.

SEQ_HDR ENTRY_HDR UD_SC UD_DATENTRY_SCSEQ_SC FRM_SC FRM_DAT

Figure 173: Entry-point level User Data

G.7.3 Frame-level User Data
Figure 174 below shows frame-level user data. Flushing bits and padding bytes may precede the first byte of the user
data start code. Padding bytes may precede the first byte of the start code immediately following the last user data byte
(that is, the flushing byte of value 0x80).

In the case of repeated fields (as the result of RFF being set to '1') or in the case of repeated frame (as the result of
RPTFRM being set to a non-zero value), the number of user data BDUs shall always be a multiple of the number of
displayed fields/frames. An equal number of user data BDUs shall then be assigned to each field/frame; the user data
BDUs shall be placed in the bitstream in the order of the field/frame to which they are assigned. Some of the user data
BDUs may be empty.

The top two bitstreams in Figure 174 consider the cases of progressive and frame interlace coded pictures. The top
bitstream illustrates the case where slice start codes are not used. In this case, the frame-level user data, when used,
shall appear at the end of the picture data and immediately before the start code for the next frame or the next entry
point or the next sequence. The second bitstream illustrates the case where slice start codes are used. In this case,
frame-level user data, when used, shall appear immediately before the start code signaling the second slice within the
frame.

The bottom two bitstreams in Figure 174 consider the cases of field interlace coded pictures. The third bitstream
illustrates the case where slice start codes are not used. In this case, the frame-level user data, when used, shall appear
at the end of the first field data and immediately before the start code for the second field. The fourth bitstream
illustrates the case where slice start codes are used. In this case, frame-level user data, when used, shall appear
immediately before the start code signaling the second slice within the first field.

SMPTE 421M

© 2006 SMPTE 449

Frame-level user data shall be applicable to the frame until another frame start code, or an entry point start code, or a
sequence start code is encountered in the bitstream.

FRM_DAT FRM_DATUD_SC UD_DAT FRM_SCFRM_SC

FRM_SCUD_SC UD_DAT SLC_SCFRM_SC SLC_DAT FRM_DATSLC_DAT

FRM_SCUD_SC UD_DAT FLD_SCFRM_SC FLD2_DAT FLD1_DATFLD1_DAT

FLD_SCUD_SC UD_DAT SLC_SC SLC_SCFRM_SC SLC_DAT SLC_DATSLC_DAT SLC_DAT

Figure 174: Frame-level User Data

G.7.4 Field-level user data
Figure 175 below shows field-level user data. Field-level user data shall only be allowed in frames that have been
encoded as Field Interlace frames. Field-level user data shall not be used in frames encoded as progressive or frame
interlace frames. Flushing bits and padding bytes may precede the first byte of the user data start code. Padding bytes
may precede the first byte of the start code immediately following the last user data byte (that is, the flushing byte of
value 0x80).

In Figure 175, the top two bitstreams show the case where slice start codes are not used. The top bitstream shows the
situation where there is no frame-level user data. In this case, the field-level user data shall appear at the end of the field
data and before the start code for the second field or the next frame or the next entry point or the next sequence. The
second bitstream shows the situation where frame-level user data is also present. In this case, field-level user data for
the first field, when present, shall appear before any frame-level user data. The values of the frame-level and field-level
start codes are distinct so the scope of the user data is unambiguous.

The bitstream at the bottom of the Figure illustrates the case where slice start codes are used. The third bitstream shows
the situation where there is no frame-level user data. In this case, field-level user data, when present, shall appear before
the start code of the second slice within the field. The fourth bitstream shows the situation where frame-level user data
is also present. In this case, field-level user data for the first field, when present, shall appear before any frame-level
user data.

Field-level user data shall be applicable to the field until another field start code or a frame start code or an entry point
start code or a sequence start code is encountered in the bitstream.

SMPTE 421M

© 2006 SMPTE 450

FLD_SC

UD_SC UD_DAT

UD_SC UD_DAT

SLC_SC

SLC_SC

FLD_SC FLD2_DATFRM_SC UD_SC UD_DAT UD_SC UD_DAT FRM_SCFLD1_DAT FLD1_DAT

FRM_SC SLC_DAT

SLC_DAT

SLC_DAT

SLC_DAT

FLD_SC FLD2_DATFRM_SC UD_SC UD_DAT

UD_SC UD_DAT FRM_SC

FLD1_DAT

FLD1_DAT

UD_SC UD_DAT

Field 1-level
User data

Frame-level
User data

FLD_SC

UD_SC UD_DAT

UD_SC UD_DAT

SLC_SC

SLC_SC

FRM_SC SLC_DAT

SLC_DAT

SLC_DAT

SLC_DAT

UD_SC UD_DAT

Field 1-level
User data

Frame-level
User data

Figure 175: Field-level User Data

G.7.5 Slice-level user data
Figure 176 below shows slice-level user data. For the sake of simplicity, the figure assumes that the field is made of
two distinct slices but it should not be implied that this is a bitstream constraint. Flushing bits and padding bytes may
precede the first byte of the user data start code. Padding bytes may precede the first byte of the start code immediately
following the last user data byte (that is, the flushing byte of value 0x80).

In Figure 176, the top two bitstreams illustrate the case of user data associated with the first slice in the picture – here a
field, but the same concept shall apply for a frame. The top bitstream shows the situation where there is no field-level or
frame-level user data. In this case, the slice-level user data, when present, shall appear at the end of the first slice data
and before the start code for the second slice. The second bitstream shows the situation where both field-level and
frame-level user data are also present. In this case, slice-level user data for the first slice, when present, shall appear
before any field-level user data. The values of the frame-level, field-level and slice start codes are distinct so the scope
of the user data is unambiguous.

The third bitstream at the bottom illustrates the case of slice-level user data associated with the second slice in the
picture – here a field, but the same concept shall apply to a frame. In this case, the slice-level user data, when present,
shall appear immediately before the start code for the next BDU – here a frame but it could be another slice-level user
start code or a slice start code, a field start code or a frame start code.

Slice-level user data shall be applicable to the slice until another slice start code, a field start code, a frame start code, an
entry point start code or a sequence start code is encountered in the bitstream.

SMPTE 421M

© 2006 SMPTE 451

FRM_SC

UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FLD_SC UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

UD_SC UD_BYTSLC_DAT SLC_DATSLC_SC

FLD_SC FRM_SCUD_SC UD_BYTSLC_DAT SLC_DATSLC_SC

FRM_SC

FRM_SC

FRM_SC

UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FLD_SC UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FRM_SC UD_SC UD_BYT UD_SC UD_BYT

UD_SC UD_BYT

Slice1-level
user data

Field1-level
user data

Frame-level
user data

Slice1-level
user data

Field 2-level
user data

Figure 176: Slice-level User Data

G.8 Start code usage rules
Immediate (one after another of the same kind) duplication of sequence, entry point, frame, field or slice start code and
header shall not be allowed. User data start codes and user bytes may be duplicated an arbitrary amount of times and at
any level. Use of sequence, entry point, frame, field and slice start codes is optional.

Note: Many considerations may drive the use of start code. For example, entry start points may be used for facilitating
receiver tuning or implementation of trick modes or splicing.

Note: The implementation of trick modes is facilitated by the following constraint. If a sequence start code or an entry
point start code is present in the bitstream immediately before the header of a frame of type “P/I” (field interlace mode),
the presence of a field start code between the last data byte of the first “P” field and the field header of the second “I”
field facilitates implementation of trick modes.

SMPTE 421M

© 2006 SMPTE 452

Annex H
Post Processing for Coding Noise Reduction

Note: The application of post-processing (de-blocking and/or de-ringing) to images with relatively large frame sizes
compressed at high bit rates can have significantly less perceptual benefit (or even cause perceptual degradation) as
compared to similar post-processing applied to smaller or more highly compressed images. Similarly, the perceptual
need for post-processing varies with image content (for example, artifacts may be more objectionable in a finely-
detailed low-motion sequence than in an explosion). As such, it is highly beneficial to provide author-generated
metadata regarding the level of post-processing to be applied to a segment.

Two post-processing filters are a deblocking filter and a de-ringing filter. The application of either one or both of them
may be signaled in the bitstream with the POSTPROC field of the picture layer (see section 7.1.1.40). When so
indicated, the post-processing filters described in this Annex may be applied by the decoder after decoding but before
display (see Figure 3 and Figure 4).

In this Annex, the use of the mathematical symbol, ⋅, denotes multiplication and is interchangeable with the asterisk
symbol.

H.1 Deblocking filter
The deblocking filter operations are performed across the 8x8 block edges as a post-processing operation of the
decoder. Luma block edges as well as color-difference block edges are filtered. Figure 167 illustrates the block
boundaries.

v0 v1 v2 v3 v4 v5 v6 v7

v0

v1

v2

v3

v4

v5

v6

v7

Block boundary

Block boundary

S0

S0

S1

S2

S1 S2

v8 v9

v8

v9

Pixels for filtering on a

vertical edge

Pixels for filtering on a

horizontal edge

Figure 177: Boundary area around block of interest for deblocking

In the deblocking filter operations, one of two distinct modes is selected, depending on the pixel conditions across a
block boundary (edge).

If the boundary is in a very smooth region with blocking artifacts due to small DC offset, the boundary is
assigned to a DC offset mode.

Otherwise, the default mode operations are applied.

SMPTE 421M

© 2006 SMPTE 453

The procedure in Figure 178 is used to identify if the boundary is in a very smooth region.

// THR1 = 2
// THR2 = 6
eq_cnt = φ(v0−v1) + φ(v1−v2) + φ(v2−v3) + φ(v3−v4) + φ(v4−v5) + φ(v5−v6) + φ(v6−v7)
 + φ(v7−v8) + φ(v8−v9),
where φ(γ) = 1 if |γ | ≤ THR1 and 0 otherwise.
If (eq_cnt ≥ THR2)
 DC offset mode is applied as boundary is in a very smooth region
else
 Default mode is applied.

Figure 178: Pseudo-code for determing Deblocking Filter mode

Default Mode:

In the default mode, a signal adaptive smoothing scheme is applied by differentiating image details at the block
discontinuities using the frequency information of neighbor pixel arrays, S0, S1, and S2 (see Figure 177). The filtering
scheme in default mode replaces the boundary pixel values v4 and v5 with v4′ and v5′ as follows:

v4′ = v4−d,
v5′ = v5+d,
where d = clip(5⋅(a3,0′− a3,0)//8, 0, (v4−v5)/2) ⋅ δ(|a3,0| < QP)
and a3,0′ = sign(a3,0) ⋅ sign(|a3,0|, |a3,1|, |a3,2|).
and clip(x,p,q) clips x to a value between p and q,
 and QP denotes the quantization parameter and is set to the value of PQUANT.
and δ(condition)=1 if the "condition" is true and 0 otherwise.
where ⋅ (small dot) denotes multiplication.

Frequency components a3,0, a3,1, and a3,2 can be evaluated from the simple inner product of the kernel [2 -5 5 -2] with
the pixel vectors as follows:

a3,0 = ([2 -5 5 -2] • [v3 v4 v5 v6]T) // 8,
a3,1 = ([2 -5 5 -2] • [v1 v2 v3 v4]T) // 8,
a3,2 = ([2 -5 5 -2] • [v5 v6 v7 v8]T) // 8

where • denotes matrix multiplication,

and T denotes matrix transpose,

Note: PQUANT is passed as a meta-data parameter to post-processing.

DC Offset Mode:

In the DC offset mode, a stronger smoothing filter is applied as in a very smooth region (identified by the procedure in
Figure 178), the filtering in the default mode is not strong enough to reduce the blocking artifact. The filtering scheme
in DC offset mode replaces the pixel values (v1, v2 ,v3, v4 v5, v6, v7, v8) with (v1′, v2′, v3′, v4′, v5′, v6′, v7′, v8′) as follows:

 MAX = max (v1, v2, v3, v4, v5, v6, v7, v8),
 MIN = min (v1, v2, v3, v4, v5, v6, v7, v8),

SMPTE 421M

© 2006 SMPTE 454

 if (|MAX−MIN| < 2 * QP) {

()

()
16//}1,1,2,2,4,2,2,1,1{}44:{

8
81

1

,:?
,

,:?

81,

8998

1001

4

4

=≤≤−
>
≤≤

<

⎪
⎩

⎪
⎨

⎧

−

−
=

≤≤⋅=′ +
−=
∑

kb
m

m
m

if
if
if

vvQP<vv
v

vvQP<vv
p

npbv

k

mm

kn
k

kn

 }
 else
 No change will be done.

where x = (“condition”) ? a : b is defined as follows:
 if (“condition”)
 x = a
 else
 x = b

Figure 179: Pseudo-code for DC Offset Mode

The above filter operations are applied for all the 8x8 block boundaries by first applying the filtering process across all
8x8 horizontal edges followed by applying the filtering process across all 8x8 vertical edges. The application of the
filtering process across the horizontal edges follows top-to-bottom ordering of the horizontal edges to be processed.
The application of the filtering process across the vertical edges follows left-to-right ordering of the vertical edges to be
processed. If a pixel value is changed by some filtering operation, the updated pixel value is used for the subsequent
filtering operations.

H.2 De-ringing filter
The de-ringing filter comprises three sub-processes:

1. threshold determination,
2. index acquisition and
3. adaptive smoothing.

The filter is applied to the pixels on an 8x8 block basis. The 8x8 pixels are processed by referencing 10x10 pixels for
each block by adding two overlap rows (one each from top and bottom) and two columns (one each from left and right)
from adjacent blocks. The following notation is used to specify the six blocks in a macroblock. For instance, block[5]
corresponds to the Cb block whereas block[k] is used as a general representation in the following sub-sections.

H.2.1 Threshold determination
The threshold determination process is carried out in two steps:

First, within a block in the decoded image, the maximum and minimum gray value is calculated.

Secondly, the threshold denoted by thr[k] and the dynamic range of gray scale denoted by range[k] are set as
follows:

 ()thr k imum k imum k[] max [] min [] /= + +1 2
 range k imum k imum k[] max [] min []= −

An additional third process is done only for the luma blocks. Let max_range be the maximum value of the dynamic
range among four luma blocks. Then,

 max_ []maxrange range k=

SMPTE 421M

© 2006 SMPTE 455

Then, the threshold rearrangement is calculated as follows.

 for(k=1 ; k<5 ; k++){
 if(range[k] < 32 && max_range > =64)
 thr[k] = thr[kmax];
 if(max_range<16)
 thr[k] = 0;
 }

Figure 180: Pseudo-code for Threshold rearrangment in Luma Blocks for Deringing

H.2.2 Index acquisition
Once the threshold value is determined, the remaining operations are performed purely on an 8x8 block basis. Let
rec(h,v) and bin(h,v) be the gray value at coordinates (h,v) where h,v=0,1,2,...,7, and the corresponding binary index,
respectively. Then bin(h,v) can be obtained by:

() ()

otherwise
thrvhrecif

vhbin
≥

⎩
⎨
⎧

=
,

0
1

,

Note that (h,v) is use to address a pixel in a block, while (i,j) is for accessing a pixel in a 3x3 window.

H.2.3 Adaptive smoothing

H.2.3.1 Adaptive filtering

The figure below defines the binary indices at the 8x8 block level, whereas 10x10 binary indices are calculated to
process one 8x8 block.

 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 1 1

 1 1 0 0 0 0 0 1 1 1

 1 1 1 0 0 0 1 1 1 1

 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1 1 0

 1 1 1 1 1 1 1 1 0 0

Figure 181: Example of adaptive filtering and binary index

The filter is applied only if the binary indices in a 3x3 window are all the same, i.e., all "0" indices or all "1" indices. In
the above figure, the shaded region represents the pixels to be filtered.

Note: 10x10 binary indices are obtained with a single threshold which corresponds to the 8x8 block.

The filter coefficients used for both intra and non-intra blocks denoted by coef(i,j), where i,j=-1,0,1, are:

SMPTE 421M

© 2006 SMPTE 456

1 2 1

2 4 2

1 2 1

Figure 182: Filter mask for adaptive smoothing

Here the coefficient at the center pixel, i.e., coef(0,0), corresponds to the pixel that is to be filtered. The filter output
flt’(i,j) is obtained by the following equation:

() { () () } 16//,,8,'

1

1

1

1
∑ ∑
−= −=

++⋅+=
i j

jvihrecjicoefvhflt

H.2.3.2 Clipping

The maximum gray level change between the reconstructed pixel and the filtered one is limited according to the
quantization parameter, i.e., QP. Let flt(h,v) and flt’(h,v) be the filtered pixel value and the pixel value before limitation,
respectively. Then:

 if(flt’(h,v) - rec(h,v) > max_diff)
 flt(h,v) = rec(h,v) + max_diff
 else if(flt’(h,v) - rec(h,v) < -max_diff)
 flt(h,v) = rec(h,v) - max_diff
 else
 flt(h,v) = flt’(h,v)
 where max_diff=QP/2 for both intra and inter macroblocks.

Figure 183: Pseudo-code for Clipping in Deringing

SMPTE 421M

© 2006 SMPTE 457

Annex I
 Display Metadata for the Advanced Profile

I.1 Overview
The Advanced Profile bitstream includes a number of fields which provide information useful to the post-decode
display process. This information, collectively known as “display metadata” shall all be output by the decoding process.
Its use in the display process is optional and thus may be used, for example, to adapt the 4:2:0 pictures to a format
appropriate for the output of the display process. Use of the term “shall” below defines the meaning of the field in the
bitstream, not the decoder behavior.

I.2 Frame Rate
The Frame Rate fields in the Advanced Profile Sequence Header (FRAMERATEIND (6.1.14.4.1), FRAMERATEEXP
(6.1.14.4.4), FRAMERATENR (6.1.14.4.2), FRAMERATEDR (6.1.14.4.3) shall be the target display frame rate for
the compressed stream. In the case of content with an interlaced target display (INTERLACE == 1 (6.1.9) && PSF ==
0 in the Sequence Header), the frame rate is one-half the field rate of the target display.

The Frame Rate defines the output of the display process, and not necessarily the output of the decoding process (i.e.
coded pictures in the compressed stream can occur less frequently than the target display frame rate).

I.2.1 Repeating Progressive Frames
For content with a progressive target display type (INTERLACE == 0 || PSF == 1) and when pull-down has been used
(PULLDOWN == 1 (6.1.8)), picture headers contain the Integer field RPTFRM (7.1.1.19). RPTFRM shall represent
the number of times the decoded frame may be repeated by the display process.

For example, if a compressed bitstream with 24 frames per second is targeted for a 60-frame-per-second progressive
display (INTERLACE == 0 && FRAMERATEEXP == 0x0780), RPTFRM alternates between 1 and 2 in successive
frames, and the display process may then display decoded frames for 2 or 3 display frame periods respectively.

I.2.2 Field Order
When PULLDOWN is signaled (PULLDOWN == 1) in the Sequence Header, the order in which to display the two
fields of a frame on the target display may be determined by the TFF boolean syntax element (7.1.1.17) in the picture
header. If TFF == 1, the decoded field spatially closer to the top of the display shall be signaled to be displayed for one
display field period, followed by the decoded field spatially closer to the bottom of the display. If TFF == 0, the
decoded field spatially closer to the bottom of the display shall be signaled to be displayed for one display field period,
followed by the decoded field spatially located closer to the top of the display.

If PULLDOWN is not signaled (PULLDOWN == 0) in the Sequence Header, decoded pictures shall be signaled as if
TFF == 1.

Note: A conformant bitstream does not change the value of TFF except as noted below.

I.2.3 Repeating Fields
When a sequence has an interlaced target display type (INTERLACE == 1 && PSF == 0) and pull-down has been used
(PULLDOWN == 1), picture headers contain the boolean field RFF (7.1.1.18). When the RFF == 1, this shall indicate
that the display process may display the first field of a field pair again after displaying the second field of the pair – thus
extending the duration of the field-pair (frame) to three display field periods.

SMPTE 421M

© 2006 SMPTE 458

When a decoded frame is displayed for three display field periods, the subsequent decoded frame shall be flagged with
the opposite value of TFF (i.e. if the first decoded frame has TFF == 1 && RFF == 1, the second decoded frame has
TFF == 0).

A bitstream shall only change the value of TFF between subsequent decoded frames in this manner.

I.2.4 Frame Interpolation Flag
INTERPFRM (7.1.1.1) is a 1-bit syntax element that indicates that the current temporal region is not appropriate for
inter-frame interpolation (INTERPFRM == 0).

Note: Technologies to provide motion-adaptive interpolation between two frames are becoming commercially viable,
and could be used for error resiliency (e.g. replacing dropped frames) or bandwidth reduction (e.g. coding fewer frames
and interpolating to a higher frame rate on display) independent of any particular compression technology. It has
generally been found that such techniques – while performing quite well for small or consistent motions – can cause
very significant degradations in perceptual quality when scene motion is high or non-uniform (e.g. a scene with
foreground, background, and camera all moving independently). For an example on using frame interpolation to
improve the quality of video at low bit rates, please see Kuo et. al 1998.

I.3 Coded Picture Size
The Advanced Profile bitstream provides the ability to change the coded size (in pixels) at Entry Points using the
CODED_WIDTH (6.2.13.1) and CODED_HEIGHT (6.2.13.2) fields. This provides an encoder with the ability to
reduce or increase the coded picture size and thus the bit rate, without incurring the potential disruption of a sequence
change.

To properly support such changes, a decoder needs to know the largest coded picture size it will encounter within a
sequence. The sequence header Integer fields MAX_CODED_WIDTH (6.1.6) and MAX_CODED_HEIGHT (6.1.7)
shall signal the largest coded picture size within a sequence.

If CODED_WIDTH and CODED_HEIGHT are not present in an Entry Point Header (i.e. CODED_SIZE_FLAG ==
0), the coded picture size shall be the maximum coded picture size.

A bitstream shall not have a coded picture size (signaled in the Entry Point Header) which exceeds the maximum coded
picture size (as signaled in the Sequence Header).

I.4 Display Geometry Information
The Advanced Profile uses the concept of a Target Display to transport picture geometry information to the Display
Process. The actual display being utilized by the display process is not necessarily representative of the Target Display,
but the display process may use the display geometry information to optimally render the decoded pictures.

I.4.1 Target Display Size
The horizontal and vertical dimensions of the Target Display (in pixels) may be provided by the DISP_HORIZ_SIZE
(6.1.14.1) and DISP_VERT_SIZE (6.1.14.2) fields. The display size represents the entire picture area – including over-
scan regions.

When the display size dimensions are not present in the Sequence Header, the display dimensions shall be assumed to
be identical to the maximum coded picture dimensions.

I.4.2 Sample Aspect Ratio
The Sample Aspect Ratio (as communicated in the Integer ASPECT_RATIO (6.1.14.3.1) field, or the
ASPECT_HORIZ_SIZE (6.1.14.3.2) and ASPECT_VERT_SIZE (6.1.14.3.3) fields) is used in conjunction with the
display size to determine the actual picture geometry. By defining the picture geometry using these two values, it is

SMPTE 421M

© 2006 SMPTE 459

possible to describe cases where the region which corresponds to a common picture geometry (e.g. 4:3 or 16:9) is a
sub-region of the display picture area (i.e. the picture has over-scan regions).

Note: For example, if the display size is 720 pixels wide by 480 pixels high, and uses a sample aspect ratio of 10:11
(width:height), the actual region of the picture which represents a 4:3 geometry would be 704 pixels wide by 480 pixels
high (480 x 4/3 x 11/10 = 704)

The region representing the common picture geometry is assumed to be centered within the target display area.

Note: When sample aspect ratio information is not present (i.e. ASPECT_RATIO_FLAG == 0 or for Simple and Main
profile), the sample aspect ratio is undefined and application-dependent.

I.4.3 Relating Display Size to Coded Picture Size
In the case where the display size does not match the coded picture size, the display process would normally scale the
decoded image to the display size. The center of the display region and the center of the coded picture are considered
coincident.

I.5 Pan Scan Regions
The pan scan region is a sub-region of the display region which may be used as an alternative presentation format. The
most common application is to display a 4:3 sub-region of 16:9 content.

The Boolean PANSCAN_FLAG (6.2.3) in the Entry Point Header, when set to 1, signals that pan scan windows are
present for pictures within that entry point segment. Pan scan information is not necessarily available throughout an
entire sequence.

Pan scan regions are described with respect to the display region, not the coded picture size. Thus the geometric
relationship between a display and the pan scan information is not affected by changes in the coded picture size.

Note: For a more detailed discussion of the application of this type of Pan Scan Region signaling, consult Taylor 2001.

Note: Pan Scan Regions may also be signaled using alternative methods, such as the Video Index Information defined
in SMPTE RP 186-1995. When using Video Index Information, the data can be carried in the elementary stream user
data using the method described in SMPTE 328M-2000.

I.6 Post-processing Information
FRMRTQ_POSTPROC (6.1.4.1) and BITRTQ_POSTPROC (6.1.4.2) in the sequence header shall provide the decoder
with information so that a decoder may estimate the computational complexity of deblocking and de-ringing operations
for this sequence. This estimate in combination with knowledge of the computational capability of the post-processor
may be used by the decoder to decide whether to disable or enable deblocking and de-ringing operations as indicated by
the POSTPROC meta data bits (see section 7.1.1.27).

Note: The computation of this estimate, and its use in disabling post-processing, are specific to each implementation,
and are outside the scope of this standard. An example implementation is provided in Figure 184.

ComplexityofPostProcessing = (MAX_CODED_WIDTH * MAX_CODEDHEIGHT) * (FRMRTQ_POSTPROC)
* √ (BITRTQ_POSTPROC);

if (ComplexityofPostProcessing < Threshold1) {
 Deblocking = On;
 Deringing = On;
 }

SMPTE 421M

© 2006 SMPTE 460

else if (ComplexityofPostProcessing < Threshold2) {
 Deblocking = On;
 Deblocking = Off;
}
else {
 Deblocking = Off;
 Deringing = Off;
}
Threshold1 and Threshold2 are a measure of the computation capability (higher values of threshold mean
greater computational capability) of the post-processing unit, and are platform specific.

Figure 184: Example pseudo-code to show how post-processing fields can be used to control de-ringing and
deblocking operations

SMPTE 421M

© 2006 SMPTE 461

Annex J
 Decoder Initialization Metadata

Certain metadata is required to be delivered to the decoder in order for it to decode the bitstream. While the
specification of a particular transport encoding, file system, user input or network protocol that conveys this
initialization metadata is not a part of this document, the data format at the interface to the decoder shall be specified
herein to enable decoder interoperability with any transport or delivery system.

Note: See Annex L for an encoding of this metadata that could be used as a basis for specific encodings.

The metadata items defined in this annex shall be made available to the decoder prior to commencement of the
decoding process. The delivery of this metadata is specific to the simple and main profiles only. See 4.12 for definition
of terms used in this annex.

J.1 Initialization Metadata Elements
The following metadata elements shall be communicated to the decoder by the transport demultiplexer, file reader, or
other means:

J.1.1 Profile (PROFILE)
PROFILE specifies the encoding profile used to produce the sequence, and shall be set to 0, 4 or 12 to indicate Simple,
Main or Advanced profile respectively. Other values shall be SMPTE Reserved.

Note: When encoding, this uses values 0, 4 & 12 so at least 4 bits are implied though 2 bits minimum could be used.

J.1.2 Level (LEVEL)
LEVEL shall specify the encoding level used to produce the sequence, and shall be set to 0 or 2 to indicate Low and
Medium levels respectively for the simple profile. LEVEL shall be set to 0, 2 or 4 to indicate Low, Medium and High
levels respectively for the main profile. For the advanced profile, LEVEL shall take a value from 0 through 4,
corresponding to levels L0 through L4 in sequence. All other values shall be SMPTE Reserved.

The following elements are defined only for the Simple and Main profiles. These syntax elements shall be ignored for
the Advanced profile and shall not be used by the decoder.

Note: When encoding, this uses values 0 to 4 so 3 bits minimum are needed.

J.1.3 Horizontal Size of Picture (HORIZ_SIZE)
HORIZ_SIZE shall specify the horizontal size of the coded picture in pixels ranging from 2 to 8192 in units of 2 pixels.
Values greater than 8192 shall be SMPTE Reserved.

CodedWidth = HORIZ_SIZE.

Note: When encoding, this uses values from 2 to 8192 in 2 pixel steps so 12 bits minimum are needed.

J.1.4 Vertical Size of Picture (VERT_SIZE)
VERT_SIZE shall specify the vertical size of the coded picture in pixels ranging from 2 to 8192 in units of 2 pixels.
Values greater than 8192 shall be SMPTE Reserved.

CodedWidth = VERT_SIZE.

Note: When encoding, this uses values from 2 to 8192 in 2 pixel steps so 12 bits minimum are needed.

J.1.5 HRD Rate (HRD_RATE)
HRD_RATE shall specify the peak transmission rate R in bits per second. The range is from 1 to 65536.

SMPTE 421M

© 2006 SMPTE 462

Note: When encoding, 16 bits minimum are needed.

J.1.6 HRD Buffer Size (HRD_BUFFER)
HRD_BUFFER shall signal the buffer size B in milliseconds. Thus size of the buffer B in bits is given by
(HRD_BUFFER * HRD_RATE)/1000. The range is from 1 to 65536.

Note: This syntax element is different from the syntax element defined in section 6.1.15.1.

Note: When encoding, 16 bits minimum are needed.

J.1.7 Quantized Frame Rate for Post processing Indicator (FRMRTQ_POSTPROC)
FRMRTQ_POSTPROC may be present and shall signal the (quantized) frame rate information for controlling the
strength of post-processing operation. The decoding procedure for FRMRTQ_POSTPROC may be performed as
specified in Table 258. Annex I.6 describes a mechanism for controlling post-processing using the post-processing
indicators.

Note: When encoding, 7 is the upper limit so 3 bits minimum are needed.

J.1.8 Quantized Bit Rate for Post processing Indicator (BITRTQ_POSTPROC)
BITRTQ_POSTPROC may be present and shall signal the (quantized) bit rate information for controlling the strength
of post-processing operation. The decoding procedure for BITRTQ_POSTPROC may be performed as specified in
Table 258. Annex I.6 describes a mechanism for controlling post-processing using the post-processing indicators.

Note: When encoding, the upper limit is 31, so 7 bits minimum are needed.

 Table 258: Decoding Procedure for Post-processing Indicators in Simple/Main Profile

 if (FRMRTQ_POSTPROC == 7) {

 “frame rate is around 30 frames/second or more

 }

 else {

 “frame rate is around “(2+FRMRTQ_POSTPROC*4)” frames/second

 }

 if (BITRTQ_POSTPROC == 31) {

 “bit rate” is around 2016 kbps or more

 }

 else {

 “bit rate” is around “(32 + BITRTQ_POSTPROC * 64)” kbps

 }

J.1.9 Loop Filter Flag (LOOPFILTER)
LOOPFILTER is a Boolean that shall indicate whether loop filtering is enabled for the sequence. If LOOPFILTER ==
0, then loop filtering shall not be enabled. If LOOPFILTER == 1, then loop filtering shall be enabled. If the PROFILE

SMPTE 421M

© 2006 SMPTE 463

syntax takes the value corresponding to simple profile, the LOOPFILTER syntax element shall have the value 0. See
section 8.6 for a description of loop filtering.

Note: When encoding, a minimum of 1 bit is needed.

J.1.10 Multi-resolution Coding (MULTIRES)
MULTIRES is a Boolean that shall indicate whether the frames may be coded at smaller resolutions than the specified
frame resolution. Resolution changes shall only be allowed on I pictures. If MULTIRES == 1, then the frame level
RESPIC syntax element shall be present which indicates the resolution for that frame. If MULTIRES == 0, then
RESPIC shall not be present. See section 8.1.1.3 for a description of multi-resolution decoding in I pictures.

Note: When encoding, a minimum of 1 bit is needed.

J.1.11 FAST UV Motion Compensation Flag (FASTUVMC)
FASTUVMC is Boolean that shall control the subpixel interpolation and rounding of color-difference motion vectors.
If FASTUVMC == 1, then the color-difference motion vectors that are at quarter pel offsets shall be rounded to the
nearest half or full pel positions If FASTUVMC == 0, then no special rounding or filtering shall be done for color-
difference. See section 8.3.5.4.2 for details on how color-difference motion vector computation is performed for the
two cases. (Informative – The purpose of this mode is speed optimization of the decoder). FASTUVMC shall be 1 for
the Simple Profile.

Note: When encoding, a minimum of 1 bit is needed.

J.1.12 Extended Motion Vector Flag (EXTENDED_MV)
EXTENDED_MV is a Boolean that shall indicate whether extended motion vectors are enabled (value 1) or disabled
(value 0). This bit shall always set to zero for the Simple Profile. For the Main Profile, the extended motion vector
mode shall indicate the possibility of extended motion vectors in P and B pictures.

Note: When encoding, a minimum of 1 bit is needed.

J.1.13 Macroblock Quantization Flag (DQUANT)
DQUANT shall indicate whether or not the quantization step size may vary within a frame. If DQUANT == 0, then
only one quantization step size (i.e. the frame quantization step size) shall be used per frame. If DQUANT == 1 or 2,
then the quantization step size may vary within the frame. In simple profile, DQUANT shall be 0. In the main profile, if
MULTIRES == 1, DQUANT shall be 0. Values greater than 2 shall be SMPTE Reserved. See section 7.1.1.31 for a
description of DQUANT.

Note: When encoding, a minimum of 2 bits are needed.

J.1.14 Variable Sized Transform Flag (VSTRANSFORM)
VSTRANSFORM is a Boolean that shall indicate whether variable-sized transform coding is enabled for the sequence.
If VSTRANSFORM == 0, then variable-sized transform coding shall not be enabled. If VSTRANSFORM == 1, then
variable-sized transform coding shall be enabled. See section 8.3.6.2 for a description of variable-sized transform
coding.

Note: When encoding, a minimum of 1 bit is needed.

J.1.15 Overlapped Transform Flag (OVERLAP)
OVERLAP is a Boolean that shall indicate whether Overlapped Transforms (Section 7.4) are used. If OVERLAP == 1,
then Overlapped Transforms may be used. If OVERLAP == 0, Overlapped Transforms shall not be used.

Note: When encoding, a minimum of 1 bit is needed.

J.1.16 Sync Marker Flag (SYNCMARKER)
SYNCMARKER is a Boolean that shall indicate whether synchronization markers may be present in the bitstream. This
bit shall always be set to zero in the simple profile. In the main profile, the synchronizations markers may be present if

SMPTE 421M

© 2006 SMPTE 464

SYNCMARKER == 1, and the markers shall not be present if SYNCMARKER == 0. See section 8.8 for description of
synchronization markers.

Note: When encoding, a minimum of 1 bit is needed.

J.1.17 Range Reduction Flag (RANGERED)
RANGERED is a Boolean that shall indicate whether range reduction is used for each frame. If RANGERED == 1,
then there shall be a syntax element in each frame header (RANGEREDFRM) that indicates whether range reduction is
used for that frame. If RANGERED == 0, the syntax element RANGEREDFRM shall not be present, and range
reduction shall not used. RANGERED shall be set to zero in simple profile.

Note: When encoding, a minimum of 1 bit is needed.

J.1.18 Maximum Number of consecutive B frames (MAXBFRAMES)
MAXBFRAMES shall indicate the presence of B frames between I or P frames. If MAXBFRAMES == 0, then there
shall be no B frames in the sequence. If MAXBFRAMES is not equal to zero, B Frames may be present in the
sequence. Values greater than 7 are SMPTE Reserved.

Note: When encoding, a minimum of 3 bits are needed.

J.1.19 Quantizer Specifier (QUANTIZER)
QUANTIZER shall indicate the quantizer used for the sequence. The quantizer types shall be as defined in Table 259
below.

 Table 259: Quantizer specification

Value Meaning

0 Quantizer implicitly specified at frame level

1 Quantizer explicitly specified at frame level

2 Non-uniform quantizer used for all frames

3 Uniform quantizer used for all frames

other SMPTE Reserved

J.1.20 Frame Interpolation Flag (FINTERPFLAG)
FINTERPFLAG is a Boolean that shall indicate if the syntax element INTERPFRM is present in the picture header. If
FINTERPFLAG == 0, then INTERPFRM shall not be present in picture headers. If FINTERPFLAG == 1,
INTERPFRM shall be present in picture headers.

Note: When encoding, a minimum of 2 bits are needed.

J.2 Initialization Interface Data Structure
This section defines a common initialization interface data structure for all profiles.

The size elements may be encoded according to a 64 bit sequence header data structure ‘STRUCT_A’ as shown in
Table 260 below for the Simple and Main profiles. For the Advanced profile, STRUCT_A may be 8 consecutive zero
bytes.

See Annex L for a recommended bitstream layout.

Table 260: Sequence Header Data Structure STRUCT_A for Simple and Main Profiles

STRUCT_SEQUENCE_HEADER_A { Number of bits Descriptor Reference

SMPTE 421M

© 2006 SMPTE 465

 VERT_SIZE 32 uimsbf J.1.4

 HORIZ_SIZE 32 uimsbf J.1.3

}

The level and HRD parameters may be encoded according to a 96 bit sequence header data structure ‘STRUCT_B’ as
shown below in Table 261 for the Simple and Main profiles and in Table 262 for the Advanced Profile. Additional
fields are included in STRUCT_B, and are described below.

J.2.1 Constant Bitrate Sequence (CBR)
CBR shall indicate that the content was generated using a constant bitrate model (set to 1) or not (set to 0).

Note: This bit is usually not used by the decoder.

J.2.2 Reserved1 (RES1)

RES1 shall be set to zero. Other values shall be SMPTE Reserved.

J.2.3 Integer Frame Rate (FRAMERATE)
FRAMERATE is a 32-bit unsigned word in the bitstream which may signal the rounded frame rate (fps) of the encoded
clip. FRAMERATE should be set to 0xffffffff if it is not known, unspecified, or non-constant.

Note: This value is usually not used by the decoder.

J.2.4 Reserved2 (RES2)

RES2 shall be set to zero. Other values shall be SMPTE Reserved.

Table 261: Sequence Header Data Structure STRUCT_B for Simple and Main Profiles

STRUCT_SEQUENCE_HEADER_B { Number of bits Descriptor Reference

 LEVEL 3 uimsbf J.1.2

 CBR 1 uimsbf J.2.1

 RES1 4 uimsbf J.2.2

 HRD_BUFFER 24 uimsbf J.1.6

 HRD_RATE 32 uimsbf J.1.5

 FRAMERATE 32 uimsbf J.2.3

}

Table 262: Sequence Header Data Structure STRUCT_B for Advanced Profile

STRUCT_SEQUENCE_HEADER_B { Number of bits Descriptor

 LEVEL 3 uimsbf J.1.2

 CBR 1 uimsbf J.2.1

 RES1 4 uimsbf J.2.2

 RES2 56 uimsbf J.2.4

 FRAMERATE 32 uimsbf J.2.3

}

SMPTE 421M

© 2006 SMPTE 466

The remaining metadata elements may be encoded according to a 32 bit sequence header data structure ‘STRUCT_C’
as shown in Table 263 below for the Simple and Main profile, and in Table 264 for the Advanced profile.

Table 263: Sequence Header Data Structure STRUCT_C for Simple and Main Profiles

STRUCT_SEQUENCE_HEADER_C { Number of bits Descriptor

 PROFILE 4 uimsbf J.1.1

 FRMRTQ_POSTPROC 3 uimsbf J.1.7

 BITRTQ_POSTPROC 5 uimsbf J.1.8

 LOOPFILTER 1 uimsbf J.1.9

 Reserved3 1 uimsbf See below

 MULTIRES 1 uimsbf J.1.10

 Reserved4 1 uimsbf See below

 FASTUVMC 1 uimsbf J.1.11

 EXTENDED_MV 1 uimsbf J.1.12

 DQUANT 2 uimsbf J.1.13

 VSTRANSFORM 1 uimsbf J.1.14

 Reserved5 1 uimsbf See below

 OVERLAP 1 uimsbf J.1.15

 SYNCMARKER 1 uimsbf J.1.16

 RANGERED 1 uimsbf J.1.17

 MAXBFRAMES 3 uimsbf J.1.18

 QUANTIZER 2 uimsbf J.1.19

 FINTERPFLAG 1 uimsbf J.1.20

 Reserved6 1 uimsbf See below

}

Table 264: Sequence Header Data Structure STRUCT_C for Advanced Profile

STRUCT_SEQUENCE_HEADER_C { Number of bits Descriptor

 PROFILE 4 uimsbf J.1.1

 Reserved7 28 uimsbf See below

}

The fields are as described above in section J.1. In addition:

Reserved3 shall be set to zero and other values shall be forbidden.

SMPTE 421M

© 2006 SMPTE 467

Reserved4 shall be set to one and other values shall be forbidden.

Reserved5 shall be set to zero and other values shall be forbidden.

Reserved6 shall be set to one and other values shall be forbidden.

Reserved7 shall be set to zero and other values shall be forbidden.

SMPTE 421M

© 2006 SMPTE 468

Annex K
Encoder Overview and Internal Representation (Informative)

K.1 Coding Description
Figure 185 and Figure 186 illustrate the basic steps used to encode a series of pictures. Note that the compression
process uses block-based motion predictive coding to reduce temporal redundancy and transform coding to reduce
spatial redundancy.

A highly level summary of the encoder is as follows.
• A frame is decomposed into blocks.
• For an intra-coded block:

o The block is transformed using an 8x8 transform.
o Before applying the transform, an overlap operation can be applied to neighboring intra-coded blocks.
o Quantization is applied to the transform coefficients, and DC/AC prediction can be applied to the

quantized coefficients to remove additional redundancy.
o The DC coefficient is coded by a VLC. A zigzag scan is applied to the AC coefficients, and the run-

levels are encoded with another VLC.
• For an inter-coded block:

o The block is predicted from motion compensated block in the previous frame. If the frame is
bidirectional predicted, the block can also be predicted from motion compensated blocks in the next
frame.

o The motion vectors themselves are predicted from the motion vectors of neighboring blocks, and the
motion vector differentials are coded with a VLC.

o An 8x8, or 8x4, or 4x8, or 4x4 transform is applied to the prediction error of the block. The transform
coefficients are quantized.

o A zigzag scan is applied to the coefficients, and the run-levels are encoded with a VLC.
• In both intra-coded pictures, and inter-coded pictures, macroblock level flags such as ACPRED flag or

SKIPMB flag can be jointly encoded at the frame level using bitplane coding.

The encoding of an 8x8 intra-coded block (after overlap operation) is shown in Figure 185. The encoding of an 8x8
inter-coded block is shown in Figure 186.

SMPTE 421M

© 2006 SMPTE 469

Figure 185: Coding of Intra blocks

Quantize Transform

Predicted block
Quantized Transform

DC VLE

DC Prediction

AC Prediction

....
zigzag scan

8x8 pixel block
8x8 Transform
Coefficients

Run Length EncodeAC Variable
Length Encode

Quantized Transform
Coefficients

run level last

SMPTE 421M

© 2006 SMPTE 470

Figure 186: Coding of Inter blocks

K.2 Internal Representation of a Frame
Implementations typically work with 16x16 pixels of luma component per MB, and thus the internal frame dimensions
used in the decoder are multiples of 16. The internal luma arrays used for decoding the video have dimensions of 16 *
((‘frame height’ + 15) / 16) rows by 16 * ((‘frame_width’ + 15) / 16) columns. The internal color-difference arrays used
for decoding the video have dimensions half as much as the luma arrays in both the horizontal and vertical axes. Note
that all decoding operations use the internal array size, but the output of the decoder is the cropped array obtained by
taking the first rows 0 to ‘frame height’ - 1 and first columns 0 to ‘frame width’ - 1 out of the internal luma array, and
by taking the first rows 0 to ‘frame height’/2 -1 and first columns 0 to ‘frame width’ -1 out of the internal color-
difference array.

Motion vector
(specifies

displacement of
predicted block in
reference frame)

Current 8x8 block

MVx, MVy
Motion

Estimation

Predicted 8x8 block

Top 8x4 Error
block

Bottom 8x4

.......

.......

Run Level Last

Run Level Last

Trans/
Quant

zigzag
scan

Trans/
Quant

zigzag
scan

Run
Length
Encode

Run
Length
Encode

VLE

VLE

Error block

Error block

SMPTE 421M

© 2006 SMPTE 471

Annex L
 Bitstream Metadata Serialization

The metadata elements for decoder initialization as defined in Annex J may be carried in a demarcated
container such as a disk file format, or within a transport stream. The decoder may be passed these
elements via auxiliary data paths, or as a single concatenated bitstream. This annex defines a
concatenation of the decoder initialization metadata and compressed frame data so as to embed the
information necessary for the decoding process into a common minimal serial bitstream that can be used in
defining file or streaming format encodings of the elementary bitstream. This concatenation is applicable
to all profiles of the standard.

L.1 General Layout

There are two layers – the sequence layer and the frame layer, which are shown in Table 265 and Table
266 respectively. There shall be only one sequence layer in a serialized bitstream. The frame layer shall
immediately follow the sequence layer, or the preceding frame layer.

L.2 Sequence Layer

The sequence layer metadata may be formed as defined in Table 265.

Table 265: Sequence Layer Data Structure

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0xC5 NUMFRAMES : 24

0x00000004

STRUCT_C (refer to Table 263 and Table 264)

STRUCT_A (VERT_SIZE) (refer to Table 260 and Annex J.2)

STRUCT_A (HORIZ_SIZE)

0x0000000C

STRUCT_B (LEVEL:3 | CBR: 1 | RES1: 4 | HRD_BUFFER:24) (refer to Table 261 and Table 262)

STRUCT_B (HRD_RATE)

STRUCT_B (FRAMERATE)

The fields in the sequence layer of Table 265 shall be as described in Annex J, with field NUMFRAMES
described below:

SMPTE 421M

© 2006 SMPTE 472

Number of Compressed Frames (NUMFRAMES)
NUMFRAMES is a 24 bit unsigned integer field that shall denote the number of compressed frames in the
serialization. The value of 0xffffff shall indicate an indefinitely long sequence, or a sequence longer than
16777214 frames.

L.3 Frame Layer

Table 266: Frame Layer Data Structure

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

K
E
Y

RES FRAMESIZE : 24

TIMESTAMP

FRAMEDATA (byte aligned)

The fields in the frame layer are described below:

Key Frame Indicator (KEY)
KEY == 1 shall indicate an intra frame for simple and main profiles or an entry point for advanced profile,
and shall be set to 0 otherwise.

Reserved (RES)
Seven bits marked RES shall be set to zero. Other values shall be SMPTE Reserved.

Compressed Frame Size (FRAMESIZE)
FRAMESIZE shall be the size of the FRAMEDATA field in bytes. The subsequent frame layer shall be
located at an offset of 8 + FRAMESIZE bytes from the start of the current frame layer. FRAMESIZE set to
0 or 1 shall indicate a skipped P frame.

Time stamp in ms (TIMESTAMP)
TIMESTAMP shall be the 32-bit time stamp of the current frame in milliseconds relative to the time stamp
of the first frame. TIMESTAMP can be used to signal the target display rate of the compressed steam.

Compressed Frame Data (FRAMEDATA)
For simple and main profiles, FRAMEDATA shall be the compressed frame level data, padded to a byte
boundary. Padded bits are MSB and shall be set to zero. Other values shall be SMPTE Reserved.

For advanced profile bitstreams, FRAMEDATA shall minimally contain a frame start code and
corresponding frame data. If the frame is an entry point, FRAMEDATA shall contain the entry point start
code, entry point header, frame start code and frame data. If the frame is the first frame of a sequence,
FRAMEDATA shall contain the sequence start code, sequence header, entry point start code, entry point
header, frame start code and frame data. Refer to Annex G for details on start codes and bitstream
construction constraints.

SMPTE 421M

© 2006 SMPTE 473

Note: The data elements STRUCT_A, STRUCT_B and STRUCT_C (defined in Annex J.2), their
constituent fields, field sizes, and insertion of reserved bits and their values are chosen to maintain
compatibility with a pre-existing bitstream serialization format and existing Simple and Main profile
decoders.

The sequence layer and frame layer data structures (except FRAMEDATA) shall be represented as a
sequence of 32 bit unsigned integers. In Table 265 and Table 266, 0 in the first row represents LSB. Each
integer, except STRUCT_C shall be serialized in little-endian byte order. STRUCT_C and
FRAMEDATA shall be serialized in big-endian byte order. Therefore, the constant byte value 0xC5 shall
be present in the fourth byte of the serialization.

